Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import asyncio | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.output_parsers.rail_parser import GuardrailsOutputParser | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Gemini initialization and PDF QA function | |
async def initialize_gemini(file_path, question): | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is | |
not contained in the context, say "answer not available in context" \n\n | |
Context: \n {context}?\n | |
Question: \n {question} \n | |
Answer: | |
""" | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
if os.path.exists(file_path): | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:100]) | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
return stuff_answer['output_text'] | |
else: | |
return "Error: Unable to process the document. Please ensure the PDF file is valid." | |
# Mistral model initialization | |
def initialize_mistral(): | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
return tokenizer, model | |
# Mistral text generation function | |
def generate_mistral_text(prompt, tokenizer, model): | |
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device) | |
outputs = model.generate(inputs, max_length=100) | |
return tokenizer.decode(outputs[0]) | |
# Initialize Mistral model | |
mistral_tokenizer, mistral_model = initialize_mistral() | |
# Gradio interface function | |
async def pdf_qa(file, question): | |
gemini_answer = await initialize_gemini(file.name, question) | |
mistral_prompt = f"Based on this answer: '{gemini_answer}', provide a brief summary:" | |
mistral_summary = generate_mistral_text(mistral_prompt, mistral_tokenizer, mistral_model) | |
return f"Gemini Answer:\n{gemini_answer}\n\nMistral Summary:\n{mistral_summary}" | |
# Define Gradio Interface | |
input_file = gr.File(label="Upload PDF File") | |
input_question = gr.Textbox(label="Ask about the document") | |
output_text = gr.Textbox(label="Answer and Summary") | |
# Create Gradio Interface | |
gr.Interface( | |
fn=pdf_qa, | |
inputs=[input_file, input_question], | |
outputs=output_text, | |
title="PDF Question Answering System with Gemini and Mistral", | |
description="Upload a PDF file, ask questions about the content, and get answers from Gemini with a summary from Mistral." | |
).launch() |