Spooke commited on
Commit
208e953
1 Parent(s): d7b2932

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -2
app.py CHANGED
@@ -1,4 +1,68 @@
1
  import streamlit as st
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
 
3
+ from keras.datasets import imdb
4
+ from keras.preprocessing import sequence
5
+ import keras
6
+ import tensorflow as tf
7
+ import os
8
+ import numpy as np
9
+
10
+ VOCAB_SIZE = 88584
11
+
12
+ MAXLEN = 250
13
+ BATCH_SIZE = 64
14
+
15
+ (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words = VOCAB_SIZE)
16
+ train_data[1]
17
+
18
+ train_data = sequence.pad_sequences(train_data, MAXLEN)
19
+ test_data = sequence.pad_sequences(test_data, MAXLEN)
20
+
21
+ model = tf.keras.Sequential([
22
+ tf.keras.layers.Embedding(VOCAB_SIZE, 32),
23
+ tf.keras.layers.LSTM(32),
24
+ tf.keras.layers.Dense(1, activation="sigmoid")
25
+ ])
26
+
27
+ model.compile(loss="binary_crossentropy",optimizer="rmsprop",metrics=['acc'])
28
+
29
+ history = model.fit(train_data, train_labels, epochs=20, validation_split=0.2)
30
+
31
+ results = model.evaluate(test_data, test_labels)
32
+ print(results)
33
+
34
+ word_index = imdb.get_word_index()
35
+
36
+ def encode_text(text):
37
+ tokens = keras.preprocessing.text.text_to_word_sequence(text)
38
+ tokens = [word_index[word] if word in word_index else 0 for word in tokens]
39
+ return sequence.pad_sequences([tokens], MAXLEN)[0]
40
+
41
+ text = "that movie was just amazing, so amazing"
42
+ encoded = encode_text(text)
43
+ print(encoded)
44
+
45
+ reverse_word_index = {value: key for (key, value) in word_index.items()}
46
+
47
+ def decode_integers(integers):
48
+ PAD = 0
49
+ text = ""
50
+ for num in integers:
51
+ if num != PAD:
52
+ text += reverse_word_index[num] + " "
53
+
54
+ return text[:-1]
55
+
56
+ print(decode_integers(encoded))
57
+
58
+ def predict(text):
59
+ encoded_text = encode_text(text)
60
+ pred = np.zeros((1,250))
61
+ pred[0] = encoded_text
62
+ result = model.predict(pred)
63
+ print(result[0])
64
+
65
+ positive_review = "That movie was! really loved it and would great watch it again because it was amazingly great"
66
+ st.write(predict(positive_review))
67
+ negative_review = "that movie really sucked. I hated it and wouldn't watch it again. Was one of the worst things I've ever watched"
68
+ st.write(predict(negative_review))