Spaces:
Sleeping
Sleeping
Update utils/llm_coding.py
Browse files- utils/llm_coding.py +572 -572
utils/llm_coding.py
CHANGED
|
@@ -1,583 +1,583 @@
|
|
| 1 |
-
import requests
|
| 2 |
-
import urllib3
|
| 3 |
-
import json
|
| 4 |
-
from utils import geoutil
|
| 5 |
-
import regex_spatial
|
| 6 |
-
from shapely.geometry import Polygon, MultiPoint, LineString, Point, mapping
|
| 7 |
-
import re
|
| 8 |
-
import geopandas as gpd
|
| 9 |
-
from geocoder import geo_level1
|
| 10 |
-
from openai import OpenAI
|
| 11 |
-
|
| 12 |
-
import os
|
| 13 |
-
api_key = os.getenv('api_key')
|
| 14 |
-
client = OpenAI(
|
| 15 |
-
|
| 16 |
-
)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
model = "gpt-4o"
|
| 20 |
-
|
| 21 |
-
north = ["north", "N'", "North", "NORTH"]
|
| 22 |
-
south = ["south", "S'", "South", "SOUTH"]
|
| 23 |
-
east = ["east", "E'", "East", "EAST"]
|
| 24 |
-
west = ["west", "W'", "West", "WEST"]
|
| 25 |
-
northeast = ["north-east", "NE'", "north east", "NORTH-EAST", "North East", "NORTH EAST"]
|
| 26 |
-
southeast = ["south-east", "SE'", "south east", "SOUTH-EAST", "South East", "SOUTH EAST"]
|
| 27 |
-
northwest = ["north-west", "NW'", "north west", "NORTH-WEST", "North West", "NORTH WEST"]
|
| 28 |
-
southwest = ["south-west", "SW'", "south west", "SOUTH-WEST", "South West", "SOUTH WEST"]
|
| 29 |
-
center = ["center","central", "downtown","midtown"]
|
| 30 |
-
#
|
| 31 |
-
#
|
| 32 |
-
# def get_directional_coordinates(coordinates, direction, centroid, minimum, maximum, is_midmid):
|
| 33 |
-
# direction_coordinates = get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum)
|
| 34 |
-
# midmid1, midmid2 = geoutil.get_midmid_point(centroid, direction_coordinates[0], direction_coordinates[-1],
|
| 35 |
-
# is_midmid)
|
| 36 |
-
# if direction in west:
|
| 37 |
-
# maxi = max(p[2] for p in direction_coordinates)
|
| 38 |
-
# mini = min(p[2] for p in direction_coordinates)
|
| 39 |
-
# index_mini = 0
|
| 40 |
-
# index_maxi = 0
|
| 41 |
-
# for idx, p in enumerate(direction_coordinates):
|
| 42 |
-
# if p[2] == mini:
|
| 43 |
-
# index_mini = idx
|
| 44 |
-
# if p[2] == maxi:
|
| 45 |
-
# index_maxi = idx
|
| 46 |
-
#
|
| 47 |
-
# direction_coordinates.insert(index_maxi + 1, midmid2)
|
| 48 |
-
# direction_coordinates.insert(index_mini + 1, midmid1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# else:
|
| 50 |
-
#
|
| 51 |
-
#
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
#
|
| 56 |
-
# def get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum):
|
| 57 |
-
#
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
# if p[2] >= minimum or p[2] <= maximum:
|
| 61 |
-
# direction_coordinates.append(p)
|
| 62 |
-
#
|
| 63 |
-
# else:
|
| 64 |
-
# if p[2] >= minimum and p[2] <= maximum:
|
| 65 |
-
# direction_coordinates.append(p)
|
| 66 |
-
# return direction_coordinates
|
| 67 |
-
#
|
| 68 |
-
#
|
| 69 |
-
# def get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum):
|
| 70 |
# direction_coordinates = []
|
| 71 |
# for p in coordinates:
|
| 72 |
-
#
|
| 73 |
-
#
|
| 74 |
-
#
|
| 75 |
-
#
|
|
|
|
|
|
|
| 76 |
# else:
|
| 77 |
-
# if
|
| 78 |
-
# direction_coordinates.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# return direction_coordinates
|
| 80 |
-
#
|
| 81 |
-
#
|
| 82 |
-
#
|
| 83 |
-
#
|
| 84 |
-
|
| 85 |
-
#
|
| 86 |
-
#
|
| 87 |
-
# ne_min_max = get_min_max("north east")
|
| 88 |
-
# ne_coordinates = get_directional_coordinates_by_angle(coordinates, "north east", ne_min_max[0], ne_min_max[1])
|
| 89 |
-
# ne_mid1, ne_mid2 = geoutil.get_midmid_point(centroid, ne_coordinates[0], ne_coordinates[-1], is_midmid)
|
| 90 |
-
#
|
| 91 |
-
# e_min_max = get_min_max("east")
|
| 92 |
-
# e_coordinates = get_directional_coordinates_by_angle(coordinates, "east", e_min_max[0], e_min_max[1])
|
| 93 |
-
# e_mid1, e_mid2 = geoutil.get_midmid_point(centroid, e_coordinates[0], e_coordinates[-1], is_midmid)
|
| 94 |
-
#
|
| 95 |
-
# se_min_max = get_min_max("south east")
|
| 96 |
-
# se_coordinates = get_directional_coordinates_by_angle(coordinates, "south east", se_min_max[0], se_min_max[1])
|
| 97 |
-
# se_mid1, se_mid2 = geoutil.get_midmid_point(centroid, se_coordinates[0], se_coordinates[-1], is_midmid)
|
| 98 |
-
#
|
| 99 |
-
# s_min_max = get_min_max("south")
|
| 100 |
-
# s_coordinates = get_directional_coordinates_by_angle(coordinates, "south", s_min_max[0], s_min_max[1])
|
| 101 |
-
# s_mid1, s_mid2 = geoutil.get_midmid_point(centroid, s_coordinates[0], s_coordinates[-1], is_midmid)
|
| 102 |
-
#
|
| 103 |
-
# sw_min_max = get_min_max("south west")
|
| 104 |
-
# sw_coordinates = get_directional_coordinates_by_angle(coordinates, "south west", sw_min_max[0], sw_min_max[1])
|
| 105 |
-
# sw_mid1, sw_mid2 = geoutil.get_midmid_point(centroid, sw_coordinates[0], sw_coordinates[-1], is_midmid)
|
| 106 |
-
#
|
| 107 |
-
# w_min_max = get_min_max("west")
|
| 108 |
-
# w_coordinates = get_directional_coordinates_by_angle(coordinates, "west", w_min_max[0], w_min_max[1])
|
| 109 |
-
# w_mid1, w_mid2 = geoutil.get_midmid_point(centroid, w_coordinates[0], w_coordinates[-1], is_midmid)
|
| 110 |
-
#
|
| 111 |
-
# nw_min_max = get_min_max("north west")
|
| 112 |
-
# nw_coordinates = get_directional_coordinates_by_angle(coordinates, "north west", nw_min_max[0], nw_min_max[1])
|
| 113 |
-
# nw_mid1, nw_mid2 = geoutil.get_midmid_point(centroid, nw_coordinates[0], nw_coordinates[-1], is_midmid)
|
| 114 |
-
#
|
| 115 |
-
# central_coordindates = [e_mid1, e_mid2, ne_mid1, ne_mid2, n_mid1, n_mid2,
|
| 116 |
-
# nw_mid1, nw_mid2, w_mid1, w_mid2, sw_mid1, sw_mid2,
|
| 117 |
-
# s_mid1, s_mid2, se_mid1, se_mid2]
|
| 118 |
-
# return central_coordindates
|
| 119 |
-
#
|
| 120 |
-
#
|
| 121 |
-
# def get_min_max(direction):
|
| 122 |
-
# regex = regex_spatial.get_directional_regex()
|
| 123 |
-
# direction_list = regex.split("|")
|
| 124 |
-
# if direction in direction_list:
|
| 125 |
-
# if direction in east:
|
| 126 |
-
# return (337, 22)
|
| 127 |
-
# if direction in northeast:
|
| 128 |
-
# return (22, 67)
|
| 129 |
-
# if direction in north:
|
| 130 |
-
# return (67, 112)
|
| 131 |
-
# if direction in northwest:
|
| 132 |
-
# return (112, 157)
|
| 133 |
-
# if direction in west:
|
| 134 |
-
# return (157, 202)
|
| 135 |
-
# if direction in southwest:
|
| 136 |
-
# return (202, 247)
|
| 137 |
-
# if direction in south:
|
| 138 |
-
# return (247, 292)
|
| 139 |
-
# if direction in southeast:
|
| 140 |
-
# return (292, 337)
|
| 141 |
-
#
|
| 142 |
-
# return None
|
| 143 |
-
# def get_level1_coordinates(coordinates, centroid, direction, is_midmid):
|
| 144 |
-
# min_max = get_min_max(direction)
|
| 145 |
# if min_max is not None:
|
| 146 |
-
#
|
| 147 |
-
# return
|
| 148 |
-
#
|
| 149 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
# else:
|
| 151 |
-
#
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
#
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
def
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
#
|
| 354 |
-
|
| 355 |
-
# between
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
# 判断输入是否为合法多边形(>=3个点)
|
| 373 |
-
if is_valid_polygon(coords1):
|
| 374 |
-
poly1 = Polygon(coords1)
|
| 375 |
-
area1 = poly1.area
|
| 376 |
-
else:
|
| 377 |
-
area1 = 0
|
| 378 |
-
|
| 379 |
-
if is_valid_polygon(coords2):
|
| 380 |
-
poly2 = Polygon(coords2)
|
| 381 |
-
area2 = poly2.area
|
| 382 |
-
else:
|
| 383 |
-
area2 = 0
|
| 384 |
-
|
| 385 |
-
# 计算中心点(两个中心的中点)
|
| 386 |
-
midpoint = (
|
| 387 |
-
(center1[0] + center2[0]) / 2,
|
| 388 |
-
(center1[1] + center2[1]) / 2
|
| 389 |
-
)
|
| 390 |
-
|
| 391 |
-
# 如果两个区域都是点,则使用默认半径 2km
|
| 392 |
-
if area1 == 0 and area2 == 0:
|
| 393 |
-
r_km = 2
|
| 394 |
-
else:
|
| 395 |
-
avg_area = (area1 + area2) / 2
|
| 396 |
-
r_km = np.sqrt(avg_area / np.pi) * 111.32 # 近似 km 半径
|
| 397 |
-
|
| 398 |
-
# 经纬度距离换算因子
|
| 399 |
-
lat_km = 111.32
|
| 400 |
-
lon_km = 111.32 * np.cos(np.radians(midpoint[1]))
|
| 401 |
-
|
| 402 |
-
# 生成圆形区域坐标(100个点)
|
| 403 |
-
circle_points = []
|
| 404 |
-
for theta in np.linspace(0, 360, num=100):
|
| 405 |
-
theta_rad = np.radians(theta)
|
| 406 |
-
d_lat = (np.sin(theta_rad) * r_km) / lat_km
|
| 407 |
-
d_lon = (np.cos(theta_rad) * r_km) / lon_km
|
| 408 |
-
circle_points.append((midpoint[0] + d_lon, midpoint[1] + d_lat))
|
| 409 |
-
|
| 410 |
-
return circle_points, midpoint
|
| 411 |
-
# between end
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
def llmapi(text):
|
| 415 |
-
system_prompt = (
|
| 416 |
-
"你是一个资深的地理学家,你的任务是通过给定的一段自然语言,来选择正确的定位函数顺序以及他们的输入。\n"
|
| 417 |
-
"你能选择的定位函数有:\n"
|
| 418 |
-
"1. 相对定位(Relative Positioning):输入为地点坐标,方位,距离。输出为距离‘距离’输入的地点坐标的‘方位’的坐标。\n"
|
| 419 |
-
"2. 中间定位(Between Positioning):输入为两个地点的坐标,输出为两个地点坐标的中点。\n"
|
| 420 |
-
"请先进行思维链(CoT)推理,并最终用 JSON 格式输出你的答案,用 `<<<JSON>>>` 和 `<<<END>>>` 包裹起来。\n"
|
| 421 |
-
"请确保所有输入仅包含:地点名称(字符串)、索引(整数)、方位(字符串,必须是英文)或距离(字符串,带单位),不允许返���诸如 'Chatswood 南4 km的坐标' 这样的内容。\n"
|
| 422 |
-
"每个步骤编号都有 id 记录,然后如果某个输入是之前步骤的输出,那么输入对应步骤的 id。\n"
|
| 423 |
-
"所有方向必须使用英文(如 south, west, northeast, etc.)。\n"
|
| 424 |
-
"示例输出:\n"
|
| 425 |
-
"<<<JSON>>>\n"
|
| 426 |
-
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
|
| 427 |
-
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
|
| 428 |
-
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
|
| 429 |
-
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
|
| 430 |
-
"<<<END>>>")
|
| 431 |
-
|
| 432 |
-
messages = [
|
| 433 |
-
{"role": "system", "content": system_prompt},
|
| 434 |
-
{"role": "user", "content": text},
|
| 435 |
-
]
|
| 436 |
-
|
| 437 |
-
chat_completion = client.chat.completions.create(
|
| 438 |
-
messages=messages,
|
| 439 |
-
model=model,
|
| 440 |
-
)
|
| 441 |
-
|
| 442 |
-
result = chat_completion.choices[0].message.content
|
| 443 |
-
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
|
| 444 |
-
|
| 445 |
-
if json_match:
|
| 446 |
-
# print(json.loads(json_match.group(1)))
|
| 447 |
-
return json.loads(json_match.group(1))
|
| 448 |
-
else:
|
| 449 |
-
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
|
| 450 |
-
def llmapi(text):
|
| 451 |
-
system_prompt = (
|
| 452 |
-
"You are an experienced geographer. Your task is to determine the correct sequence of positioning functions and their inputs based on a given piece of natural language.\n"
|
| 453 |
-
"The positioning functions you can choose from are:\n"
|
| 454 |
-
"1. Relative Positioning: Inputs is (location coordinate or location name, direction, and distance). Outputs the coordinates that are in the given 'direction' and 'distance' from the input location.\n"
|
| 455 |
-
"2. Between Positioning: Inputs is (location 1 coordinates or location 1 name, location 2 coordinates or location 2 name). Outputs the midpoint coordinate between the two locations.\n"
|
| 456 |
-
"You can only use the given functions, and the inputs to the functions must obey the above properties. The given functions can be combined to solve complex situations."
|
| 457 |
-
"First, perform chain-of-thought (CoT) reasoning, and finally output your answer in JSON format, wrapped between `<<<JSON>>>` and `<<<END>>>`.\n"
|
| 458 |
-
"Make sure all inputs only include: location names (strings), step indices (integers), directions (strings, must be in English), or distances (strings with units). Do not return expressions like 'the coordinate 4 km south of Chatswood'.\n"
|
| 459 |
-
"Each step must have an 'id'. If the input of a step is the output of a previous step, use that step’s 'id' as the input.\n"
|
| 460 |
-
"All directions must be in English (e.g., south, west, northeast, etc.).\n"
|
| 461 |
-
"Example output:\n"
|
| 462 |
-
"<<<JSON>>>\n"
|
| 463 |
-
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
|
| 464 |
-
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
|
| 465 |
-
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
|
| 466 |
-
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
|
| 467 |
-
"<<<END>>>")
|
| 468 |
-
|
| 469 |
-
messages = [
|
| 470 |
-
{"role": "system", "content": system_prompt},
|
| 471 |
-
{"role": "user", "content": text},
|
| 472 |
-
]
|
| 473 |
-
|
| 474 |
-
chat_completion = client.chat.completions.create(
|
| 475 |
-
messages=messages,
|
| 476 |
-
model=model,
|
| 477 |
-
)
|
| 478 |
-
|
| 479 |
-
result = chat_completion.choices[0].message.content
|
| 480 |
-
print(result)
|
| 481 |
-
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
|
| 482 |
-
|
| 483 |
-
if json_match:
|
| 484 |
-
return json.loads(json_match.group(1))
|
| 485 |
-
else:
|
| 486 |
-
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
def execute_steps(steps):
|
| 493 |
-
data = {}
|
| 494 |
-
|
| 495 |
-
for step in steps:
|
| 496 |
-
step_id = step['id']
|
| 497 |
-
function = step['function']
|
| 498 |
-
inputs = step['inputs']
|
| 499 |
-
# print('-' * 50)
|
| 500 |
-
# print(function)
|
| 501 |
-
# print(inputs)
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
resolved_inputs = []
|
| 505 |
-
for inp in inputs:
|
| 506 |
-
if isinstance(inp, int):
|
| 507 |
-
resolved_inputs.append(data[inp])
|
| 508 |
-
else:
|
| 509 |
-
resolved_inputs.append(inp)
|
| 510 |
-
if function == "Relative":
|
| 511 |
-
location, direction, distance = resolved_inputs
|
| 512 |
-
if isinstance(location, str):
|
| 513 |
-
location = get_coordinates(location)
|
| 514 |
-
|
| 515 |
-
location = [to_standard_2d_list(location[0])] + list(location[1:])
|
| 516 |
-
location = [[[151.214901,-33.859175]], (151.214901,-33.859175)]
|
| 517 |
-
result = get_level3_coordinates(location, distance, direction)
|
| 518 |
-
data[step_id] = result
|
| 519 |
-
|
| 520 |
-
elif function == "Between":
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
location1, location2 = resolved_inputs
|
| 524 |
-
# print(location1)
|
| 525 |
-
# print(111)
|
| 526 |
-
# print(location2)
|
| 527 |
-
if isinstance(location1, str):
|
| 528 |
-
location1 = get_coordinates(location1)
|
| 529 |
-
|
| 530 |
-
location1 = [to_standard_2d_list(location1[0])] + list(location1[1:])
|
| 531 |
-
if isinstance(location2, str):
|
| 532 |
-
|
| 533 |
-
location2 = get_coordinates(location2)
|
| 534 |
-
location2 = [to_standard_2d_list(location2[0])] + list(location2[1:])
|
| 535 |
-
result = get_between_coordinates(location1, location2)
|
| 536 |
-
|
| 537 |
-
data[step_id] = result
|
| 538 |
-
|
| 539 |
-
return data
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
if __name__ == '__main__':
|
| 544 |
-
# a = get_coordinates('Burwood')
|
| 545 |
-
# a2 = get_coordinates('Glebe')
|
| 546 |
-
# b = get_level3_coordinates(a, '5 km', 'east')
|
| 547 |
-
# c = get_between_coordinates(a, a2)
|
| 548 |
-
|
| 549 |
-
# 完整通道
|
| 550 |
-
# 默认输入
|
| 551 |
-
# default_input_text = "在Chatswood南边4公里与North Sydney 东边2公里的中间的西南5公里。"
|
| 552 |
-
# default_input_text = "你是一位规划师,正在为华盛顿州的一项新森林监测站选址。两个潜在的参考位置分别是雷尼尔山国家公园(Mount Rainier National Park)和北喀斯喀特国家公园(North Cascades National Park)。首先,你想在这两个国家公园之间找到一个中间点。接着,你希望在这个中间点与北喀斯喀特国家公园之间,再取一个中间位置,以便确定最终的建设候选地。"
|
| 553 |
-
# default_input_text = "在Chatswood和North Sydney的中间靠近North Sydney的四分之一位置"
|
| 554 |
-
# default_input_text = "Plan a trip that involves determining the midpoint between Paris and London, and then finding another midpoint between this location and Paris to identify potential stopovers during travel."
|
| 555 |
-
# default_input_text = "5km southwest of Chatswood, 4km south of Chatswood and 2km north of North Sydney."
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
# 解析 LLM 结果
|
| 560 |
-
# parsed_steps = llmapi(default_input_text)
|
| 561 |
-
# parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Chatswood', 'south', '4 km']}, {'id': 2, 'function': 'Relative', 'inputs': ['North Sydney', 'east', '2 km']}, {'id': 3, 'function': 'Between', 'inputs': [1, 2]}, {'id': 4, 'function': 'Relative', 'inputs': [3, 'south west', '5 km']}]
|
| 562 |
-
# parsed_steps = [{"id": 1, "function": "Between", "inputs": ["Chatswood", "North Sydney"]},{"id": 2, "function": "Between", "inputs": [1, "North Sydney"]}]
|
| 563 |
-
# parsed_steps = [{"id": 1, "function": "Relative", "inputs": ["Katoomba", "southeast", "3 km"]}, {"id": 2, "function": "Between", "inputs": [1, "Echo Point"]}]
|
| 564 |
-
# parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Scafell Pike', 'east', '9 km']}]
|
| 565 |
-
# parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Colosseum', 'northeast', '8 km']}, {'id': 2, 'function': 'Relative', 'inputs': [1, 'northeast', '2 km']}]
|
| 566 |
-
parsed_steps = [
|
| 567 |
-
{"id": 1, "function": "Between", "inputs": ["Statue of Liberty", "Eiffel Tower"]},
|
| 568 |
-
{"id": 2, "function": "Relative", "inputs": [1, "west", "8 km"]}
|
| 569 |
-
]
|
| 570 |
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
|
| 583 |
|
|
|
|
| 1 |
+
# import requests
|
| 2 |
+
# import urllib3
|
| 3 |
+
# import json
|
| 4 |
+
# from utils import geoutil
|
| 5 |
+
# import regex_spatial
|
| 6 |
+
# from shapely.geometry import Polygon, MultiPoint, LineString, Point, mapping
|
| 7 |
+
# import re
|
| 8 |
+
# import geopandas as gpd
|
| 9 |
+
# from geocoder import geo_level1
|
| 10 |
+
# from openai import OpenAI
|
| 11 |
+
|
| 12 |
+
# import os
|
| 13 |
+
# api_key = os.getenv('api_key')
|
| 14 |
+
# client = OpenAI(
|
| 15 |
+
# api_key=api_key
|
| 16 |
+
# )
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# model = "gpt-4o"
|
| 20 |
+
|
| 21 |
+
# north = ["north", "N'", "North", "NORTH"]
|
| 22 |
+
# south = ["south", "S'", "South", "SOUTH"]
|
| 23 |
+
# east = ["east", "E'", "East", "EAST"]
|
| 24 |
+
# west = ["west", "W'", "West", "WEST"]
|
| 25 |
+
# northeast = ["north-east", "NE'", "north east", "NORTH-EAST", "North East", "NORTH EAST"]
|
| 26 |
+
# southeast = ["south-east", "SE'", "south east", "SOUTH-EAST", "South East", "SOUTH EAST"]
|
| 27 |
+
# northwest = ["north-west", "NW'", "north west", "NORTH-WEST", "North West", "NORTH WEST"]
|
| 28 |
+
# southwest = ["south-west", "SW'", "south west", "SOUTH-WEST", "South West", "SOUTH WEST"]
|
| 29 |
+
# center = ["center","central", "downtown","midtown"]
|
| 30 |
+
# #
|
| 31 |
+
# #
|
| 32 |
+
# # def get_directional_coordinates(coordinates, direction, centroid, minimum, maximum, is_midmid):
|
| 33 |
+
# # direction_coordinates = get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum)
|
| 34 |
+
# # midmid1, midmid2 = geoutil.get_midmid_point(centroid, direction_coordinates[0], direction_coordinates[-1],
|
| 35 |
+
# # is_midmid)
|
| 36 |
+
# # if direction in west:
|
| 37 |
+
# # maxi = max(p[2] for p in direction_coordinates)
|
| 38 |
+
# # mini = min(p[2] for p in direction_coordinates)
|
| 39 |
+
# # index_mini = 0
|
| 40 |
+
# # index_maxi = 0
|
| 41 |
+
# # for idx, p in enumerate(direction_coordinates):
|
| 42 |
+
# # if p[2] == mini:
|
| 43 |
+
# # index_mini = idx
|
| 44 |
+
# # if p[2] == maxi:
|
| 45 |
+
# # index_maxi = idx
|
| 46 |
+
# #
|
| 47 |
+
# # direction_coordinates.insert(index_maxi + 1, midmid2)
|
| 48 |
+
# # direction_coordinates.insert(index_mini + 1, midmid1)
|
| 49 |
+
# # else:
|
| 50 |
+
# # direction_coordinates.append(midmid2)
|
| 51 |
+
# # direction_coordinates.append(midmid1)
|
| 52 |
+
# #
|
| 53 |
+
# # return direction_coordinates, midmid1, midmid2
|
| 54 |
+
# #
|
| 55 |
+
# #
|
| 56 |
+
# # def get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum):
|
| 57 |
+
# # direction_coordinates = []
|
| 58 |
+
# # for p in coordinates:
|
| 59 |
+
# # if direction in east:
|
| 60 |
+
# # if p[2] >= minimum or p[2] <= maximum:
|
| 61 |
+
# # direction_coordinates.append(p)
|
| 62 |
+
# #
|
| 63 |
+
# # else:
|
| 64 |
+
# # if p[2] >= minimum and p[2] <= maximum:
|
| 65 |
+
# # direction_coordinates.append(p)
|
| 66 |
+
# # return direction_coordinates
|
| 67 |
+
# #
|
| 68 |
+
# #
|
| 69 |
+
# # def get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum):
|
| 70 |
+
# # direction_coordinates = []
|
| 71 |
+
# # for p in coordinates:
|
| 72 |
+
# # if direction in east:
|
| 73 |
+
# # if p[2] >= minimum or p[2] <= maximum:
|
| 74 |
+
# # direction_coordinates.append(p)
|
| 75 |
+
# #
|
| 76 |
+
# # else:
|
| 77 |
+
# # if p[2] >= minimum and p[2] <= maximum:
|
| 78 |
+
# # direction_coordinates.append(p)
|
| 79 |
+
# # return direction_coordinates
|
| 80 |
+
# #
|
| 81 |
+
# #
|
| 82 |
+
# # def get_central(coordinates, centroid, direction, is_midmid):
|
| 83 |
+
# # n_min_max = get_min_max("north")
|
| 84 |
+
# # n_coordinates = get_directional_coordinates_by_angle(coordinates, "north", n_min_max[0], n_min_max[1])
|
| 85 |
+
# # n_mid1, n_mid2 = geoutil.get_midmid_point(centroid, n_coordinates[0], n_coordinates[-1], is_midmid)
|
| 86 |
+
# #
|
| 87 |
+
# # ne_min_max = get_min_max("north east")
|
| 88 |
+
# # ne_coordinates = get_directional_coordinates_by_angle(coordinates, "north east", ne_min_max[0], ne_min_max[1])
|
| 89 |
+
# # ne_mid1, ne_mid2 = geoutil.get_midmid_point(centroid, ne_coordinates[0], ne_coordinates[-1], is_midmid)
|
| 90 |
+
# #
|
| 91 |
+
# # e_min_max = get_min_max("east")
|
| 92 |
+
# # e_coordinates = get_directional_coordinates_by_angle(coordinates, "east", e_min_max[0], e_min_max[1])
|
| 93 |
+
# # e_mid1, e_mid2 = geoutil.get_midmid_point(centroid, e_coordinates[0], e_coordinates[-1], is_midmid)
|
| 94 |
+
# #
|
| 95 |
+
# # se_min_max = get_min_max("south east")
|
| 96 |
+
# # se_coordinates = get_directional_coordinates_by_angle(coordinates, "south east", se_min_max[0], se_min_max[1])
|
| 97 |
+
# # se_mid1, se_mid2 = geoutil.get_midmid_point(centroid, se_coordinates[0], se_coordinates[-1], is_midmid)
|
| 98 |
+
# #
|
| 99 |
+
# # s_min_max = get_min_max("south")
|
| 100 |
+
# # s_coordinates = get_directional_coordinates_by_angle(coordinates, "south", s_min_max[0], s_min_max[1])
|
| 101 |
+
# # s_mid1, s_mid2 = geoutil.get_midmid_point(centroid, s_coordinates[0], s_coordinates[-1], is_midmid)
|
| 102 |
+
# #
|
| 103 |
+
# # sw_min_max = get_min_max("south west")
|
| 104 |
+
# # sw_coordinates = get_directional_coordinates_by_angle(coordinates, "south west", sw_min_max[0], sw_min_max[1])
|
| 105 |
+
# # sw_mid1, sw_mid2 = geoutil.get_midmid_point(centroid, sw_coordinates[0], sw_coordinates[-1], is_midmid)
|
| 106 |
+
# #
|
| 107 |
+
# # w_min_max = get_min_max("west")
|
| 108 |
+
# # w_coordinates = get_directional_coordinates_by_angle(coordinates, "west", w_min_max[0], w_min_max[1])
|
| 109 |
+
# # w_mid1, w_mid2 = geoutil.get_midmid_point(centroid, w_coordinates[0], w_coordinates[-1], is_midmid)
|
| 110 |
+
# #
|
| 111 |
+
# # nw_min_max = get_min_max("north west")
|
| 112 |
+
# # nw_coordinates = get_directional_coordinates_by_angle(coordinates, "north west", nw_min_max[0], nw_min_max[1])
|
| 113 |
+
# # nw_mid1, nw_mid2 = geoutil.get_midmid_point(centroid, nw_coordinates[0], nw_coordinates[-1], is_midmid)
|
| 114 |
+
# #
|
| 115 |
+
# # central_coordindates = [e_mid1, e_mid2, ne_mid1, ne_mid2, n_mid1, n_mid2,
|
| 116 |
+
# # nw_mid1, nw_mid2, w_mid1, w_mid2, sw_mid1, sw_mid2,
|
| 117 |
+
# # s_mid1, s_mid2, se_mid1, se_mid2]
|
| 118 |
+
# # return central_coordindates
|
| 119 |
+
# #
|
| 120 |
+
# #
|
| 121 |
+
# # def get_min_max(direction):
|
| 122 |
+
# # regex = regex_spatial.get_directional_regex()
|
| 123 |
+
# # direction_list = regex.split("|")
|
| 124 |
+
# # if direction in direction_list:
|
| 125 |
+
# # if direction in east:
|
| 126 |
+
# # return (337, 22)
|
| 127 |
+
# # if direction in northeast:
|
| 128 |
+
# # return (22, 67)
|
| 129 |
+
# # if direction in north:
|
| 130 |
+
# # return (67, 112)
|
| 131 |
+
# # if direction in northwest:
|
| 132 |
+
# # return (112, 157)
|
| 133 |
+
# # if direction in west:
|
| 134 |
+
# # return (157, 202)
|
| 135 |
+
# # if direction in southwest:
|
| 136 |
+
# # return (202, 247)
|
| 137 |
+
# # if direction in south:
|
| 138 |
+
# # return (247, 292)
|
| 139 |
+
# # if direction in southeast:
|
| 140 |
+
# # return (292, 337)
|
| 141 |
+
# #
|
| 142 |
+
# # return None
|
| 143 |
+
# # def get_level1_coordinates(coordinates, centroid, direction, is_midmid):
|
| 144 |
+
# # min_max = get_min_max(direction)
|
| 145 |
+
# # if min_max is not None:
|
| 146 |
+
# # coordinates, mid1, mid2 = get_directional_coordinates(coordinates, direction, centroid, min_max[0], min_max[1], is_midmid)
|
| 147 |
+
# # return coordinates, centroid, mid1, mid2
|
| 148 |
+
# # elif direction.lower() in center:
|
| 149 |
+
# # return get_central(coordinates, centroid, direction, is_midmid), centroid, None, None
|
| 150 |
+
# # else:
|
| 151 |
+
# # return coordinates, centroid, None, None
|
| 152 |
+
# def to_standard_2d_list(data):
|
| 153 |
+
# arr = np.array(data)
|
| 154 |
+
|
| 155 |
+
# # 强制变成一维后 reshape,前提是元素总数是2的倍数
|
| 156 |
+
# flat = arr.flatten()
|
| 157 |
+
# if flat.size % 2 != 0:
|
| 158 |
+
# raise ValueError("元素个数不是2的倍数,不能 reshape 成 [N, 2] 格式")
|
| 159 |
+
|
| 160 |
+
# return flat.reshape(-1, 2).tolist()
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# def get_geojson(ent, arr, centroid):
|
| 164 |
+
# poly_json = {}
|
| 165 |
+
# poly_json['type'] = 'FeatureCollection'
|
| 166 |
+
# poly_json['features'] = []
|
| 167 |
+
# coordinates= []
|
| 168 |
+
# coordinates.append(arr)
|
| 169 |
+
# poly_json['features'].append({
|
| 170 |
+
# 'type':'Feature',
|
| 171 |
+
# 'id': ent,
|
| 172 |
+
# 'properties': {
|
| 173 |
+
# 'centroid': centroid
|
| 174 |
+
# },
|
| 175 |
+
# 'geometry': {
|
| 176 |
+
# 'type':'Polygon',
|
| 177 |
+
# 'coordinates': coordinates
|
| 178 |
+
# }
|
| 179 |
+
# })
|
| 180 |
+
# return poly_json
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# def get_coordinates(ent):
|
| 184 |
+
# request_url = 'https://nominatim.openstreetmap.org/search.php?q= ' +ent +'&polygon_geojson=1&accept-language=en&format=jsonv2'
|
| 185 |
+
# headers = {
|
| 186 |
+
# "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15"
|
| 187 |
+
# }
|
| 188 |
+
# page = requests.get(request_url, headers=headers, verify=False)
|
| 189 |
+
# json_content = json.loads(page.content)
|
| 190 |
+
# all_coordinates = json_content[0]['geojson']['coordinates'][0]
|
| 191 |
+
# centroid = (float(json_content[0]['lon']), float(json_content[0]['lat']))
|
| 192 |
+
# for p in all_coordinates:
|
| 193 |
+
# p2 = (p[0], p[1])
|
| 194 |
+
# angle = geoutil.calculate_bearing(centroid, p2)
|
| 195 |
+
# p.append(angle)
|
| 196 |
+
|
| 197 |
+
# geojson = get_geojson(ent, all_coordinates, centroid)
|
| 198 |
+
|
| 199 |
+
# return geojson['features'][0]['geometry']['coordinates'][0], geojson['features'][0]['properties']['centroid']
|
| 200 |
+
|
| 201 |
+
# def get_coordinates(location):
|
| 202 |
+
# request_url = f'https://nominatim.openstreetmap.org/search.php?q={location}&polygon_geojson=1&accept-language=en&format=jsonv2'
|
| 203 |
+
|
| 204 |
+
# print(request_url)
|
| 205 |
+
# headers = {"User-Agent": "Mozilla/5.0"}
|
| 206 |
+
# response = requests.get(request_url, headers=headers, verify=False)
|
| 207 |
+
# json_content = json.loads(response.content)
|
| 208 |
+
# # print(json_content)
|
| 209 |
+
# if json_content[0]['geojson']['type'] == 'Polygon':
|
| 210 |
+
# coordinates = json_content[0]['geojson']['coordinates'][0]
|
| 211 |
+
# elif json_content[0]['geojson']['type'] == 'Point':
|
| 212 |
+
# coordinates = json_content[0]['geojson']['coordinates']
|
| 213 |
# else:
|
| 214 |
+
# print(json_content[0]['geojson']['type'])
|
| 215 |
+
# centroid = (float(json_content[0]['lon']), float(json_content[0]['lat']))
|
| 216 |
+
# return (coordinates, centroid)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
# # level3
|
| 220 |
+
# def get_directional_coordinates_by_angle(coordinates, centroid, direction, minimum, maximum):
|
| 221 |
+
# # minimum = 157
|
| 222 |
+
# # maximum = 202
|
| 223 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
# direction_coordinates = []
|
| 225 |
# for p in coordinates:
|
| 226 |
+
# angle = geoutil.calculate_bearing(centroid, p)
|
| 227 |
+
# p2 = (p[0], p[1], angle)
|
| 228 |
+
# if direction in geo_level1.east:
|
| 229 |
+
# if angle >= minimum or angle <= maximum:
|
| 230 |
+
# direction_coordinates.append(p2)
|
| 231 |
+
|
| 232 |
# else:
|
| 233 |
+
# if angle >= minimum and angle <= maximum:
|
| 234 |
+
# direction_coordinates.append(p2)
|
| 235 |
+
# # print(type(direction_coordinates[0]))
|
| 236 |
+
# # if(direction in geo_level1.west):
|
| 237 |
+
# # direction_coordinates.sort(key=lambda k: k[2], reverse=True)
|
| 238 |
+
|
| 239 |
# return direction_coordinates
|
| 240 |
+
# def get_level3(level3):
|
| 241 |
+
# digits = re.findall('[0-9]+', level3)[0]
|
| 242 |
+
# unit = re.findall('[A-Za-z]+', level3)[0]
|
| 243 |
+
# return digits, unit
|
| 244 |
+
|
| 245 |
+
# def get_direction_coordinates(coordinates, centroid, level1):
|
| 246 |
+
# min_max = geo_level1.get_min_max(level1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
# if min_max is not None:
|
| 248 |
+
# coord = get_directional_coordinates_by_angle(coordinates, centroid, level1, min_max[0], min_max[1])
|
| 249 |
+
# return coord
|
| 250 |
+
# return coordinates
|
| 251 |
+
# def sort_west(poly1, poly2, centroid):
|
| 252 |
+
# coords1 = mapping(poly1)["features"][0]["geometry"]["coordinates"]
|
| 253 |
+
# coords2 = mapping(poly2)["features"][0]["geometry"]["coordinates"]
|
| 254 |
+
# coord1 = []
|
| 255 |
+
# coord2 = []
|
| 256 |
+
# coord = []
|
| 257 |
+
# for c in coords1:
|
| 258 |
+
# pol = list(c[::-1])
|
| 259 |
+
# coord1.extend(pol)
|
| 260 |
+
# for c in coords2:
|
| 261 |
+
# pol = list(c[::-1])
|
| 262 |
+
# coord2.extend(pol)
|
| 263 |
+
# coo1 = []
|
| 264 |
+
# coo2 = []
|
| 265 |
+
# for p in coord1:
|
| 266 |
+
# angle = geoutil.calculate_bearing(centroid, p)
|
| 267 |
+
# if angle >= 157 and angle <= 202:
|
| 268 |
+
# coo1.append((p[0], p[1], angle))
|
| 269 |
+
# for p in coord2:
|
| 270 |
+
# angle = geoutil.calculate_bearing(centroid, p)
|
| 271 |
+
# if angle >= 157 and angle <= 202:
|
| 272 |
+
# coo2.append((p[0], p[1], angle))
|
| 273 |
+
# coo1.extend(coo2)
|
| 274 |
+
# return coo1
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
# def get_level3_coordinates(coordinates, level_3, level1):
|
| 278 |
+
# distance, unit = get_level3(level_3)
|
| 279 |
+
# kms = geoutil.get_kilometers(distance, unit)
|
| 280 |
+
# coord = []
|
| 281 |
+
|
| 282 |
+
# coords0, center = coordinates
|
| 283 |
+
|
| 284 |
+
# if not isinstance(coords0, list) or len(coords0) < 3:
|
| 285 |
+
|
| 286 |
+
# # 从原始点出发,根据方向移动距离 kms 得到新圆心
|
| 287 |
+
# lat_km = 111.32
|
| 288 |
+
# lon_km = 111.32 * np.cos(np.radians(center[1]))
|
| 289 |
+
|
| 290 |
+
# dx = dy = 0
|
| 291 |
+
|
| 292 |
+
# if level1 is not None:
|
| 293 |
+
# if level1 in geo_level1.east:
|
| 294 |
+
# dx = kms / lon_km
|
| 295 |
+
# elif level1 in geo_level1.west:
|
| 296 |
+
# dx = -kms / lon_km
|
| 297 |
+
# elif level1 in geo_level1.north:
|
| 298 |
+
# dy = kms / lat_km
|
| 299 |
+
# elif level1 in geo_level1.south:
|
| 300 |
+
# dy = -kms / lat_km
|
| 301 |
+
# # 你也可以支持 northeast、southwest 等复合方向
|
| 302 |
+
|
| 303 |
+
# new_center = (center[0] + dx, center[1] + dy)
|
| 304 |
+
|
| 305 |
+
# # 用固定半径画个圆(例如半径2km)
|
| 306 |
+
# r_km = 1 # 半径设为1km,你也可以设为其他值
|
| 307 |
+
|
| 308 |
+
# circle_points = []
|
| 309 |
+
# for theta in np.linspace(0, 360, num=100):
|
| 310 |
+
# theta_rad = np.radians(theta)
|
| 311 |
+
# d_lat = (np.sin(theta_rad) * r_km) / lat_km
|
| 312 |
+
# d_lon = (np.cos(theta_rad) * r_km) / lon_km
|
| 313 |
+
# circle_points.append((new_center[0] + d_lon, new_center[1] + d_lat))
|
| 314 |
+
|
| 315 |
+
# # 输出中心(使用新圆心)
|
| 316 |
+
# if circle_points:
|
| 317 |
+
# center_point = MultiPoint(circle_points).centroid
|
| 318 |
+
# center = (center_point.x, center_point.y)
|
| 319 |
+
# else:
|
| 320 |
+
# center = new_center
|
| 321 |
+
|
| 322 |
+
# return circle_points, center
|
| 323 |
+
|
| 324 |
+
# # 正常 polygon 流程
|
| 325 |
+
# poly1 = Polygon(coords0)
|
| 326 |
+
# polygon1 = gpd.GeoSeries(poly1)
|
| 327 |
+
|
| 328 |
+
# # 生成环形区域
|
| 329 |
+
# poly2 = polygon1.buffer(0.0095 * kms, join_style=2)
|
| 330 |
+
# poly3 = polygon1.buffer(0.013 * kms, join_style=2)
|
| 331 |
+
# poly = poly3.difference(poly2)
|
| 332 |
+
|
| 333 |
+
# # 获取坐标
|
| 334 |
+
# coords = mapping(poly)["features"][0]["geometry"]["coordinates"]
|
| 335 |
+
# for c in coords:
|
| 336 |
+
# pol = list(c[::-1])
|
| 337 |
+
# coord.extend(pol)
|
| 338 |
+
|
| 339 |
+
# # 方向裁剪
|
| 340 |
+
# if level1 is not None:
|
| 341 |
+
# coord = get_direction_coordinates(coord, coordinates[1], level1)
|
| 342 |
+
# if level1 in geo_level1.west:
|
| 343 |
+
# coord = sort_west(poly3, poly2, coordinates[1])
|
| 344 |
+
|
| 345 |
+
# # 计算质心
|
| 346 |
+
# if coord:
|
| 347 |
+
# center_point = MultiPoint(coord).centroid
|
| 348 |
+
# center = (center_point.x, center_point.y)
|
| 349 |
# else:
|
| 350 |
+
# center = coordinates[1]
|
| 351 |
+
|
| 352 |
+
# return coord, center
|
| 353 |
+
# # level 3 end
|
| 354 |
+
|
| 355 |
+
# # between
|
| 356 |
+
# def get_between_coordinates(coordinates1, coordinates2):
|
| 357 |
+
# """
|
| 358 |
+
# 计算两个区域之间的中间点,并生成一个等面积的圆形区域。
|
| 359 |
+
# 如果某个输入仅为点(坐标长度 < 3),则其面积设为 0;
|
| 360 |
+
# 如果两个输入都是点,则默认半径为 2km。
|
| 361 |
+
# :param coordinates1: 第一个区域的边界坐标和中心点
|
| 362 |
+
# :param coordinates2: 第二个区域的边界坐标和中心点
|
| 363 |
+
# :return: 圆形区域的坐标集和圆心
|
| 364 |
+
# """
|
| 365 |
+
|
| 366 |
+
# def is_valid_polygon(coords):
|
| 367 |
+
# return isinstance(coords, list) and len(coords) >= 3
|
| 368 |
+
|
| 369 |
+
# coords1, center1 = coordinates1
|
| 370 |
+
# coords2, center2 = coordinates2
|
| 371 |
+
|
| 372 |
+
# # 判断输入是否为合法多边形(>=3个点)
|
| 373 |
+
# if is_valid_polygon(coords1):
|
| 374 |
+
# poly1 = Polygon(coords1)
|
| 375 |
+
# area1 = poly1.area
|
| 376 |
+
# else:
|
| 377 |
+
# area1 = 0
|
| 378 |
+
|
| 379 |
+
# if is_valid_polygon(coords2):
|
| 380 |
+
# poly2 = Polygon(coords2)
|
| 381 |
+
# area2 = poly2.area
|
| 382 |
+
# else:
|
| 383 |
+
# area2 = 0
|
| 384 |
+
|
| 385 |
+
# # 计算中心点(两个中心的中点)
|
| 386 |
+
# midpoint = (
|
| 387 |
+
# (center1[0] + center2[0]) / 2,
|
| 388 |
+
# (center1[1] + center2[1]) / 2
|
| 389 |
+
# )
|
| 390 |
+
|
| 391 |
+
# # 如果两个区域都是点,则使用默认半径 2km
|
| 392 |
+
# if area1 == 0 and area2 == 0:
|
| 393 |
+
# r_km = 2
|
| 394 |
+
# else:
|
| 395 |
+
# avg_area = (area1 + area2) / 2
|
| 396 |
+
# r_km = np.sqrt(avg_area / np.pi) * 111.32 # 近似 km 半径
|
| 397 |
+
|
| 398 |
+
# # 经纬度距离换算因子
|
| 399 |
+
# lat_km = 111.32
|
| 400 |
+
# lon_km = 111.32 * np.cos(np.radians(midpoint[1]))
|
| 401 |
+
|
| 402 |
+
# # 生成圆形区域坐标(100个点)
|
| 403 |
+
# circle_points = []
|
| 404 |
+
# for theta in np.linspace(0, 360, num=100):
|
| 405 |
+
# theta_rad = np.radians(theta)
|
| 406 |
+
# d_lat = (np.sin(theta_rad) * r_km) / lat_km
|
| 407 |
+
# d_lon = (np.cos(theta_rad) * r_km) / lon_km
|
| 408 |
+
# circle_points.append((midpoint[0] + d_lon, midpoint[1] + d_lat))
|
| 409 |
+
|
| 410 |
+
# return circle_points, midpoint
|
| 411 |
+
# # between end
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
# def llmapi(text):
|
| 415 |
+
# system_prompt = (
|
| 416 |
+
# "你是一个资深的地理学家,你的任务是通过给定的一段自然语言,来选择正确的定位函数顺序以及他们的输入。\n"
|
| 417 |
+
# "你能选择的定位函数有:\n"
|
| 418 |
+
# "1. 相对定位(Relative Positioning):输入为地点坐标,方位,距离。输出为距离‘距离’输入的地点坐标的‘方位’的坐标。\n"
|
| 419 |
+
# "2. 中间定位(Between Positioning):输入为两个地点的坐标,输出为两个地点坐标的中点。\n"
|
| 420 |
+
# "请先进行思维链(CoT)推理,并最终用 JSON 格式输出你的答案,用 `<<<JSON>>>` 和 `<<<END>>>` 包裹起来。\n"
|
| 421 |
+
# "请确保所有输入仅包含:地点名称(字符串)、索引(整数)、方位(字符串,必须是英文)或距离(字符串,带单位),不允许返回诸如 'Chatswood 南4 km的坐标' 这样的内容。\n"
|
| 422 |
+
# "每个步骤编号都有 id 记录,然后如果某个输入是之前步骤的输出,那么输入对应步骤的 id。\n"
|
| 423 |
+
# "所有方向必须使用英文(如 south, west, northeast, etc.)。\n"
|
| 424 |
+
# "示例输出:\n"
|
| 425 |
+
# "<<<JSON>>>\n"
|
| 426 |
+
# "[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
|
| 427 |
+
# "{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
|
| 428 |
+
# "{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
|
| 429 |
+
# "{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
|
| 430 |
+
# "<<<END>>>")
|
| 431 |
+
|
| 432 |
+
# messages = [
|
| 433 |
+
# {"role": "system", "content": system_prompt},
|
| 434 |
+
# {"role": "user", "content": text},
|
| 435 |
+
# ]
|
| 436 |
+
|
| 437 |
+
# chat_completion = client.chat.completions.create(
|
| 438 |
+
# messages=messages,
|
| 439 |
+
# model=model,
|
| 440 |
+
# )
|
| 441 |
+
|
| 442 |
+
# result = chat_completion.choices[0].message.content
|
| 443 |
+
# json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
|
| 444 |
+
|
| 445 |
+
# if json_match:
|
| 446 |
+
# # print(json.loads(json_match.group(1)))
|
| 447 |
+
# return json.loads(json_match.group(1))
|
| 448 |
+
# else:
|
| 449 |
+
# raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
|
| 450 |
+
# def llmapi(text):
|
| 451 |
+
# system_prompt = (
|
| 452 |
+
# "You are an experienced geographer. Your task is to determine the correct sequence of positioning functions and their inputs based on a given piece of natural language.\n"
|
| 453 |
+
# "The positioning functions you can choose from are:\n"
|
| 454 |
+
# "1. Relative Positioning: Inputs is (location coordinate or location name, direction, and distance). Outputs the coordinates that are in the given 'direction' and 'distance' from the input location.\n"
|
| 455 |
+
# "2. Between Positioning: Inputs is (location 1 coordinates or location 1 name, location 2 coordinates or location 2 name). Outputs the midpoint coordinate between the two locations.\n"
|
| 456 |
+
# "You can only use the given functions, and the inputs to the functions must obey the above properties. The given functions can be combined to solve complex situations."
|
| 457 |
+
# "First, perform chain-of-thought (CoT) reasoning, and finally output your answer in JSON format, wrapped between `<<<JSON>>>` and `<<<END>>>`.\n"
|
| 458 |
+
# "Make sure all inputs only include: location names (strings), step indices (integers), directions (strings, must be in English), or distances (strings with units). Do not return expressions like 'the coordinate 4 km south of Chatswood'.\n"
|
| 459 |
+
# "Each step must have an 'id'. If the input of a step is the output of a previous step, use that step’s 'id' as the input.\n"
|
| 460 |
+
# "All directions must be in English (e.g., south, west, northeast, etc.).\n"
|
| 461 |
+
# "Example output:\n"
|
| 462 |
+
# "<<<JSON>>>\n"
|
| 463 |
+
# "[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
|
| 464 |
+
# "{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
|
| 465 |
+
# "{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
|
| 466 |
+
# "{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
|
| 467 |
+
# "<<<END>>>")
|
| 468 |
+
|
| 469 |
+
# messages = [
|
| 470 |
+
# {"role": "system", "content": system_prompt},
|
| 471 |
+
# {"role": "user", "content": text},
|
| 472 |
+
# ]
|
| 473 |
+
|
| 474 |
+
# chat_completion = client.chat.completions.create(
|
| 475 |
+
# messages=messages,
|
| 476 |
+
# model=model,
|
| 477 |
+
# )
|
| 478 |
+
|
| 479 |
+
# result = chat_completion.choices[0].message.content
|
| 480 |
+
# print(result)
|
| 481 |
+
# json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
|
| 482 |
+
|
| 483 |
+
# if json_match:
|
| 484 |
+
# return json.loads(json_match.group(1))
|
| 485 |
+
# else:
|
| 486 |
+
# raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
# def execute_steps(steps):
|
| 493 |
+
# data = {}
|
| 494 |
+
|
| 495 |
+
# for step in steps:
|
| 496 |
+
# step_id = step['id']
|
| 497 |
+
# function = step['function']
|
| 498 |
+
# inputs = step['inputs']
|
| 499 |
+
# # print('-' * 50)
|
| 500 |
+
# # print(function)
|
| 501 |
+
# # print(inputs)
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
# resolved_inputs = []
|
| 505 |
+
# for inp in inputs:
|
| 506 |
+
# if isinstance(inp, int):
|
| 507 |
+
# resolved_inputs.append(data[inp])
|
| 508 |
+
# else:
|
| 509 |
+
# resolved_inputs.append(inp)
|
| 510 |
+
# if function == "Relative":
|
| 511 |
+
# location, direction, distance = resolved_inputs
|
| 512 |
+
# if isinstance(location, str):
|
| 513 |
+
# location = get_coordinates(location)
|
| 514 |
+
|
| 515 |
+
# location = [to_standard_2d_list(location[0])] + list(location[1:])
|
| 516 |
+
# location = [[[151.214901,-33.859175]], (151.214901,-33.859175)]
|
| 517 |
+
# result = get_level3_coordinates(location, distance, direction)
|
| 518 |
+
# data[step_id] = result
|
| 519 |
+
|
| 520 |
+
# elif function == "Between":
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
# location1, location2 = resolved_inputs
|
| 524 |
+
# # print(location1)
|
| 525 |
+
# # print(111)
|
| 526 |
+
# # print(location2)
|
| 527 |
+
# if isinstance(location1, str):
|
| 528 |
+
# location1 = get_coordinates(location1)
|
| 529 |
+
|
| 530 |
+
# location1 = [to_standard_2d_list(location1[0])] + list(location1[1:])
|
| 531 |
+
# if isinstance(location2, str):
|
| 532 |
+
|
| 533 |
+
# location2 = get_coordinates(location2)
|
| 534 |
+
# location2 = [to_standard_2d_list(location2[0])] + list(location2[1:])
|
| 535 |
+
# result = get_between_coordinates(location1, location2)
|
| 536 |
+
|
| 537 |
+
# data[step_id] = result
|
| 538 |
+
|
| 539 |
+
# return data
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
# if __name__ == '__main__':
|
| 544 |
+
# # a = get_coordinates('Burwood')
|
| 545 |
+
# # a2 = get_coordinates('Glebe')
|
| 546 |
+
# # b = get_level3_coordinates(a, '5 km', 'east')
|
| 547 |
+
# # c = get_between_coordinates(a, a2)
|
| 548 |
+
|
| 549 |
+
# # 完整通道
|
| 550 |
+
# # 默认输入
|
| 551 |
+
# # default_input_text = "在Chatswood南边4公里与North Sydney 东边2公里的中间的西南5公里。"
|
| 552 |
+
# # default_input_text = "你是一位规划师,正在为华盛顿州的一项新森林监测站选址。两个潜在的参考位置分别是雷尼尔山国家公园(Mount Rainier National Park)和北喀斯喀特国家公园(North Cascades National Park)。首先,你想在这两个国家公园之间找到一个中间点。接着,你希望在这个中间点与北喀斯喀特国家公园之间,再取一个中间位置,以便确定最终的建设候选地。"
|
| 553 |
+
# # default_input_text = "在Chatswood和North Sydney的中间靠近North Sydney的四分之一位置"
|
| 554 |
+
# # default_input_text = "Plan a trip that involves determining the midpoint between Paris and London, and then finding another midpoint between this location and Paris to identify potential stopovers during travel."
|
| 555 |
+
# # default_input_text = "5km southwest of Chatswood, 4km south of Chatswood and 2km north of North Sydney."
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
# # 解析 LLM 结果
|
| 560 |
+
# # parsed_steps = llmapi(default_input_text)
|
| 561 |
+
# # parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Chatswood', 'south', '4 km']}, {'id': 2, 'function': 'Relative', 'inputs': ['North Sydney', 'east', '2 km']}, {'id': 3, 'function': 'Between', 'inputs': [1, 2]}, {'id': 4, 'function': 'Relative', 'inputs': [3, 'south west', '5 km']}]
|
| 562 |
+
# # parsed_steps = [{"id": 1, "function": "Between", "inputs": ["Chatswood", "North Sydney"]},{"id": 2, "function": "Between", "inputs": [1, "North Sydney"]}]
|
| 563 |
+
# # parsed_steps = [{"id": 1, "function": "Relative", "inputs": ["Katoomba", "southeast", "3 km"]}, {"id": 2, "function": "Between", "inputs": [1, "Echo Point"]}]
|
| 564 |
+
# # parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Scafell Pike', 'east', '9 km']}]
|
| 565 |
+
# # parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Colosseum', 'northeast', '8 km']}, {'id': 2, 'function': 'Relative', 'inputs': [1, 'northeast', '2 km']}]
|
| 566 |
+
# parsed_steps = [
|
| 567 |
+
# {"id": 1, "function": "Between", "inputs": ["Statue of Liberty", "Eiffel Tower"]},
|
| 568 |
+
# {"id": 2, "function": "Relative", "inputs": [1, "west", "8 km"]}
|
| 569 |
+
# ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
+
# # 执行步骤
|
| 572 |
+
# result = execute_steps(parsed_steps)
|
| 573 |
+
# # 输出最终计算结果
|
| 574 |
+
# print(result)
|
| 575 |
+
# print('-' * 100)
|
| 576 |
+
# print(result[(max(result.keys()))][0])
|
| 577 |
+
# # 通道结束
|
| 578 |
|
| 579 |
+
# # location = get_coordinates('Chatswood')
|
| 580 |
+
# # result = get_level3_coordinates(location, '4 km', 'north west')
|
| 581 |
+
# # print(result)
|
| 582 |
|
| 583 |
|