ksvmuralidhar commited on
Commit
c82bebf
1 Parent(s): 0e1a57d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +225 -0
app.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import re
4
+ import os
5
+ import cloudpickle
6
+ from transformers import (DebertaTokenizerFast,
7
+ TFAutoModelForTokenClassification,
8
+ BartTokenizerFast,
9
+ TFAutoModelForSeq2SeqLM)
10
+ import tensorflow as tf
11
+ import spacy
12
+ import streamlit as st
13
+
14
+
15
+ class NERLabelEncoder:
16
+ '''
17
+ Label Encoder to encode and decode the entity labels
18
+ '''
19
+ def __init__(self):
20
+ self.label_mapping = {'O': 0,
21
+ 'B-geo': 1,
22
+ 'I-geo': 2,
23
+ 'B-gpe': 3,
24
+ 'I-gpe': 4,
25
+ 'B-per': 5,
26
+ 'I-per': 6,
27
+ 'B-org': 7,
28
+ 'I-org': 8,
29
+ 'B-tim': 9,
30
+ 'I-tim': 10,
31
+ 'B-art': 11,
32
+ 'I-art': 12,
33
+ 'B-nat': 13,
34
+ 'I-nat': 14,
35
+ 'B-eve': 15,
36
+ 'I-eve': 16,
37
+ '[CLS]': -100,
38
+ '[SEP]': -100}
39
+
40
+ self.inverse_label_mapping = {}
41
+
42
+ def fit(self):
43
+ self.inverse_label_mapping = {value: key for key, value in self.label_mapping.items()}
44
+ return self
45
+
46
+ def transform(self, x: pd.Series):
47
+ x = x.map(self.label_mapping)
48
+ return x
49
+
50
+ def inverse_transform(self, x: pd.Series):
51
+ x = x.map(self.inverse_label_mapping)
52
+ return x
53
+
54
+
55
+ ############ NER MODEL & VARS INITIALIZATION START ####################
56
+ NER_CHECKPOINT = "microsoft/deberta-base"
57
+ NER_N_TOKENS = 50
58
+ NER_N_LABELS = 18
59
+ ner_model = TFAutoModelForTokenClassification.from_pretrained(NER_CHECKPOINT, num_labels=NER_N_LABELS, attention_probs_dropout_prob=0.4, hidden_dropout_prob=0.4)
60
+ ner_model.load_weights(os.path.join("models", "general_ner_deberta_weights.h5"), by_name=True)
61
+ ner_label_encoder = NERLabelEncoder()
62
+ ner_label_encoder.fit()
63
+ nlp = spacy.load(os.path.join('.', 'en_core_web_sm-3.6.0'))
64
+ NER_COLOR_MAP = {'GEO': '#DFFF00', 'GPE': '#FFBF00', 'PER': '#9FE2BF',
65
+ 'ORG': '#40E0D0', 'TIM': '#CCCCFF', 'ART': '#FFC0CB', 'NAT': '#FFE4B5', 'EVE': '#DCDCDC'}
66
+ ############ NER MODEL & VARS INITIALIZATION END ####################
67
+
68
+ ############ NER LOGIC START ####################
69
+ def softmax(x):
70
+ return tf.exp(x) / tf.math.reduce_sum(tf.exp(x))
71
+
72
+ def ner_process_output(res):
73
+ '''
74
+ Function to concatenate sub-word tokens, labels and
75
+ compute mean prediction probability of tokens
76
+ '''
77
+ d = {}
78
+ result = []
79
+ pred_prob = []
80
+ res.append(['-', 'B-b', 0])
81
+ for n, i in enumerate(res):
82
+ try:
83
+ split = i[1].split('-')
84
+ token = i[0]
85
+ token_prob = i[2]
86
+ prefix, suffix = split
87
+ if prefix == 'B':
88
+ if len(d) != 0:
89
+ result.append([(re.sub(r"[^\x00-\x7F]+", '', token.replace("Ġ", " ").strip()), label, np.mean(pred_prob))
90
+ for label, token in d.items()][0])
91
+ d = {}
92
+ pred_prob = []
93
+ pred_prob.append(token_prob)
94
+ d[suffix] = token
95
+
96
+ else:
97
+ d[suffix] = d[suffix] + token
98
+ pred_prob.append(token_prob)
99
+ except:
100
+ continue
101
+
102
+ return result
103
+
104
+
105
+ def ner_inference(txt):
106
+ '''
107
+ Function that returns model prediction and prediction probabitliy
108
+ '''
109
+ test_data = [txt]
110
+ tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True)
111
+ tokens = tokenizer.tokenize(txt)
112
+ tokenized_data = tokenizer(test_data, is_split_into_words=True, max_length=NER_N_TOKENS,
113
+ truncation=True, padding="max_length")
114
+
115
+ token_idx_to_consider = tokenized_data.word_ids()
116
+ token_idx_to_consider = [i for i in range(len(token_idx_to_consider)) if token_idx_to_consider[i] is not None]
117
+
118
+ input_ = [tokenized_data['input_ids'], tokenized_data['attention_mask']]
119
+ pred_logits = ner_model.predict(input_, verbose=0).logits[0]
120
+
121
+ pred_prob = tf.map_fn(softmax, pred_logits)
122
+
123
+ pred_idx = tf.argmax(pred_prob, axis=-1).numpy()
124
+ pred_idx = pred_idx[token_idx_to_consider]
125
+
126
+ pred_prob = tf.math.reduce_max(pred_prob, axis=-1).numpy()
127
+ pred_prob = np.round(pred_prob[token_idx_to_consider], 3)
128
+ pred_labels = ner_label_encoder.inverse_transform(pd.Series(pred_idx))
129
+
130
+ result = [[token, label, prob] for token, label,
131
+ prob in zip(tokens, pred_labels, pred_prob) if label.find('-') >= 0]
132
+
133
+ output = ner_process_output(result)
134
+ return output
135
+
136
+
137
+ def ner_inference_long_text(txt):
138
+ entities = []
139
+ doc = nlp(txt)
140
+ for sent in doc.sents:
141
+ entities.extend(ner_inference(sent.text))
142
+ return entities
143
+
144
+
145
+ def get_ner_text(article_txt, ner_result):
146
+ res_txt = ''
147
+ start = 0
148
+ prev_start = 0
149
+ for i in ner_result:
150
+ try:
151
+ span = next(re.finditer(fr'{i[0]}', article_txt)).span()
152
+ start = span[0]
153
+ end = span[1]
154
+ res_txt += article_txt[prev_start:start]
155
+ repl_str = f'''<span style="background-color:{NER_COLOR_MAP[i[1]]}; border-radius: 3px">{article_txt[start:end].strip()}
156
+ <span style="font-size:10px; font-weight:bold; display:inline-block; vertical-align: middle;">
157
+ {i[1]} ({str(np.round(i[2], 3))})</span></span>'''
158
+ res_txt += article_txt[start:end].replace(article_txt[start:end], repl_str)
159
+ prev_start = 0
160
+ article_txt = article_txt[end:]
161
+ except:
162
+ continue
163
+ res_txt += article_txt
164
+ return res_txt
165
+
166
+ ############ NER LOGIC END ####################
167
+
168
+ ############ SUMMARIZATION MODEL & VARS INITIALIZATION START ####################
169
+ SUMM_CHECKPOINT = "facebook/bart-base"
170
+ SUMM_INPUT_N_TOKENS = 400
171
+ SUMM_TARGET_N_TOKENS = 100
172
+ summ_model = TFAutoModelForSeq2SeqLM.from_pretrained(SUMM_CHECKPOINT)
173
+ summ_model.load_weights(os.path.join("models", "bart_en_summarizer.h5"), by_name=True)
174
+
175
+ def summ_preprocess(txt):
176
+ txt = re.sub(r'^By \. [\w\s]+ \. ', ' ', txt) # By . Ellie Zolfagharifard .
177
+ txt = re.sub(r'\d{1,2}\:\d\d [a-zA-Z]{3}', ' ', txt) # 10:30 EST
178
+ txt = re.sub(r'\d{1,2} [a-zA-Z]+ \d{4}', ' ', txt) # 10 November 1990
179
+ txt = txt.replace('PUBLISHED:', ' ')
180
+ txt = txt.replace('UPDATED', ' ')
181
+ txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after
182
+ txt = txt.replace(' : ', ' ')
183
+ txt = txt.replace('(CNN)', ' ')
184
+ txt = txt.replace('--', ' ')
185
+ txt = re.sub(r'^\s*[\,\.\:\'\;\|]', ' ', txt) # remove puncts at beginning of sent
186
+ txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after
187
+ txt = " ".join(txt.split())
188
+ return txt
189
+
190
+ def summ_inference_tokenize(input_: list, n_tokens: int):
191
+ tokenizer = BartTokenizerFast.from_pretrained(SUMM_CHECKPOINT)
192
+ tokenized_data = tokenizer(text=input_, max_length=SUMM_TARGET_N_TOKENS, truncation=True, padding="max_length", return_tensors="tf")
193
+ return tokenizer, tokenized_data
194
+
195
+ def summ_inference(txt: str):
196
+ txt = summ_preprocess(txt)
197
+ test_data = [txt]
198
+ inference_tokenizer, tokenized_data = summ_inference_tokenize(input_=test_data, n_tokens=SUMM_INPUT_N_TOKENS)
199
+ pred = summ_model.generate(**tokenized_data, max_new_tokens=SUMM_TARGET_N_TOKENS)
200
+ result = inference_tokenizer.decode(pred[0])
201
+ result = re.sub("<.*?>", "", result).strip()
202
+ return result
203
+ ############ SUMMARIZATION MODEL & VARS INITIALIZATION END ####################
204
+
205
+ ############## ENTRY POINT START #######################
206
+ def main():
207
+ st.title("News Summarization & NER")
208
+ article_txt = st.text_area("Paste the text of a news article:", "", height=200)
209
+ if st.button("Submit"):
210
+ ner_result = [[ent, label.upper(), np.round(prob, 3)]
211
+ for ent, label, prob in ner_inference_long_text(article_txt)]
212
+
213
+ ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence'])
214
+ summ_result = summ_inference(article_txt)
215
+
216
+ ner_txt = get_ner_text(article_txt, ner_result)
217
+
218
+ st.markdown(f"<h4>SUMMARY:</h4>{summ_result}<h4>ENTITIES:</h4>", unsafe_allow_html=True)
219
+ st.markdown(f"{ner_txt}", unsafe_allow_html=True)
220
+ st.dataframe(ner_df, use_container_width=True)
221
+
222
+ ############## ENTRY POINT END #######################
223
+
224
+ if __name__ == "__main__":
225
+ main()