Spaces:
Running
Running
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from torchvision.models import efficientnet_b0 | |
| import torchvision.transforms.functional as tf | |
| def classify_img(model,img): | |
| img=tf.to_tensor(img) | |
| img=img.unsqueeze(0) | |
| with torch.no_grad(): | |
| predict=model(img) | |
| predict=nn.functional.softmax(predict,1) | |
| label=torch.argmax(predict) | |
| probability=torch.max(predict) | |
| return label,probability | |
| def get_alzheimer_model(): | |
| model=efficientnet_b0(weights=None) | |
| in_features=model.classifier[1].in_features | |
| model.classifier[1]=nn.Linear(in_features=in_features,out_features=4) | |
| weights=torch.load("alzheimer_weight.pth",map_location="cpu") | |
| model.load_state_dict(weights) | |
| model.eval() | |
| return model |