Spaces:
Paused
Paused
Upload folder using huggingface_hub
Browse files- Dockerfile +36 -0
- README.md +109 -10
- main.py +125 -0
- requirements.txt +9 -0
Dockerfile
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use NVIDIA CUDA base image for GPU support
|
| 2 |
+
FROM nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install Python 3.10 and system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
python3.10 \
|
| 10 |
+
python3-pip \
|
| 11 |
+
python3.10-dev \
|
| 12 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 13 |
+
|
| 14 |
+
# Set Python 3.10 as default
|
| 15 |
+
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
|
| 16 |
+
RUN update-alternatives --install /usr/bin/pip pip /usr/bin/pip3 1
|
| 17 |
+
|
| 18 |
+
# Upgrade pip
|
| 19 |
+
RUN pip install --no-cache-dir --upgrade pip
|
| 20 |
+
|
| 21 |
+
# Copy requirements and install Python dependencies
|
| 22 |
+
COPY requirements.txt .
|
| 23 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 24 |
+
|
| 25 |
+
# Copy application code
|
| 26 |
+
COPY main.py .
|
| 27 |
+
|
| 28 |
+
# Expose port 7860 (HuggingFace Spaces default)
|
| 29 |
+
EXPOSE 7860
|
| 30 |
+
|
| 31 |
+
# Set environment variables
|
| 32 |
+
ENV PYTHONUNBUFFERED=1
|
| 33 |
+
ENV PORT=7860
|
| 34 |
+
|
| 35 |
+
# Run the FastAPI app with uvicorn
|
| 36 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "1"]
|
README.md
CHANGED
|
@@ -1,10 +1,109 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: docker
|
| 7 |
-
pinned: false
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: FastAPI NVIDIA A10G
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: docker
|
| 7 |
+
pinned: false
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
suggested_hardware: a10g-large
|
| 10 |
+
suggested_storage: large
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# FastAPI Service with NVIDIA A10G Large GPU
|
| 14 |
+
|
| 15 |
+
High-performance FastAPI service running on NVIDIA A10G Large GPU (24GB VRAM).
|
| 16 |
+
|
| 17 |
+
## 🚀 Features
|
| 18 |
+
|
| 19 |
+
- **FastAPI Framework**: Modern, fast web framework for building APIs
|
| 20 |
+
- **Uvicorn Server**: Lightning-fast ASGI server with uvicorn[standard]
|
| 21 |
+
- **GPU Acceleration**: NVIDIA A10G Large (24GB VRAM, 24 vCPU, 96GB RAM)
|
| 22 |
+
- **Docker SDK**: Containerized deployment for reliability
|
| 23 |
+
- **PyTorch Support**: Full CUDA support for ML workloads
|
| 24 |
+
- **Auto-scaling**: Optimized for high-performance workloads
|
| 25 |
+
|
| 26 |
+
## 📊 Hardware Specs
|
| 27 |
+
|
| 28 |
+
- **GPU**: NVIDIA A10G Large (24GB VRAM)
|
| 29 |
+
- **CPU**: 24 vCPUs
|
| 30 |
+
- **RAM**: 96GB
|
| 31 |
+
- **Storage**: Large (100GB)
|
| 32 |
+
- **Cost**: ~$3.15/hour
|
| 33 |
+
|
| 34 |
+
## 🔗 API Endpoints
|
| 35 |
+
|
| 36 |
+
### Root
|
| 37 |
+
```
|
| 38 |
+
GET /
|
| 39 |
+
```
|
| 40 |
+
Returns API information and available endpoints.
|
| 41 |
+
|
| 42 |
+
### Health Check
|
| 43 |
+
```
|
| 44 |
+
GET /health
|
| 45 |
+
```
|
| 46 |
+
Returns service health status and GPU availability.
|
| 47 |
+
|
| 48 |
+
### GPU Information
|
| 49 |
+
```
|
| 50 |
+
GET /gpu-info
|
| 51 |
+
```
|
| 52 |
+
Returns detailed GPU specifications and memory information.
|
| 53 |
+
|
| 54 |
+
### Process Text
|
| 55 |
+
```
|
| 56 |
+
POST /process
|
| 57 |
+
Content-Type: application/json
|
| 58 |
+
|
| 59 |
+
{
|
| 60 |
+
"text": "Your text here",
|
| 61 |
+
"max_length": 100
|
| 62 |
+
}
|
| 63 |
+
```
|
| 64 |
+
Example text processing endpoint.
|
| 65 |
+
|
| 66 |
+
## 🛠️ API Documentation
|
| 67 |
+
|
| 68 |
+
Interactive API documentation available at:
|
| 69 |
+
- Swagger UI: `/docs`
|
| 70 |
+
- ReDoc: `/redoc`
|
| 71 |
+
|
| 72 |
+
## 🔧 Configuration
|
| 73 |
+
|
| 74 |
+
The service runs on port 7860 (HuggingFace Spaces default) with:
|
| 75 |
+
- Single worker process for GPU efficiency
|
| 76 |
+
- CORS enabled for cross-origin requests
|
| 77 |
+
- Automatic GPU detection and utilization
|
| 78 |
+
|
| 79 |
+
## 📦 Dependencies
|
| 80 |
+
|
| 81 |
+
- FastAPI 0.104.1
|
| 82 |
+
- Uvicorn[standard] 0.24.0
|
| 83 |
+
- PyTorch 2.1.0 (CUDA support)
|
| 84 |
+
- Pydantic 2.5.0
|
| 85 |
+
|
| 86 |
+
## 🚀 Usage
|
| 87 |
+
|
| 88 |
+
```python
|
| 89 |
+
import requests
|
| 90 |
+
|
| 91 |
+
# Health check
|
| 92 |
+
response = requests.get("https://huggingface.co/spaces/Speedofmastery/yyuujhu")
|
| 93 |
+
print(response.json())
|
| 94 |
+
|
| 95 |
+
# GPU info
|
| 96 |
+
gpu_info = requests.get("https://huggingface.co/spaces/Speedofmastery/yyuujhu/gpu-info")
|
| 97 |
+
print(gpu_info.json())
|
| 98 |
+
|
| 99 |
+
# Process text
|
| 100 |
+
result = requests.post(
|
| 101 |
+
"https://huggingface.co/spaces/Speedofmastery/yyuujhu/process",
|
| 102 |
+
json={"text": "Hello World", "max_length": 100}
|
| 103 |
+
)
|
| 104 |
+
print(result.json())
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
## 📝 License
|
| 108 |
+
|
| 109 |
+
Apache 2.0
|
main.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import uvicorn
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# GPU Verification on startup
|
| 9 |
+
print("=" * 50)
|
| 10 |
+
print("🚀 OpenManus FastAPI - GPU Verification")
|
| 11 |
+
print("=" * 50)
|
| 12 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 13 |
+
if torch.cuda.is_available():
|
| 14 |
+
print(f"CUDA device count: {torch.cuda.device_count()}")
|
| 15 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
| 16 |
+
print(f"CUDA version: {torch.version.cuda}")
|
| 17 |
+
print(f"PyTorch version: {torch.__version__}")
|
| 18 |
+
else:
|
| 19 |
+
print("⚠️ WARNING: CUDA not available - running on CPU")
|
| 20 |
+
print("=" * 50)
|
| 21 |
+
|
| 22 |
+
app = FastAPI(
|
| 23 |
+
title="OpenManus FastAPI",
|
| 24 |
+
description="High-performance FastAPI service with NVIDIA A10G GPU support",
|
| 25 |
+
version="1.0.0",
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# CORS middleware
|
| 29 |
+
app.add_middleware(
|
| 30 |
+
CORSMiddleware,
|
| 31 |
+
allow_origins=["*"],
|
| 32 |
+
allow_credentials=True,
|
| 33 |
+
allow_methods=["*"],
|
| 34 |
+
allow_headers=["*"],
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Request models
|
| 39 |
+
class TextRequest(BaseModel):
|
| 40 |
+
text: str
|
| 41 |
+
max_length: int = 100
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class HealthResponse(BaseModel):
|
| 45 |
+
status: str
|
| 46 |
+
gpu_available: bool
|
| 47 |
+
cuda_devices: int
|
| 48 |
+
device_name: str = None
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
@app.get("/", response_model=dict)
|
| 52 |
+
async def root():
|
| 53 |
+
"""Root endpoint with API information"""
|
| 54 |
+
return {
|
| 55 |
+
"message": "OpenManus FastAPI Service",
|
| 56 |
+
"version": "1.0.0",
|
| 57 |
+
"endpoints": {"health": "/health", "gpu_info": "/gpu-info", "docs": "/docs"},
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@app.get("/health", response_model=HealthResponse)
|
| 62 |
+
async def health_check():
|
| 63 |
+
"""Health check endpoint with GPU status"""
|
| 64 |
+
gpu_available = torch.cuda.is_available()
|
| 65 |
+
cuda_devices = torch.cuda.device_count() if gpu_available else 0
|
| 66 |
+
device_name = (
|
| 67 |
+
torch.cuda.get_device_name(0) if gpu_available and cuda_devices > 0 else None
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return HealthResponse(
|
| 71 |
+
status="healthy",
|
| 72 |
+
gpu_available=gpu_available,
|
| 73 |
+
cuda_devices=cuda_devices,
|
| 74 |
+
device_name=device_name,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@app.get("/gpu-info")
|
| 79 |
+
async def gpu_info():
|
| 80 |
+
"""Detailed GPU information"""
|
| 81 |
+
if not torch.cuda.is_available():
|
| 82 |
+
return {"error": "CUDA not available"}
|
| 83 |
+
|
| 84 |
+
info = {
|
| 85 |
+
"cuda_available": True,
|
| 86 |
+
"device_count": torch.cuda.device_count(),
|
| 87 |
+
"devices": [],
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
for i in range(torch.cuda.device_count()):
|
| 91 |
+
device_props = torch.cuda.get_device_properties(i)
|
| 92 |
+
info["devices"].append(
|
| 93 |
+
{
|
| 94 |
+
"id": i,
|
| 95 |
+
"name": torch.cuda.get_device_name(i),
|
| 96 |
+
"total_memory_gb": round(device_props.total_memory / 1024**3, 2),
|
| 97 |
+
"major": device_props.major,
|
| 98 |
+
"minor": device_props.minor,
|
| 99 |
+
"multi_processor_count": device_props.multi_processor_count,
|
| 100 |
+
}
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
return info
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@app.post("/process")
|
| 107 |
+
async def process_text(request: TextRequest):
|
| 108 |
+
"""Example endpoint for text processing"""
|
| 109 |
+
try:
|
| 110 |
+
# Example processing logic
|
| 111 |
+
result = {
|
| 112 |
+
"input": request.text,
|
| 113 |
+
"length": len(request.text),
|
| 114 |
+
"max_length": request.max_length,
|
| 115 |
+
"processed": request.text.upper(), # Simple transformation
|
| 116 |
+
"gpu_used": torch.cuda.is_available(),
|
| 117 |
+
}
|
| 118 |
+
return result
|
| 119 |
+
except Exception as e:
|
| 120 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
port = int(os.environ.get("PORT", 7860))
|
| 125 |
+
uvicorn.run("main:app", host="0.0.0.0", port=port, reload=False, workers=1)
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
pydantic==2.5.0
|
| 4 |
+
python-multipart==0.0.6
|
| 5 |
+
huggingface-hub>=0.20.0
|
| 6 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 7 |
+
torch==2.1.0+cu118
|
| 8 |
+
torchaudio==2.1.0+cu118
|
| 9 |
+
torchvision==0.16.0+cu118
|