Spaces:
Sleeping
Sleeping
import datetime | |
import tensorflow as tf | |
import numpy as np | |
class_names = ['apple_pie', | |
'baby_back_ribs', | |
'baklava', | |
'beef_carpaccio', | |
'beef_tartare', | |
'beet_salad', | |
'beignets', | |
'bibimbap', | |
'bread_pudding', | |
'breakfast_burrito', | |
'bruschetta', | |
'caesar_salad', | |
'cannoli', | |
'caprese_salad', | |
'carrot_cake', | |
'ceviche', | |
'cheesecake', | |
'cheese_plate', | |
'chicken_curry', | |
'chicken_quesadilla', | |
'chicken_wings', | |
'chocolate_cake', | |
'chocolate_mousse', | |
'churros', | |
'clam_chowder', | |
'club_sandwich', | |
'crab_cakes', | |
'creme_brulee', | |
'croque_madame', | |
'cup_cakes', | |
'deviled_eggs', | |
'donuts', | |
'dumplings', | |
'edamame', | |
'eggs_benedict', | |
'escargots', | |
'falafel', | |
'filet_mignon', | |
'fish_and_chips', | |
'foie_gras', | |
'french_fries', | |
'french_onion_soup', | |
'french_toast', | |
'fried_calamari', | |
'fried_rice', | |
'frozen_yogurt', | |
'garlic_bread', | |
'gnocchi', | |
'greek_salad', | |
'grilled_cheese_sandwich', | |
'grilled_salmon', | |
'guacamole', | |
'gyoza', | |
'hamburger', | |
'hot_and_sour_soup', | |
'hot_dog', | |
'huevos_rancheros', | |
'hummus', | |
'ice_cream', | |
'lasagna', | |
'lobster_bisque', | |
'lobster_roll_sandwich', | |
'macaroni_and_cheese', | |
'macarons', | |
'miso_soup', | |
'mussels', | |
'nachos', | |
'omelette', | |
'onion_rings', | |
'oysters', | |
'pad_thai', | |
'paella', | |
'pancakes', | |
'panna_cotta', | |
'peking_duck', | |
'pho', | |
'pizza', | |
'pork_chop', | |
'poutine', | |
'prime_rib', | |
'pulled_pork_sandwich', | |
'ramen', | |
'ravioli', | |
'red_velvet_cake', | |
'risotto', | |
'samosa', | |
'sashimi', | |
'scallops', | |
'seaweed_salad', | |
'shrimp_and_grits', | |
'spaghetti_bolognese', | |
'spaghetti_carbonara', | |
'spring_rolls', | |
'steak', | |
'strawberry_shortcake', | |
'sushi', | |
'tacos', | |
'takoyaki', | |
'tiramisu', | |
'tuna_tartare', | |
'waffles'] | |
def get_classes(): | |
return class_names | |
def load_and_prep(image, shape=224, scale=False): | |
image = tf.image.decode_image(image, channels=3) | |
image = tf.image.resize(image, size=([shape, shape])) | |
if scale: | |
image = image/255. | |
return image | |
def preprocess_data(data): | |
return np.asarray(data).astype(np.float32) |