Spaces:
Sleeping
Sleeping
### We create a bunch of helpful functions throughout the course. | |
### Storing them here so they're easily accessible. | |
import tensorflow as tf | |
# Create a function to import an image and resize it to be able to be used with our model | |
def load_and_prep_image(filename, img_shape=224, scale=True): | |
""" | |
Reads in an image from filename, turns it into a tensor and reshapes into | |
(224, 224, 3). | |
Parameters | |
---------- | |
filename (str): string filename of target image | |
img_shape (int): size to resize target image to, default 224 | |
scale (bool): whether to scale pixel values to range(0, 1), default True | |
""" | |
# Read in the image | |
img = tf.io.read_file(filename) | |
# Decode it into a tensor | |
img = tf.image.decode_jpeg(img) | |
# Resize the image | |
img = tf.image.resize(img, [img_shape, img_shape]) | |
if scale: | |
# Rescale the image (get all values between 0 and 1) | |
return img/255. | |
else: | |
return img | |
# Note: The following confusion matrix code is a remix of Scikit-Learn's | |
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html | |
import itertools | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from sklearn.metrics import confusion_matrix | |
# Our function needs a different name to sklearn's plot_confusion_matrix | |
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False): | |
"""Makes a labelled confusion matrix comparing predictions and ground truth labels. | |
If classes is passed, confusion matrix will be labelled, if not, integer class values | |
will be used. | |
Args: | |
y_true: Array of truth labels (must be same shape as y_pred). | |
y_pred: Array of predicted labels (must be same shape as y_true). | |
classes: Array of class labels (e.g. string form). If `None`, integer labels are used. | |
figsize: Size of output figure (default=(10, 10)). | |
text_size: Size of output figure text (default=15). | |
norm: normalize values or not (default=False). | |
savefig: save confusion matrix to file (default=False). | |
Returns: | |
A labelled confusion matrix plot comparing y_true and y_pred. | |
Example usage: | |
make_confusion_matrix(y_true=test_labels, # ground truth test labels | |
y_pred=y_preds, # predicted labels | |
classes=class_names, # array of class label names | |
figsize=(15, 15), | |
text_size=10) | |
""" | |
# Create the confustion matrix | |
cm = confusion_matrix(y_true, y_pred) | |
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it | |
n_classes = cm.shape[0] # find the number of classes we're dealing with | |
# Plot the figure and make it pretty | |
fig, ax = plt.subplots(figsize=figsize) | |
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better | |
fig.colorbar(cax) | |
# Are there a list of classes? | |
if classes: | |
labels = classes | |
else: | |
labels = np.arange(cm.shape[0]) | |
# Label the axes | |
ax.set(title="Confusion Matrix", | |
xlabel="Predicted label", | |
ylabel="True label", | |
xticks=np.arange(n_classes), # create enough axis slots for each class | |
yticks=np.arange(n_classes), | |
xticklabels=labels, # axes will labeled with class names (if they exist) or ints | |
yticklabels=labels) | |
# Make x-axis labels appear on bottom | |
ax.xaxis.set_label_position("bottom") | |
ax.xaxis.tick_bottom() | |
# Set the threshold for different colors | |
threshold = (cm.max() + cm.min()) / 2. | |
# Plot the text on each cell | |
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | |
if norm: | |
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)", | |
horizontalalignment="center", | |
color="white" if cm[i, j] > threshold else "black", | |
size=text_size) | |
else: | |
plt.text(j, i, f"{cm[i, j]}", | |
horizontalalignment="center", | |
color="white" if cm[i, j] > threshold else "black", | |
size=text_size) | |
# Save the figure to the current working directory | |
if savefig: | |
fig.savefig("confusion_matrix.png") | |
# Make a function to predict on images and plot them (works with multi-class) | |
def pred_and_plot(model, filename, class_names): | |
""" | |
Imports an image located at filename, makes a prediction on it with | |
a trained model and plots the image with the predicted class as the title. | |
""" | |
# Import the target image and preprocess it | |
img = load_and_prep_image(filename) | |
# Make a prediction | |
pred = model.predict(tf.expand_dims(img, axis=0)) | |
# Get the predicted class | |
if len(pred[0]) > 1: # check for multi-class | |
pred_class = class_names[pred.argmax()] # if more than one output, take the max | |
else: | |
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round | |
# Plot the image and predicted class | |
plt.imshow(img) | |
plt.title(f"Prediction: {pred_class}") | |
plt.axis(False); | |
import datetime | |
def create_tensorboard_callback(dir_name, experiment_name): | |
""" | |
Creates a TensorBoard callback instand to store log files. | |
Stores log files with the filepath: | |
"dir_name/experiment_name/current_datetime/" | |
Args: | |
dir_name: target directory to store TensorBoard log files | |
experiment_name: name of experiment directory (e.g. efficientnet_model_1) | |
""" | |
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") | |
tensorboard_callback = tf.keras.callbacks.TensorBoard( | |
log_dir=log_dir | |
) | |
print(f"Saving TensorBoard log files to: {log_dir}") | |
return tensorboard_callback | |
# Plot the validation and training data separately | |
import matplotlib.pyplot as plt | |
def plot_loss_curves(history): | |
""" | |
Returns separate loss curves for training and validation metrics. | |
Args: | |
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History) | |
""" | |
loss = history.history['loss'] | |
val_loss = history.history['val_loss'] | |
accuracy = history.history['accuracy'] | |
val_accuracy = history.history['val_accuracy'] | |
epochs = range(len(history.history['loss'])) | |
# Plot loss | |
plt.plot(epochs, loss, label='training_loss') | |
plt.plot(epochs, val_loss, label='val_loss') | |
plt.title('Loss') | |
plt.xlabel('Epochs') | |
plt.legend() | |
# Plot accuracy | |
plt.figure() | |
plt.plot(epochs, accuracy, label='training_accuracy') | |
plt.plot(epochs, val_accuracy, label='val_accuracy') | |
plt.title('Accuracy') | |
plt.xlabel('Epochs') | |
plt.legend(); | |
def compare_historys(original_history, new_history, initial_epochs=5): | |
""" | |
Compares two TensorFlow model History objects. | |
Args: | |
original_history: History object from original model (before new_history) | |
new_history: History object from continued model training (after original_history) | |
initial_epochs: Number of epochs in original_history (new_history plot starts from here) | |
""" | |
# Get original history measurements | |
acc = original_history.history["accuracy"] | |
loss = original_history.history["loss"] | |
val_acc = original_history.history["val_accuracy"] | |
val_loss = original_history.history["val_loss"] | |
# Combine original history with new history | |
total_acc = acc + new_history.history["accuracy"] | |
total_loss = loss + new_history.history["loss"] | |
total_val_acc = val_acc + new_history.history["val_accuracy"] | |
total_val_loss = val_loss + new_history.history["val_loss"] | |
# Make plots | |
plt.figure(figsize=(8, 8)) | |
plt.subplot(2, 1, 1) | |
plt.plot(total_acc, label='Training Accuracy') | |
plt.plot(total_val_acc, label='Validation Accuracy') | |
plt.plot([initial_epochs-1, initial_epochs-1], | |
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs | |
plt.legend(loc='lower right') | |
plt.title('Training and Validation Accuracy') | |
plt.subplot(2, 1, 2) | |
plt.plot(total_loss, label='Training Loss') | |
plt.plot(total_val_loss, label='Validation Loss') | |
plt.plot([initial_epochs-1, initial_epochs-1], | |
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs | |
plt.legend(loc='upper right') | |
plt.title('Training and Validation Loss') | |
plt.xlabel('epoch') | |
plt.show() | |
# Create function to unzip a zipfile into current working directory | |
# (since we're going to be downloading and unzipping a few files) | |
import zipfile | |
def unzip_data(filename): | |
""" | |
Unzips filename into the current working directory. | |
Args: | |
filename (str): a filepath to a target zip folder to be unzipped. | |
""" | |
zip_ref = zipfile.ZipFile(filename, "r") | |
zip_ref.extractall() | |
zip_ref.close() | |
# Walk through an image classification directory and find out how many files (images) | |
# are in each subdirectory. | |
import os | |
def walk_through_dir(dir_path): | |
""" | |
Walks through dir_path returning its contents. | |
Args: | |
dir_path (str): target directory | |
Returns: | |
A print out of: | |
number of subdiretories in dir_path | |
number of images (files) in each subdirectory | |
name of each subdirectory | |
""" | |
for dirpath, dirnames, filenames in os.walk(dir_path): | |
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.") | |
# Function to evaluate: accuracy, precision, recall, f1-score | |
from sklearn.metrics import accuracy_score, precision_recall_fscore_support | |
def calculate_results(y_true, y_pred): | |
""" | |
Calculates model accuracy, precision, recall and f1 score of a binary classification model. | |
Args: | |
y_true: true labels in the form of a 1D array | |
y_pred: predicted labels in the form of a 1D array | |
Returns a dictionary of accuracy, precision, recall, f1-score. | |
""" | |
# Calculate model accuracy | |
model_accuracy = accuracy_score(y_true, y_pred) * 100 | |
# Calculate model precision, recall and f1 score using "weighted average | |
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted") | |
model_results = {"accuracy": model_accuracy, | |
"precision": model_precision, | |
"recall": model_recall, | |
"f1": model_f1} | |
return model_results | |