Spaces:
Runtime error
Runtime error
from transformers import GPT2LMHeadModel, GPT2Tokenizer, XLNetLMHeadModel, XLNetTokenizer | |
# Load pre-trained GPT-2 model and tokenizer | |
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2") | |
# Load pre-trained XLNet model and tokenizer | |
xlnet_tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased') | |
xlnet_model = XLNetLMHeadModel.from_pretrained('xlnet-base-cased') | |
def generate_song_lines_gpt2(style): | |
input_text = f"A song in the style of {style}:" | |
input_ids = gpt2_tokenizer.encode(input_text, return_tensors='pt') | |
# Generate text | |
output = gpt2_model.generate(input_ids, do_sample=True, max_length=100, temperature=0.7, num_return_sequences=5) | |
# Decode output | |
song_lines = [gpt2_tokenizer.decode(ids) for ids in output] | |
return song_lines | |
def generate_song_lines_xlnet(style): | |
input_text = f"A song in the style of {style}:" | |
input_ids = xlnet_tokenizer.encode(input_text, return_tensors='pt') | |
# Generate text | |
output = xlnet_model.generate(input_ids, do_sample=True, max_length=100, temperature=0.7, num_return_sequences=5) | |
# Decode output | |
song_lines = [xlnet_tokenizer.decode(ids) for ids in output] | |
return song_lines | |
def generate_song_gpt2(style): | |
song_lines = generate_song_lines_gpt2(style) | |
song = "\n".join(song_lines) | |
return song | |
def generate_song_xlnet(style): | |
song_lines = generate_song_lines_xlnet(style) | |
song = "\n".join(song_lines) | |
return song | |
Artist = "Taylor Swift" | |
song_gpt2 = generate_song_gpt2(Artist) | |
song_xlnet = generate_song_xlnet(Artist) | |
print("GPT-2 Song:\n", song_gpt2) | |
print("\nXLNet Song:\n", song_xlnet) |