Spaces:
Sleeping
Sleeping
import os | |
from fastapi import FastAPI, Request | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Set Hugging Face cache directory | |
os.environ["HF_HOME"] = "/home/user/cache" | |
# Get Hugging Face API token | |
HF_API_TOKEN = os.getenv("HF_API_TOKEN") | |
if not HF_API_TOKEN: | |
raise ValueError("HF_API_TOKEN environment variable is not set!") | |
app = FastAPI() | |
# Load Falcon 7B model | |
MODEL_NAME = "SpiceyToad/demo-falc" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_API_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
token=HF_API_TOKEN | |
) | |
async def generate_text(request: Request): | |
data = await request.json() | |
prompt = data.get("prompt", "") | |
max_length = data.get("max_length", 50) | |
# Tokenize and generate | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(inputs["input_ids"], max_length=max_length) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return {"generated_text": response} | |