Spaces:
Sleeping
Sleeping
SpiceyToad
commited on
Commit
•
81fe8c1
1
Parent(s):
184700f
Upload 2 files
Browse filesUpdated Dockerfile
- Dockerfile +24 -17
- app.py +26 -26
Dockerfile
CHANGED
@@ -1,17 +1,24 @@
|
|
1 |
-
# Use a lightweight PyTorch image with GPU support
|
2 |
-
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
|
3 |
-
|
4 |
-
# Set the working directory
|
5 |
-
WORKDIR /app
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a lightweight PyTorch image with GPU support
|
2 |
+
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
|
3 |
+
|
4 |
+
# Set the working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Set writable directories for Hugging Face cache
|
8 |
+
ENV TRANSFORMERS_CACHE=/app/cache
|
9 |
+
ENV HF_HOME=/app/cache
|
10 |
+
|
11 |
+
# Create the cache directory
|
12 |
+
RUN mkdir -p /app/cache
|
13 |
+
|
14 |
+
# Copy the application files into the container
|
15 |
+
COPY . /app
|
16 |
+
|
17 |
+
# Install required Python dependencies
|
18 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
19 |
+
|
20 |
+
# Expose the FastAPI port
|
21 |
+
EXPOSE 7860
|
22 |
+
|
23 |
+
# Command to run the FastAPI application
|
24 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
-
from fastapi import FastAPI, Request
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import torch
|
4 |
-
import os
|
5 |
-
|
6 |
-
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Hugging Face API token
|
7 |
-
|
8 |
-
app = FastAPI()
|
9 |
-
|
10 |
-
# Load Falcon 7B
|
11 |
-
MODEL_NAME = "SpiceyToad/demo-falc" # Replace with your model
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_API_TOKEN)
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(
|
14 |
-
MODEL_NAME, device_map="auto", torch_dtype=torch.bfloat16, token=HF_API_TOKEN
|
15 |
-
)
|
16 |
-
|
17 |
-
@app.post("/generate")
|
18 |
-
async def generate_text(request: Request):
|
19 |
-
data = await request.json()
|
20 |
-
prompt = data.get("prompt", "")
|
21 |
-
max_length = data.get("max_length", 50)
|
22 |
-
|
23 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
24 |
-
outputs = model.generate(inputs["input_ids"], max_length=max_length)
|
25 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
-
return {"generated_text": response}
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Hugging Face API token
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Load Falcon 7B
|
11 |
+
MODEL_NAME = "SpiceyToad/demo-falc" # Replace with your model
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_API_TOKEN)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
MODEL_NAME, device_map="auto", torch_dtype=torch.bfloat16, token=HF_API_TOKEN
|
15 |
+
)
|
16 |
+
|
17 |
+
@app.post("/generate")
|
18 |
+
async def generate_text(request: Request):
|
19 |
+
data = await request.json()
|
20 |
+
prompt = data.get("prompt", "")
|
21 |
+
max_length = data.get("max_length", 50)
|
22 |
+
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
24 |
+
outputs = model.generate(inputs["input_ids"], max_length=max_length)
|
25 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
return {"generated_text": response}
|