Spaces:
Paused
Paused
koenverhagen
commited on
Commit
•
677b082
1
Parent(s):
ab2d075
Delete extensions/sd-webui-controlnet
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- extensions/sd-webui-controlnet/.github/ISSUE_TEMPLATE/bug_report.yml +0 -91
- extensions/sd-webui-controlnet/.github/ISSUE_TEMPLATE/config.yml +0 -1
- extensions/sd-webui-controlnet/.github/workflows/tests.yml +0 -37
- extensions/sd-webui-controlnet/.gitignore +0 -179
- extensions/sd-webui-controlnet/LICENSE +0 -674
- extensions/sd-webui-controlnet/README.md +0 -242
- extensions/sd-webui-controlnet/__pycache__/preload.cpython-310.pyc +0 -0
- extensions/sd-webui-controlnet/annotator/__pycache__/annotator_path.cpython-310.pyc +0 -0
- extensions/sd-webui-controlnet/annotator/__pycache__/util.cpython-310.pyc +0 -0
- extensions/sd-webui-controlnet/annotator/annotator_path.py +0 -22
- extensions/sd-webui-controlnet/annotator/binary/__init__.py +0 -14
- extensions/sd-webui-controlnet/annotator/canny/__init__.py +0 -5
- extensions/sd-webui-controlnet/annotator/canny/__pycache__/__init__.cpython-310.pyc +0 -0
- extensions/sd-webui-controlnet/annotator/clipvision/__init__.py +0 -127
- extensions/sd-webui-controlnet/annotator/clipvision/clip_vision_h_uc.data +0 -0
- extensions/sd-webui-controlnet/annotator/color/__init__.py +0 -20
- extensions/sd-webui-controlnet/annotator/downloads/leres/latest_net_G.pth +0 -3
- extensions/sd-webui-controlnet/annotator/downloads/leres/res101.pth +0 -3
- extensions/sd-webui-controlnet/annotator/downloads/midas/dpt_hybrid-midas-501f0c75.pt +0 -3
- extensions/sd-webui-controlnet/annotator/downloads/oneformer/150_16_swin_l_oneformer_coco_100ep.pth +0 -3
- extensions/sd-webui-controlnet/annotator/downloads/oneformer/250_16_swin_l_oneformer_ade20k_160k.pth +0 -3
- extensions/sd-webui-controlnet/annotator/downloads/uniformer/upernet_global_small.pth +0 -3
- extensions/sd-webui-controlnet/annotator/hed/__init__.py +0 -98
- extensions/sd-webui-controlnet/annotator/keypose/__init__.py +0 -212
- extensions/sd-webui-controlnet/annotator/keypose/faster_rcnn_r50_fpn_coco.py +0 -182
- extensions/sd-webui-controlnet/annotator/keypose/hrnet_w48_coco_256x192.py +0 -169
- extensions/sd-webui-controlnet/annotator/lama/__init__.py +0 -58
- extensions/sd-webui-controlnet/annotator/lama/config.yaml +0 -157
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/__init__.py +0 -0
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/__init__.py +0 -0
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/data/__init__.py +0 -0
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/data/masks.py +0 -332
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/__init__.py +0 -0
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/adversarial.py +0 -177
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/constants.py +0 -152
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/distance_weighting.py +0 -126
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/feature_matching.py +0 -33
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/perceptual.py +0 -113
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/segmentation.py +0 -43
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/style_loss.py +0 -155
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/__init__.py +0 -31
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/base.py +0 -80
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/depthwise_sep_conv.py +0 -17
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/fake_fakes.py +0 -47
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/ffc.py +0 -485
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/multidilated_conv.py +0 -98
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/multiscale.py +0 -244
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/pix2pixhd.py +0 -669
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/spatial_transform.py +0 -49
- extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/squeeze_excitation.py +0 -20
extensions/sd-webui-controlnet/.github/ISSUE_TEMPLATE/bug_report.yml
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
name: Bug Report
|
2 |
-
description: Create a report
|
3 |
-
title: "[Bug]: "
|
4 |
-
labels: ["bug-report"]
|
5 |
-
|
6 |
-
body:
|
7 |
-
- type: checkboxes
|
8 |
-
attributes:
|
9 |
-
label: Is there an existing issue for this?
|
10 |
-
description: Please search to see if an issue already exists for the bug you encountered, and that it hasn't been fixed in a recent build/commit.
|
11 |
-
options:
|
12 |
-
- label: I have searched the existing issues and checked the recent builds/commits of both this extension and the webui
|
13 |
-
required: true
|
14 |
-
- type: markdown
|
15 |
-
attributes:
|
16 |
-
value: |
|
17 |
-
*Please fill this form with as much information as possible, don't forget to fill "What OS..." and "What browsers" and *provide screenshots if possible**
|
18 |
-
- type: textarea
|
19 |
-
id: what-did
|
20 |
-
attributes:
|
21 |
-
label: What happened?
|
22 |
-
description: Tell us what happened in a very clear and simple way
|
23 |
-
validations:
|
24 |
-
required: true
|
25 |
-
- type: textarea
|
26 |
-
id: steps
|
27 |
-
attributes:
|
28 |
-
label: Steps to reproduce the problem
|
29 |
-
description: Please provide us with precise step by step information on how to reproduce the bug
|
30 |
-
value: |
|
31 |
-
1. Go to ....
|
32 |
-
2. Press ....
|
33 |
-
3. ...
|
34 |
-
validations:
|
35 |
-
required: true
|
36 |
-
- type: textarea
|
37 |
-
id: what-should
|
38 |
-
attributes:
|
39 |
-
label: What should have happened?
|
40 |
-
description: Tell what you think the normal behavior should be
|
41 |
-
validations:
|
42 |
-
required: true
|
43 |
-
- type: textarea
|
44 |
-
id: commits
|
45 |
-
attributes:
|
46 |
-
label: Commit where the problem happens
|
47 |
-
description: Which commit of the extension are you running on? Please include the commit of both the extension and the webui (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.)
|
48 |
-
value: |
|
49 |
-
webui:
|
50 |
-
controlnet:
|
51 |
-
validations:
|
52 |
-
required: true
|
53 |
-
- type: dropdown
|
54 |
-
id: browsers
|
55 |
-
attributes:
|
56 |
-
label: What browsers do you use to access the UI ?
|
57 |
-
multiple: true
|
58 |
-
options:
|
59 |
-
- Mozilla Firefox
|
60 |
-
- Google Chrome
|
61 |
-
- Brave
|
62 |
-
- Apple Safari
|
63 |
-
- Microsoft Edge
|
64 |
-
- type: textarea
|
65 |
-
id: cmdargs
|
66 |
-
attributes:
|
67 |
-
label: Command Line Arguments
|
68 |
-
description: Are you using any launching parameters/command line arguments (modified webui-user .bat/.sh) ? If yes, please write them below. Write "No" otherwise.
|
69 |
-
render: Shell
|
70 |
-
validations:
|
71 |
-
required: true
|
72 |
-
- type: textarea
|
73 |
-
id: extensions
|
74 |
-
attributes:
|
75 |
-
label: List of enabled extensions
|
76 |
-
description: Please provide a full list of enabled extensions or screenshots of your "Extensions" tab.
|
77 |
-
validations:
|
78 |
-
required: true
|
79 |
-
- type: textarea
|
80 |
-
id: logs
|
81 |
-
attributes:
|
82 |
-
label: Console logs
|
83 |
-
description: Please provide full cmd/terminal logs from the moment you started UI to the end of it, after your bug happened. If it's very long, provide a link to pastebin or similar service.
|
84 |
-
render: Shell
|
85 |
-
validations:
|
86 |
-
required: true
|
87 |
-
- type: textarea
|
88 |
-
id: misc
|
89 |
-
attributes:
|
90 |
-
label: Additional information
|
91 |
-
description: Please provide us with any relevant additional info or context.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/.github/ISSUE_TEMPLATE/config.yml
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
blank_issues_enabled: true
|
|
|
|
extensions/sd-webui-controlnet/.github/workflows/tests.yml
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
name: Run basic features tests on CPU
|
2 |
-
|
3 |
-
on:
|
4 |
-
- push
|
5 |
-
- pull_request
|
6 |
-
|
7 |
-
jobs:
|
8 |
-
build:
|
9 |
-
runs-on: ubuntu-latest
|
10 |
-
steps:
|
11 |
-
- name: Checkout Code
|
12 |
-
uses: actions/checkout@v3
|
13 |
-
with:
|
14 |
-
repository: 'AUTOMATIC1111/stable-diffusion-webui'
|
15 |
-
path: 'stable-diffusion-webui'
|
16 |
-
ref: '5ab7f213bec2f816f9c5644becb32eb72c8ffb89'
|
17 |
-
|
18 |
-
- name: Checkout Code
|
19 |
-
uses: actions/checkout@v3
|
20 |
-
with:
|
21 |
-
repository: 'Mikubill/sd-webui-controlnet'
|
22 |
-
path: 'stable-diffusion-webui/extensions/sd-webui-controlnet'
|
23 |
-
|
24 |
-
- name: Set up Python 3.10
|
25 |
-
uses: actions/setup-python@v4
|
26 |
-
with:
|
27 |
-
python-version: 3.10.6
|
28 |
-
cache: pip
|
29 |
-
cache-dependency-path: |
|
30 |
-
**/requirements*txt
|
31 |
-
stable-diffusion-webui/requirements*txt
|
32 |
-
|
33 |
-
- run: |
|
34 |
-
pip install torch torchvision
|
35 |
-
curl -Lo stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_canny-fp16.safetensors https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/control_canny-fp16.safetensors
|
36 |
-
cd stable-diffusion-webui && python launch.py --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test --api --tests ./extensions/sd-webui-controlnet/tests
|
37 |
-
rm -fr stable-diffusion-webui/extensions/sd-webui-controlnet/models/control_canny-fp16.safetensors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/.gitignore
DELETED
@@ -1,179 +0,0 @@
|
|
1 |
-
# Byte-compiled / optimized / DLL files
|
2 |
-
__pycache__/
|
3 |
-
*.py[cod]
|
4 |
-
*$py.class
|
5 |
-
|
6 |
-
# C extensions
|
7 |
-
*.so
|
8 |
-
|
9 |
-
# Distribution / packaging
|
10 |
-
.Python
|
11 |
-
build/
|
12 |
-
develop-eggs/
|
13 |
-
dist/
|
14 |
-
downloads/
|
15 |
-
eggs/
|
16 |
-
.eggs/
|
17 |
-
lib/
|
18 |
-
lib64/
|
19 |
-
parts/
|
20 |
-
sdist/
|
21 |
-
var/
|
22 |
-
wheels/
|
23 |
-
share/python-wheels/
|
24 |
-
*.egg-info/
|
25 |
-
.installed.cfg
|
26 |
-
*.egg
|
27 |
-
MANIFEST
|
28 |
-
|
29 |
-
# PyInstaller
|
30 |
-
# Usually these files are written by a python script from a template
|
31 |
-
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
-
*.manifest
|
33 |
-
*.spec
|
34 |
-
|
35 |
-
# Installer logs
|
36 |
-
pip-log.txt
|
37 |
-
pip-delete-this-directory.txt
|
38 |
-
|
39 |
-
# Unit test / coverage reports
|
40 |
-
htmlcov/
|
41 |
-
.tox/
|
42 |
-
.nox/
|
43 |
-
.coverage
|
44 |
-
.coverage.*
|
45 |
-
.cache
|
46 |
-
nosetests.xml
|
47 |
-
coverage.xml
|
48 |
-
*.cover
|
49 |
-
*.py,cover
|
50 |
-
.hypothesis/
|
51 |
-
.pytest_cache/
|
52 |
-
cover/
|
53 |
-
|
54 |
-
# Translations
|
55 |
-
*.mo
|
56 |
-
*.pot
|
57 |
-
|
58 |
-
# Django stuff:
|
59 |
-
*.log
|
60 |
-
local_settings.py
|
61 |
-
db.sqlite3
|
62 |
-
db.sqlite3-journal
|
63 |
-
|
64 |
-
# Flask stuff:
|
65 |
-
instance/
|
66 |
-
.webassets-cache
|
67 |
-
|
68 |
-
# Scrapy stuff:
|
69 |
-
.scrapy
|
70 |
-
|
71 |
-
# Sphinx documentation
|
72 |
-
docs/_build/
|
73 |
-
|
74 |
-
# PyBuilder
|
75 |
-
.pybuilder/
|
76 |
-
target/
|
77 |
-
|
78 |
-
# Jupyter Notebook
|
79 |
-
.ipynb_checkpoints
|
80 |
-
|
81 |
-
# IPython
|
82 |
-
profile_default/
|
83 |
-
ipython_config.py
|
84 |
-
|
85 |
-
# pyenv
|
86 |
-
# For a library or package, you might want to ignore these files since the code is
|
87 |
-
# intended to run in multiple environments; otherwise, check them in:
|
88 |
-
# .python-version
|
89 |
-
|
90 |
-
# pipenv
|
91 |
-
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
-
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
-
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
-
# install all needed dependencies.
|
95 |
-
#Pipfile.lock
|
96 |
-
|
97 |
-
# poetry
|
98 |
-
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
-
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
-
# commonly ignored for libraries.
|
101 |
-
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
-
#poetry.lock
|
103 |
-
|
104 |
-
# pdm
|
105 |
-
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
-
#pdm.lock
|
107 |
-
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
-
# in version control.
|
109 |
-
# https://pdm.fming.dev/#use-with-ide
|
110 |
-
.pdm.toml
|
111 |
-
|
112 |
-
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
-
__pypackages__/
|
114 |
-
|
115 |
-
# Celery stuff
|
116 |
-
celerybeat-schedule
|
117 |
-
celerybeat.pid
|
118 |
-
|
119 |
-
# SageMath parsed files
|
120 |
-
*.sage.py
|
121 |
-
|
122 |
-
# Environments
|
123 |
-
.env
|
124 |
-
.venv
|
125 |
-
env/
|
126 |
-
venv/
|
127 |
-
ENV/
|
128 |
-
env.bak/
|
129 |
-
venv.bak/
|
130 |
-
|
131 |
-
# Spyder project settings
|
132 |
-
.spyderproject
|
133 |
-
.spyproject
|
134 |
-
|
135 |
-
# Rope project settings
|
136 |
-
.ropeproject
|
137 |
-
|
138 |
-
# mkdocs documentation
|
139 |
-
/site
|
140 |
-
|
141 |
-
# mypy
|
142 |
-
.mypy_cache/
|
143 |
-
.dmypy.json
|
144 |
-
dmypy.json
|
145 |
-
|
146 |
-
# Pyre type checker
|
147 |
-
.pyre/
|
148 |
-
|
149 |
-
# pytype static type analyzer
|
150 |
-
.pytype/
|
151 |
-
|
152 |
-
# Cython debug symbols
|
153 |
-
cython_debug/
|
154 |
-
|
155 |
-
# PyCharm
|
156 |
-
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
-
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
-
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
-
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
-
#.idea
|
161 |
-
*.pt
|
162 |
-
*.pth
|
163 |
-
*.ckpt
|
164 |
-
*.bin
|
165 |
-
*.safetensors
|
166 |
-
|
167 |
-
# Editor setting metadata
|
168 |
-
.idea/
|
169 |
-
.vscode/
|
170 |
-
detected_maps/
|
171 |
-
annotator/downloads/
|
172 |
-
|
173 |
-
# test results and expectations
|
174 |
-
web_tests/results/
|
175 |
-
web_tests/expectations/
|
176 |
-
*_diff.png
|
177 |
-
|
178 |
-
# Presets
|
179 |
-
presets/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/LICENSE
DELETED
@@ -1,674 +0,0 @@
|
|
1 |
-
GNU GENERAL PUBLIC LICENSE
|
2 |
-
Version 3, 29 June 2007
|
3 |
-
|
4 |
-
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
-
Everyone is permitted to copy and distribute verbatim copies
|
6 |
-
of this license document, but changing it is not allowed.
|
7 |
-
|
8 |
-
Preamble
|
9 |
-
|
10 |
-
The GNU General Public License is a free, copyleft license for
|
11 |
-
software and other kinds of works.
|
12 |
-
|
13 |
-
The licenses for most software and other practical works are designed
|
14 |
-
to take away your freedom to share and change the works. By contrast,
|
15 |
-
the GNU General Public License is intended to guarantee your freedom to
|
16 |
-
share and change all versions of a program--to make sure it remains free
|
17 |
-
software for all its users. We, the Free Software Foundation, use the
|
18 |
-
GNU General Public License for most of our software; it applies also to
|
19 |
-
any other work released this way by its authors. You can apply it to
|
20 |
-
your programs, too.
|
21 |
-
|
22 |
-
When we speak of free software, we are referring to freedom, not
|
23 |
-
price. Our General Public Licenses are designed to make sure that you
|
24 |
-
have the freedom to distribute copies of free software (and charge for
|
25 |
-
them if you wish), that you receive source code or can get it if you
|
26 |
-
want it, that you can change the software or use pieces of it in new
|
27 |
-
free programs, and that you know you can do these things.
|
28 |
-
|
29 |
-
To protect your rights, we need to prevent others from denying you
|
30 |
-
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
-
certain responsibilities if you distribute copies of the software, or if
|
32 |
-
you modify it: responsibilities to respect the freedom of others.
|
33 |
-
|
34 |
-
For example, if you distribute copies of such a program, whether
|
35 |
-
gratis or for a fee, you must pass on to the recipients the same
|
36 |
-
freedoms that you received. You must make sure that they, too, receive
|
37 |
-
or can get the source code. And you must show them these terms so they
|
38 |
-
know their rights.
|
39 |
-
|
40 |
-
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
-
(1) assert copyright on the software, and (2) offer you this License
|
42 |
-
giving you legal permission to copy, distribute and/or modify it.
|
43 |
-
|
44 |
-
For the developers' and authors' protection, the GPL clearly explains
|
45 |
-
that there is no warranty for this free software. For both users' and
|
46 |
-
authors' sake, the GPL requires that modified versions be marked as
|
47 |
-
changed, so that their problems will not be attributed erroneously to
|
48 |
-
authors of previous versions.
|
49 |
-
|
50 |
-
Some devices are designed to deny users access to install or run
|
51 |
-
modified versions of the software inside them, although the manufacturer
|
52 |
-
can do so. This is fundamentally incompatible with the aim of
|
53 |
-
protecting users' freedom to change the software. The systematic
|
54 |
-
pattern of such abuse occurs in the area of products for individuals to
|
55 |
-
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
-
have designed this version of the GPL to prohibit the practice for those
|
57 |
-
products. If such problems arise substantially in other domains, we
|
58 |
-
stand ready to extend this provision to those domains in future versions
|
59 |
-
of the GPL, as needed to protect the freedom of users.
|
60 |
-
|
61 |
-
Finally, every program is threatened constantly by software patents.
|
62 |
-
States should not allow patents to restrict development and use of
|
63 |
-
software on general-purpose computers, but in those that do, we wish to
|
64 |
-
avoid the special danger that patents applied to a free program could
|
65 |
-
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
-
patents cannot be used to render the program non-free.
|
67 |
-
|
68 |
-
The precise terms and conditions for copying, distribution and
|
69 |
-
modification follow.
|
70 |
-
|
71 |
-
TERMS AND CONDITIONS
|
72 |
-
|
73 |
-
0. Definitions.
|
74 |
-
|
75 |
-
"This License" refers to version 3 of the GNU General Public License.
|
76 |
-
|
77 |
-
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
-
works, such as semiconductor masks.
|
79 |
-
|
80 |
-
"The Program" refers to any copyrightable work licensed under this
|
81 |
-
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
-
"recipients" may be individuals or organizations.
|
83 |
-
|
84 |
-
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
-
in a fashion requiring copyright permission, other than the making of an
|
86 |
-
exact copy. The resulting work is called a "modified version" of the
|
87 |
-
earlier work or a work "based on" the earlier work.
|
88 |
-
|
89 |
-
A "covered work" means either the unmodified Program or a work based
|
90 |
-
on the Program.
|
91 |
-
|
92 |
-
To "propagate" a work means to do anything with it that, without
|
93 |
-
permission, would make you directly or secondarily liable for
|
94 |
-
infringement under applicable copyright law, except executing it on a
|
95 |
-
computer or modifying a private copy. Propagation includes copying,
|
96 |
-
distribution (with or without modification), making available to the
|
97 |
-
public, and in some countries other activities as well.
|
98 |
-
|
99 |
-
To "convey" a work means any kind of propagation that enables other
|
100 |
-
parties to make or receive copies. Mere interaction with a user through
|
101 |
-
a computer network, with no transfer of a copy, is not conveying.
|
102 |
-
|
103 |
-
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
-
to the extent that it includes a convenient and prominently visible
|
105 |
-
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
-
tells the user that there is no warranty for the work (except to the
|
107 |
-
extent that warranties are provided), that licensees may convey the
|
108 |
-
work under this License, and how to view a copy of this License. If
|
109 |
-
the interface presents a list of user commands or options, such as a
|
110 |
-
menu, a prominent item in the list meets this criterion.
|
111 |
-
|
112 |
-
1. Source Code.
|
113 |
-
|
114 |
-
The "source code" for a work means the preferred form of the work
|
115 |
-
for making modifications to it. "Object code" means any non-source
|
116 |
-
form of a work.
|
117 |
-
|
118 |
-
A "Standard Interface" means an interface that either is an official
|
119 |
-
standard defined by a recognized standards body, or, in the case of
|
120 |
-
interfaces specified for a particular programming language, one that
|
121 |
-
is widely used among developers working in that language.
|
122 |
-
|
123 |
-
The "System Libraries" of an executable work include anything, other
|
124 |
-
than the work as a whole, that (a) is included in the normal form of
|
125 |
-
packaging a Major Component, but which is not part of that Major
|
126 |
-
Component, and (b) serves only to enable use of the work with that
|
127 |
-
Major Component, or to implement a Standard Interface for which an
|
128 |
-
implementation is available to the public in source code form. A
|
129 |
-
"Major Component", in this context, means a major essential component
|
130 |
-
(kernel, window system, and so on) of the specific operating system
|
131 |
-
(if any) on which the executable work runs, or a compiler used to
|
132 |
-
produce the work, or an object code interpreter used to run it.
|
133 |
-
|
134 |
-
The "Corresponding Source" for a work in object code form means all
|
135 |
-
the source code needed to generate, install, and (for an executable
|
136 |
-
work) run the object code and to modify the work, including scripts to
|
137 |
-
control those activities. However, it does not include the work's
|
138 |
-
System Libraries, or general-purpose tools or generally available free
|
139 |
-
programs which are used unmodified in performing those activities but
|
140 |
-
which are not part of the work. For example, Corresponding Source
|
141 |
-
includes interface definition files associated with source files for
|
142 |
-
the work, and the source code for shared libraries and dynamically
|
143 |
-
linked subprograms that the work is specifically designed to require,
|
144 |
-
such as by intimate data communication or control flow between those
|
145 |
-
subprograms and other parts of the work.
|
146 |
-
|
147 |
-
The Corresponding Source need not include anything that users
|
148 |
-
can regenerate automatically from other parts of the Corresponding
|
149 |
-
Source.
|
150 |
-
|
151 |
-
The Corresponding Source for a work in source code form is that
|
152 |
-
same work.
|
153 |
-
|
154 |
-
2. Basic Permissions.
|
155 |
-
|
156 |
-
All rights granted under this License are granted for the term of
|
157 |
-
copyright on the Program, and are irrevocable provided the stated
|
158 |
-
conditions are met. This License explicitly affirms your unlimited
|
159 |
-
permission to run the unmodified Program. The output from running a
|
160 |
-
covered work is covered by this License only if the output, given its
|
161 |
-
content, constitutes a covered work. This License acknowledges your
|
162 |
-
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
-
|
164 |
-
You may make, run and propagate covered works that you do not
|
165 |
-
convey, without conditions so long as your license otherwise remains
|
166 |
-
in force. You may convey covered works to others for the sole purpose
|
167 |
-
of having them make modifications exclusively for you, or provide you
|
168 |
-
with facilities for running those works, provided that you comply with
|
169 |
-
the terms of this License in conveying all material for which you do
|
170 |
-
not control copyright. Those thus making or running the covered works
|
171 |
-
for you must do so exclusively on your behalf, under your direction
|
172 |
-
and control, on terms that prohibit them from making any copies of
|
173 |
-
your copyrighted material outside their relationship with you.
|
174 |
-
|
175 |
-
Conveying under any other circumstances is permitted solely under
|
176 |
-
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
-
makes it unnecessary.
|
178 |
-
|
179 |
-
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
-
|
181 |
-
No covered work shall be deemed part of an effective technological
|
182 |
-
measure under any applicable law fulfilling obligations under article
|
183 |
-
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
-
similar laws prohibiting or restricting circumvention of such
|
185 |
-
measures.
|
186 |
-
|
187 |
-
When you convey a covered work, you waive any legal power to forbid
|
188 |
-
circumvention of technological measures to the extent such circumvention
|
189 |
-
is effected by exercising rights under this License with respect to
|
190 |
-
the covered work, and you disclaim any intention to limit operation or
|
191 |
-
modification of the work as a means of enforcing, against the work's
|
192 |
-
users, your or third parties' legal rights to forbid circumvention of
|
193 |
-
technological measures.
|
194 |
-
|
195 |
-
4. Conveying Verbatim Copies.
|
196 |
-
|
197 |
-
You may convey verbatim copies of the Program's source code as you
|
198 |
-
receive it, in any medium, provided that you conspicuously and
|
199 |
-
appropriately publish on each copy an appropriate copyright notice;
|
200 |
-
keep intact all notices stating that this License and any
|
201 |
-
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
-
keep intact all notices of the absence of any warranty; and give all
|
203 |
-
recipients a copy of this License along with the Program.
|
204 |
-
|
205 |
-
You may charge any price or no price for each copy that you convey,
|
206 |
-
and you may offer support or warranty protection for a fee.
|
207 |
-
|
208 |
-
5. Conveying Modified Source Versions.
|
209 |
-
|
210 |
-
You may convey a work based on the Program, or the modifications to
|
211 |
-
produce it from the Program, in the form of source code under the
|
212 |
-
terms of section 4, provided that you also meet all of these conditions:
|
213 |
-
|
214 |
-
a) The work must carry prominent notices stating that you modified
|
215 |
-
it, and giving a relevant date.
|
216 |
-
|
217 |
-
b) The work must carry prominent notices stating that it is
|
218 |
-
released under this License and any conditions added under section
|
219 |
-
7. This requirement modifies the requirement in section 4 to
|
220 |
-
"keep intact all notices".
|
221 |
-
|
222 |
-
c) You must license the entire work, as a whole, under this
|
223 |
-
License to anyone who comes into possession of a copy. This
|
224 |
-
License will therefore apply, along with any applicable section 7
|
225 |
-
additional terms, to the whole of the work, and all its parts,
|
226 |
-
regardless of how they are packaged. This License gives no
|
227 |
-
permission to license the work in any other way, but it does not
|
228 |
-
invalidate such permission if you have separately received it.
|
229 |
-
|
230 |
-
d) If the work has interactive user interfaces, each must display
|
231 |
-
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
-
interfaces that do not display Appropriate Legal Notices, your
|
233 |
-
work need not make them do so.
|
234 |
-
|
235 |
-
A compilation of a covered work with other separate and independent
|
236 |
-
works, which are not by their nature extensions of the covered work,
|
237 |
-
and which are not combined with it such as to form a larger program,
|
238 |
-
in or on a volume of a storage or distribution medium, is called an
|
239 |
-
"aggregate" if the compilation and its resulting copyright are not
|
240 |
-
used to limit the access or legal rights of the compilation's users
|
241 |
-
beyond what the individual works permit. Inclusion of a covered work
|
242 |
-
in an aggregate does not cause this License to apply to the other
|
243 |
-
parts of the aggregate.
|
244 |
-
|
245 |
-
6. Conveying Non-Source Forms.
|
246 |
-
|
247 |
-
You may convey a covered work in object code form under the terms
|
248 |
-
of sections 4 and 5, provided that you also convey the
|
249 |
-
machine-readable Corresponding Source under the terms of this License,
|
250 |
-
in one of these ways:
|
251 |
-
|
252 |
-
a) Convey the object code in, or embodied in, a physical product
|
253 |
-
(including a physical distribution medium), accompanied by the
|
254 |
-
Corresponding Source fixed on a durable physical medium
|
255 |
-
customarily used for software interchange.
|
256 |
-
|
257 |
-
b) Convey the object code in, or embodied in, a physical product
|
258 |
-
(including a physical distribution medium), accompanied by a
|
259 |
-
written offer, valid for at least three years and valid for as
|
260 |
-
long as you offer spare parts or customer support for that product
|
261 |
-
model, to give anyone who possesses the object code either (1) a
|
262 |
-
copy of the Corresponding Source for all the software in the
|
263 |
-
product that is covered by this License, on a durable physical
|
264 |
-
medium customarily used for software interchange, for a price no
|
265 |
-
more than your reasonable cost of physically performing this
|
266 |
-
conveying of source, or (2) access to copy the
|
267 |
-
Corresponding Source from a network server at no charge.
|
268 |
-
|
269 |
-
c) Convey individual copies of the object code with a copy of the
|
270 |
-
written offer to provide the Corresponding Source. This
|
271 |
-
alternative is allowed only occasionally and noncommercially, and
|
272 |
-
only if you received the object code with such an offer, in accord
|
273 |
-
with subsection 6b.
|
274 |
-
|
275 |
-
d) Convey the object code by offering access from a designated
|
276 |
-
place (gratis or for a charge), and offer equivalent access to the
|
277 |
-
Corresponding Source in the same way through the same place at no
|
278 |
-
further charge. You need not require recipients to copy the
|
279 |
-
Corresponding Source along with the object code. If the place to
|
280 |
-
copy the object code is a network server, the Corresponding Source
|
281 |
-
may be on a different server (operated by you or a third party)
|
282 |
-
that supports equivalent copying facilities, provided you maintain
|
283 |
-
clear directions next to the object code saying where to find the
|
284 |
-
Corresponding Source. Regardless of what server hosts the
|
285 |
-
Corresponding Source, you remain obligated to ensure that it is
|
286 |
-
available for as long as needed to satisfy these requirements.
|
287 |
-
|
288 |
-
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
-
you inform other peers where the object code and Corresponding
|
290 |
-
Source of the work are being offered to the general public at no
|
291 |
-
charge under subsection 6d.
|
292 |
-
|
293 |
-
A separable portion of the object code, whose source code is excluded
|
294 |
-
from the Corresponding Source as a System Library, need not be
|
295 |
-
included in conveying the object code work.
|
296 |
-
|
297 |
-
A "User Product" is either (1) a "consumer product", which means any
|
298 |
-
tangible personal property which is normally used for personal, family,
|
299 |
-
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
-
into a dwelling. In determining whether a product is a consumer product,
|
301 |
-
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
-
product received by a particular user, "normally used" refers to a
|
303 |
-
typical or common use of that class of product, regardless of the status
|
304 |
-
of the particular user or of the way in which the particular user
|
305 |
-
actually uses, or expects or is expected to use, the product. A product
|
306 |
-
is a consumer product regardless of whether the product has substantial
|
307 |
-
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
-
the only significant mode of use of the product.
|
309 |
-
|
310 |
-
"Installation Information" for a User Product means any methods,
|
311 |
-
procedures, authorization keys, or other information required to install
|
312 |
-
and execute modified versions of a covered work in that User Product from
|
313 |
-
a modified version of its Corresponding Source. The information must
|
314 |
-
suffice to ensure that the continued functioning of the modified object
|
315 |
-
code is in no case prevented or interfered with solely because
|
316 |
-
modification has been made.
|
317 |
-
|
318 |
-
If you convey an object code work under this section in, or with, or
|
319 |
-
specifically for use in, a User Product, and the conveying occurs as
|
320 |
-
part of a transaction in which the right of possession and use of the
|
321 |
-
User Product is transferred to the recipient in perpetuity or for a
|
322 |
-
fixed term (regardless of how the transaction is characterized), the
|
323 |
-
Corresponding Source conveyed under this section must be accompanied
|
324 |
-
by the Installation Information. But this requirement does not apply
|
325 |
-
if neither you nor any third party retains the ability to install
|
326 |
-
modified object code on the User Product (for example, the work has
|
327 |
-
been installed in ROM).
|
328 |
-
|
329 |
-
The requirement to provide Installation Information does not include a
|
330 |
-
requirement to continue to provide support service, warranty, or updates
|
331 |
-
for a work that has been modified or installed by the recipient, or for
|
332 |
-
the User Product in which it has been modified or installed. Access to a
|
333 |
-
network may be denied when the modification itself materially and
|
334 |
-
adversely affects the operation of the network or violates the rules and
|
335 |
-
protocols for communication across the network.
|
336 |
-
|
337 |
-
Corresponding Source conveyed, and Installation Information provided,
|
338 |
-
in accord with this section must be in a format that is publicly
|
339 |
-
documented (and with an implementation available to the public in
|
340 |
-
source code form), and must require no special password or key for
|
341 |
-
unpacking, reading or copying.
|
342 |
-
|
343 |
-
7. Additional Terms.
|
344 |
-
|
345 |
-
"Additional permissions" are terms that supplement the terms of this
|
346 |
-
License by making exceptions from one or more of its conditions.
|
347 |
-
Additional permissions that are applicable to the entire Program shall
|
348 |
-
be treated as though they were included in this License, to the extent
|
349 |
-
that they are valid under applicable law. If additional permissions
|
350 |
-
apply only to part of the Program, that part may be used separately
|
351 |
-
under those permissions, but the entire Program remains governed by
|
352 |
-
this License without regard to the additional permissions.
|
353 |
-
|
354 |
-
When you convey a copy of a covered work, you may at your option
|
355 |
-
remove any additional permissions from that copy, or from any part of
|
356 |
-
it. (Additional permissions may be written to require their own
|
357 |
-
removal in certain cases when you modify the work.) You may place
|
358 |
-
additional permissions on material, added by you to a covered work,
|
359 |
-
for which you have or can give appropriate copyright permission.
|
360 |
-
|
361 |
-
Notwithstanding any other provision of this License, for material you
|
362 |
-
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
-
that material) supplement the terms of this License with terms:
|
364 |
-
|
365 |
-
a) Disclaiming warranty or limiting liability differently from the
|
366 |
-
terms of sections 15 and 16 of this License; or
|
367 |
-
|
368 |
-
b) Requiring preservation of specified reasonable legal notices or
|
369 |
-
author attributions in that material or in the Appropriate Legal
|
370 |
-
Notices displayed by works containing it; or
|
371 |
-
|
372 |
-
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
-
requiring that modified versions of such material be marked in
|
374 |
-
reasonable ways as different from the original version; or
|
375 |
-
|
376 |
-
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
-
authors of the material; or
|
378 |
-
|
379 |
-
e) Declining to grant rights under trademark law for use of some
|
380 |
-
trade names, trademarks, or service marks; or
|
381 |
-
|
382 |
-
f) Requiring indemnification of licensors and authors of that
|
383 |
-
material by anyone who conveys the material (or modified versions of
|
384 |
-
it) with contractual assumptions of liability to the recipient, for
|
385 |
-
any liability that these contractual assumptions directly impose on
|
386 |
-
those licensors and authors.
|
387 |
-
|
388 |
-
All other non-permissive additional terms are considered "further
|
389 |
-
restrictions" within the meaning of section 10. If the Program as you
|
390 |
-
received it, or any part of it, contains a notice stating that it is
|
391 |
-
governed by this License along with a term that is a further
|
392 |
-
restriction, you may remove that term. If a license document contains
|
393 |
-
a further restriction but permits relicensing or conveying under this
|
394 |
-
License, you may add to a covered work material governed by the terms
|
395 |
-
of that license document, provided that the further restriction does
|
396 |
-
not survive such relicensing or conveying.
|
397 |
-
|
398 |
-
If you add terms to a covered work in accord with this section, you
|
399 |
-
must place, in the relevant source files, a statement of the
|
400 |
-
additional terms that apply to those files, or a notice indicating
|
401 |
-
where to find the applicable terms.
|
402 |
-
|
403 |
-
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
-
form of a separately written license, or stated as exceptions;
|
405 |
-
the above requirements apply either way.
|
406 |
-
|
407 |
-
8. Termination.
|
408 |
-
|
409 |
-
You may not propagate or modify a covered work except as expressly
|
410 |
-
provided under this License. Any attempt otherwise to propagate or
|
411 |
-
modify it is void, and will automatically terminate your rights under
|
412 |
-
this License (including any patent licenses granted under the third
|
413 |
-
paragraph of section 11).
|
414 |
-
|
415 |
-
However, if you cease all violation of this License, then your
|
416 |
-
license from a particular copyright holder is reinstated (a)
|
417 |
-
provisionally, unless and until the copyright holder explicitly and
|
418 |
-
finally terminates your license, and (b) permanently, if the copyright
|
419 |
-
holder fails to notify you of the violation by some reasonable means
|
420 |
-
prior to 60 days after the cessation.
|
421 |
-
|
422 |
-
Moreover, your license from a particular copyright holder is
|
423 |
-
reinstated permanently if the copyright holder notifies you of the
|
424 |
-
violation by some reasonable means, this is the first time you have
|
425 |
-
received notice of violation of this License (for any work) from that
|
426 |
-
copyright holder, and you cure the violation prior to 30 days after
|
427 |
-
your receipt of the notice.
|
428 |
-
|
429 |
-
Termination of your rights under this section does not terminate the
|
430 |
-
licenses of parties who have received copies or rights from you under
|
431 |
-
this License. If your rights have been terminated and not permanently
|
432 |
-
reinstated, you do not qualify to receive new licenses for the same
|
433 |
-
material under section 10.
|
434 |
-
|
435 |
-
9. Acceptance Not Required for Having Copies.
|
436 |
-
|
437 |
-
You are not required to accept this License in order to receive or
|
438 |
-
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
-
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
-
to receive a copy likewise does not require acceptance. However,
|
441 |
-
nothing other than this License grants you permission to propagate or
|
442 |
-
modify any covered work. These actions infringe copyright if you do
|
443 |
-
not accept this License. Therefore, by modifying or propagating a
|
444 |
-
covered work, you indicate your acceptance of this License to do so.
|
445 |
-
|
446 |
-
10. Automatic Licensing of Downstream Recipients.
|
447 |
-
|
448 |
-
Each time you convey a covered work, the recipient automatically
|
449 |
-
receives a license from the original licensors, to run, modify and
|
450 |
-
propagate that work, subject to this License. You are not responsible
|
451 |
-
for enforcing compliance by third parties with this License.
|
452 |
-
|
453 |
-
An "entity transaction" is a transaction transferring control of an
|
454 |
-
organization, or substantially all assets of one, or subdividing an
|
455 |
-
organization, or merging organizations. If propagation of a covered
|
456 |
-
work results from an entity transaction, each party to that
|
457 |
-
transaction who receives a copy of the work also receives whatever
|
458 |
-
licenses to the work the party's predecessor in interest had or could
|
459 |
-
give under the previous paragraph, plus a right to possession of the
|
460 |
-
Corresponding Source of the work from the predecessor in interest, if
|
461 |
-
the predecessor has it or can get it with reasonable efforts.
|
462 |
-
|
463 |
-
You may not impose any further restrictions on the exercise of the
|
464 |
-
rights granted or affirmed under this License. For example, you may
|
465 |
-
not impose a license fee, royalty, or other charge for exercise of
|
466 |
-
rights granted under this License, and you may not initiate litigation
|
467 |
-
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
-
any patent claim is infringed by making, using, selling, offering for
|
469 |
-
sale, or importing the Program or any portion of it.
|
470 |
-
|
471 |
-
11. Patents.
|
472 |
-
|
473 |
-
A "contributor" is a copyright holder who authorizes use under this
|
474 |
-
License of the Program or a work on which the Program is based. The
|
475 |
-
work thus licensed is called the contributor's "contributor version".
|
476 |
-
|
477 |
-
A contributor's "essential patent claims" are all patent claims
|
478 |
-
owned or controlled by the contributor, whether already acquired or
|
479 |
-
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
-
by this License, of making, using, or selling its contributor version,
|
481 |
-
but do not include claims that would be infringed only as a
|
482 |
-
consequence of further modification of the contributor version. For
|
483 |
-
purposes of this definition, "control" includes the right to grant
|
484 |
-
patent sublicenses in a manner consistent with the requirements of
|
485 |
-
this License.
|
486 |
-
|
487 |
-
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
-
patent license under the contributor's essential patent claims, to
|
489 |
-
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
-
propagate the contents of its contributor version.
|
491 |
-
|
492 |
-
In the following three paragraphs, a "patent license" is any express
|
493 |
-
agreement or commitment, however denominated, not to enforce a patent
|
494 |
-
(such as an express permission to practice a patent or covenant not to
|
495 |
-
sue for patent infringement). To "grant" such a patent license to a
|
496 |
-
party means to make such an agreement or commitment not to enforce a
|
497 |
-
patent against the party.
|
498 |
-
|
499 |
-
If you convey a covered work, knowingly relying on a patent license,
|
500 |
-
and the Corresponding Source of the work is not available for anyone
|
501 |
-
to copy, free of charge and under the terms of this License, through a
|
502 |
-
publicly available network server or other readily accessible means,
|
503 |
-
then you must either (1) cause the Corresponding Source to be so
|
504 |
-
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
-
patent license for this particular work, or (3) arrange, in a manner
|
506 |
-
consistent with the requirements of this License, to extend the patent
|
507 |
-
license to downstream recipients. "Knowingly relying" means you have
|
508 |
-
actual knowledge that, but for the patent license, your conveying the
|
509 |
-
covered work in a country, or your recipient's use of the covered work
|
510 |
-
in a country, would infringe one or more identifiable patents in that
|
511 |
-
country that you have reason to believe are valid.
|
512 |
-
|
513 |
-
If, pursuant to or in connection with a single transaction or
|
514 |
-
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
-
covered work, and grant a patent license to some of the parties
|
516 |
-
receiving the covered work authorizing them to use, propagate, modify
|
517 |
-
or convey a specific copy of the covered work, then the patent license
|
518 |
-
you grant is automatically extended to all recipients of the covered
|
519 |
-
work and works based on it.
|
520 |
-
|
521 |
-
A patent license is "discriminatory" if it does not include within
|
522 |
-
the scope of its coverage, prohibits the exercise of, or is
|
523 |
-
conditioned on the non-exercise of one or more of the rights that are
|
524 |
-
specifically granted under this License. You may not convey a covered
|
525 |
-
work if you are a party to an arrangement with a third party that is
|
526 |
-
in the business of distributing software, under which you make payment
|
527 |
-
to the third party based on the extent of your activity of conveying
|
528 |
-
the work, and under which the third party grants, to any of the
|
529 |
-
parties who would receive the covered work from you, a discriminatory
|
530 |
-
patent license (a) in connection with copies of the covered work
|
531 |
-
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
-
for and in connection with specific products or compilations that
|
533 |
-
contain the covered work, unless you entered into that arrangement,
|
534 |
-
or that patent license was granted, prior to 28 March 2007.
|
535 |
-
|
536 |
-
Nothing in this License shall be construed as excluding or limiting
|
537 |
-
any implied license or other defenses to infringement that may
|
538 |
-
otherwise be available to you under applicable patent law.
|
539 |
-
|
540 |
-
12. No Surrender of Others' Freedom.
|
541 |
-
|
542 |
-
If conditions are imposed on you (whether by court order, agreement or
|
543 |
-
otherwise) that contradict the conditions of this License, they do not
|
544 |
-
excuse you from the conditions of this License. If you cannot convey a
|
545 |
-
covered work so as to satisfy simultaneously your obligations under this
|
546 |
-
License and any other pertinent obligations, then as a consequence you may
|
547 |
-
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
-
to collect a royalty for further conveying from those to whom you convey
|
549 |
-
the Program, the only way you could satisfy both those terms and this
|
550 |
-
License would be to refrain entirely from conveying the Program.
|
551 |
-
|
552 |
-
13. Use with the GNU Affero General Public License.
|
553 |
-
|
554 |
-
Notwithstanding any other provision of this License, you have
|
555 |
-
permission to link or combine any covered work with a work licensed
|
556 |
-
under version 3 of the GNU Affero General Public License into a single
|
557 |
-
combined work, and to convey the resulting work. The terms of this
|
558 |
-
License will continue to apply to the part which is the covered work,
|
559 |
-
but the special requirements of the GNU Affero General Public License,
|
560 |
-
section 13, concerning interaction through a network will apply to the
|
561 |
-
combination as such.
|
562 |
-
|
563 |
-
14. Revised Versions of this License.
|
564 |
-
|
565 |
-
The Free Software Foundation may publish revised and/or new versions of
|
566 |
-
the GNU General Public License from time to time. Such new versions will
|
567 |
-
be similar in spirit to the present version, but may differ in detail to
|
568 |
-
address new problems or concerns.
|
569 |
-
|
570 |
-
Each version is given a distinguishing version number. If the
|
571 |
-
Program specifies that a certain numbered version of the GNU General
|
572 |
-
Public License "or any later version" applies to it, you have the
|
573 |
-
option of following the terms and conditions either of that numbered
|
574 |
-
version or of any later version published by the Free Software
|
575 |
-
Foundation. If the Program does not specify a version number of the
|
576 |
-
GNU General Public License, you may choose any version ever published
|
577 |
-
by the Free Software Foundation.
|
578 |
-
|
579 |
-
If the Program specifies that a proxy can decide which future
|
580 |
-
versions of the GNU General Public License can be used, that proxy's
|
581 |
-
public statement of acceptance of a version permanently authorizes you
|
582 |
-
to choose that version for the Program.
|
583 |
-
|
584 |
-
Later license versions may give you additional or different
|
585 |
-
permissions. However, no additional obligations are imposed on any
|
586 |
-
author or copyright holder as a result of your choosing to follow a
|
587 |
-
later version.
|
588 |
-
|
589 |
-
15. Disclaimer of Warranty.
|
590 |
-
|
591 |
-
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
-
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
-
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
-
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
-
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
-
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
-
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
-
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
-
|
600 |
-
16. Limitation of Liability.
|
601 |
-
|
602 |
-
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
-
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
-
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
-
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
-
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
-
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
-
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
-
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
-
SUCH DAMAGES.
|
611 |
-
|
612 |
-
17. Interpretation of Sections 15 and 16.
|
613 |
-
|
614 |
-
If the disclaimer of warranty and limitation of liability provided
|
615 |
-
above cannot be given local legal effect according to their terms,
|
616 |
-
reviewing courts shall apply local law that most closely approximates
|
617 |
-
an absolute waiver of all civil liability in connection with the
|
618 |
-
Program, unless a warranty or assumption of liability accompanies a
|
619 |
-
copy of the Program in return for a fee.
|
620 |
-
|
621 |
-
END OF TERMS AND CONDITIONS
|
622 |
-
|
623 |
-
How to Apply These Terms to Your New Programs
|
624 |
-
|
625 |
-
If you develop a new program, and you want it to be of the greatest
|
626 |
-
possible use to the public, the best way to achieve this is to make it
|
627 |
-
free software which everyone can redistribute and change under these terms.
|
628 |
-
|
629 |
-
To do so, attach the following notices to the program. It is safest
|
630 |
-
to attach them to the start of each source file to most effectively
|
631 |
-
state the exclusion of warranty; and each file should have at least
|
632 |
-
the "copyright" line and a pointer to where the full notice is found.
|
633 |
-
|
634 |
-
<one line to give the program's name and a brief idea of what it does.>
|
635 |
-
Copyright (C) <year> <name of author>
|
636 |
-
|
637 |
-
This program is free software: you can redistribute it and/or modify
|
638 |
-
it under the terms of the GNU General Public License as published by
|
639 |
-
the Free Software Foundation, either version 3 of the License, or
|
640 |
-
(at your option) any later version.
|
641 |
-
|
642 |
-
This program is distributed in the hope that it will be useful,
|
643 |
-
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
-
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
-
GNU General Public License for more details.
|
646 |
-
|
647 |
-
You should have received a copy of the GNU General Public License
|
648 |
-
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
-
|
650 |
-
Also add information on how to contact you by electronic and paper mail.
|
651 |
-
|
652 |
-
If the program does terminal interaction, make it output a short
|
653 |
-
notice like this when it starts in an interactive mode:
|
654 |
-
|
655 |
-
<program> Copyright (C) <year> <name of author>
|
656 |
-
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
-
This is free software, and you are welcome to redistribute it
|
658 |
-
under certain conditions; type `show c' for details.
|
659 |
-
|
660 |
-
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
-
parts of the General Public License. Of course, your program's commands
|
662 |
-
might be different; for a GUI interface, you would use an "about box".
|
663 |
-
|
664 |
-
You should also get your employer (if you work as a programmer) or school,
|
665 |
-
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
-
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
-
<https://www.gnu.org/licenses/>.
|
668 |
-
|
669 |
-
The GNU General Public License does not permit incorporating your program
|
670 |
-
into proprietary programs. If your program is a subroutine library, you
|
671 |
-
may consider it more useful to permit linking proprietary applications with
|
672 |
-
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
-
Public License instead of this License. But first, please read
|
674 |
-
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/README.md
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
# ControlNet for Stable Diffusion WebUI
|
2 |
-
|
3 |
-
The WebUI extension for ControlNet and other injection-based SD controls.
|
4 |
-
|
5 |
-
![image](https://github.com/Mikubill/sd-webui-controlnet/assets/19834515/00787fd1-1bc5-4b90-9a23-9683f8458b85)
|
6 |
-
|
7 |
-
This extension is for AUTOMATIC1111's [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui), allows the Web UI to add [ControlNet](https://github.com/lllyasviel/ControlNet) to the original Stable Diffusion model to generate images. The addition is on-the-fly, the merging is not required.
|
8 |
-
|
9 |
-
# Installation
|
10 |
-
|
11 |
-
1. Open "Extensions" tab.
|
12 |
-
2. Open "Install from URL" tab in the tab.
|
13 |
-
3. Enter `https://github.com/Mikubill/sd-webui-controlnet.git` to "URL for extension's git repository".
|
14 |
-
4. Press "Install" button.
|
15 |
-
5. Wait for 5 seconds, and you will see the message "Installed into stable-diffusion-webui\extensions\sd-webui-controlnet. Use Installed tab to restart".
|
16 |
-
6. Go to "Installed" tab, click "Check for updates", and then click "Apply and restart UI". (The next time you can also use these buttons to update ControlNet.)
|
17 |
-
7. Completely restart A1111 webui including your terminal. (If you do not know what is a "terminal", you can reboot your computer to achieve the same effect.)
|
18 |
-
8. Download models (see below).
|
19 |
-
9. After you put models in the correct folder, you may need to refresh to see the models. The refresh button is right to your "Model" dropdown.
|
20 |
-
|
21 |
-
# Download Models
|
22 |
-
|
23 |
-
Right now all the 14 models of ControlNet 1.1 are in the beta test.
|
24 |
-
|
25 |
-
Download the models from ControlNet 1.1: https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main
|
26 |
-
|
27 |
-
You need to download model files ending with ".pth" .
|
28 |
-
|
29 |
-
Put models in your "stable-diffusion-webui\extensions\sd-webui-controlnet\models". You only need to download "pth" files.
|
30 |
-
|
31 |
-
Do not right-click the filenames in HuggingFace website to download. Some users right-clicked those HuggingFace HTML websites and saved those HTML pages as PTH/YAML files. They are not downloading correct files. Instead, please click the small download arrow “↓” icon in HuggingFace to download.
|
32 |
-
|
33 |
-
# Download Models for SDXL
|
34 |
-
|
35 |
-
See instructions [here](https://github.com/Mikubill/sd-webui-controlnet/discussions/2039).
|
36 |
-
|
37 |
-
# Features in ControlNet 1.1
|
38 |
-
|
39 |
-
### Perfect Support for All ControlNet 1.0/1.1 and T2I Adapter Models.
|
40 |
-
|
41 |
-
Now we have perfect support all available models and preprocessors, including perfect support for T2I style adapter and ControlNet 1.1 Shuffle. (Make sure that your YAML file names and model file names are same, see also YAML files in "stable-diffusion-webui\extensions\sd-webui-controlnet\models".)
|
42 |
-
|
43 |
-
### Perfect Support for A1111 High-Res. Fix
|
44 |
-
|
45 |
-
Now if you turn on High-Res Fix in A1111, each controlnet will output two different control images: a small one and a large one. The small one is for your basic generating, and the big one is for your High-Res Fix generating. The two control images are computed by a smart algorithm called "super high-quality control image resampling". This is turned on by default, and you do not need to change any setting.
|
46 |
-
|
47 |
-
### Perfect Support for All A1111 Img2Img or Inpaint Settings and All Mask Types
|
48 |
-
|
49 |
-
Now ControlNet is extensively tested with A1111's different types of masks, including "Inpaint masked"/"Inpaint not masked", and "Whole picture"/"Only masked", and "Only masked padding"&"Mask blur". The resizing perfectly matches A1111's "Just resize"/"Crop and resize"/"Resize and fill". This means you can use ControlNet in nearly everywhere in your A1111 UI without difficulty!
|
50 |
-
|
51 |
-
### The New "Pixel-Perfect" Mode
|
52 |
-
|
53 |
-
Now if you turn on pixel-perfect mode, you do not need to set preprocessor (annotator) resolutions manually. The ControlNet will automatically compute the best annotator resolution for you so that each pixel perfectly matches Stable Diffusion.
|
54 |
-
|
55 |
-
### User-Friendly GUI and Preprocessor Preview
|
56 |
-
|
57 |
-
We reorganized some previously confusing UI like "canvas width/height for new canvas" and it is in the 📝 button now. Now the preview GUI is controlled by the "allow preview" option and the trigger button 💥. The preview image size is better than before, and you do not need to scroll up and down - your a1111 GUI will not be messed up anymore!
|
58 |
-
|
59 |
-
### Support for Almost All Upscaling Scripts
|
60 |
-
|
61 |
-
Now ControlNet 1.1 can support almost all Upscaling/Tile methods. ControlNet 1.1 support the script "Ultimate SD upscale" and almost all other tile-based extensions. Please do not confuse ["Ultimate SD upscale"](https://github.com/Coyote-A/ultimate-upscale-for-automatic1111) with "SD upscale" - they are different scripts. Note that the most recommended upscaling method is ["Tiled VAE/Diffusion"](https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111) but we test as many methods/extensions as possible. Note that "SD upscale" is supported since 1.1.117, and if you use it, you need to leave all ControlNet images as blank (We do not recommend "SD upscale" since it is somewhat buggy and cannot be maintained - use the "Ultimate SD upscale" instead).
|
62 |
-
|
63 |
-
### More Control Modes (previously called Guess Mode)
|
64 |
-
|
65 |
-
We have fixed many bugs in previous 1.0’s Guess Mode and now it is called Control Mode
|
66 |
-
|
67 |
-
![image](https://user-images.githubusercontent.com/19834515/236641759-6c44ddf6-c7ad-4bda-92be-e90a52911d75.png)
|
68 |
-
|
69 |
-
Now you can control which aspect is more important (your prompt or your ControlNet):
|
70 |
-
|
71 |
-
* "Balanced": ControlNet on both sides of CFG scale, same as turning off "Guess Mode" in ControlNet 1.0
|
72 |
-
|
73 |
-
* "My prompt is more important": ControlNet on both sides of CFG scale, with progressively reduced SD U-Net injections (layer_weight*=0.825**I, where 0<=I <13, and the 13 means ControlNet injected SD 13 times). In this way, you can make sure that your prompts are perfectly displayed in your generated images.
|
74 |
-
|
75 |
-
* "ControlNet is more important": ControlNet only on the Conditional Side of CFG scale (the cond in A1111's batch-cond-uncond). This means the ControlNet will be X times stronger if your cfg-scale is X. For example, if your cfg-scale is 7, then ControlNet is 7 times stronger. Note that here the X times stronger is different from "Control Weights" since your weights are not modified. This "stronger" effect usually has less artifact and give ControlNet more room to guess what is missing from your prompts (and in the previous 1.0, it is called "Guess Mode").
|
76 |
-
|
77 |
-
<table width="100%">
|
78 |
-
<tr>
|
79 |
-
<td width="25%" style="text-align: center">Input (depth+canny+hed)</td>
|
80 |
-
<td width="25%" style="text-align: center">"Balanced"</td>
|
81 |
-
<td width="25%" style="text-align: center">"My prompt is more important"</td>
|
82 |
-
<td width="25%" style="text-align: center">"ControlNet is more important"</td>
|
83 |
-
</tr>
|
84 |
-
<tr>
|
85 |
-
<td width="25%" style="text-align: center"><img src="samples/cm1.png"></td>
|
86 |
-
<td width="25%" style="text-align: center"><img src="samples/cm2.png"></td>
|
87 |
-
<td width="25%" style="text-align: center"><img src="samples/cm3.png"></td>
|
88 |
-
<td width="25%" style="text-align: center"><img src="samples/cm4.png"></td>
|
89 |
-
</tr>
|
90 |
-
</table>
|
91 |
-
|
92 |
-
### Reference-Only Control
|
93 |
-
|
94 |
-
Now we have a `reference-only` preprocessor that does not require any control models. It can guide the diffusion directly using images as references.
|
95 |
-
|
96 |
-
(Prompt "a dog running on grassland, best quality, ...")
|
97 |
-
|
98 |
-
![image](samples/ref.png)
|
99 |
-
|
100 |
-
This method is similar to inpaint-based reference but it does not make your image disordered.
|
101 |
-
|
102 |
-
Many professional A1111 users know a trick to diffuse image with references by inpaint. For example, if you have a 512x512 image of a dog, and want to generate another 512x512 image with the same dog, some users will connect the 512x512 dog image and a 512x512 blank image into a 1024x512 image, send to inpaint, and mask out the blank 512x512 part to diffuse a dog with similar appearance. However, that method is usually not very satisfying since images are connected and many distortions will appear.
|
103 |
-
|
104 |
-
This `reference-only` ControlNet can directly link the attention layers of your SD to any independent images, so that your SD will read arbitary images for reference. You need at least ControlNet 1.1.153 to use it.
|
105 |
-
|
106 |
-
To use, just select `reference-only` as preprocessor and put an image. Your SD will just use the image as reference.
|
107 |
-
|
108 |
-
*Note that this method is as "non-opinioned" as possible. It only contains very basic connection codes, without any personal preferences, to connect the attention layers with your reference images. However, even if we tried best to not include any opinioned codes, we still need to write some subjective implementations to deal with weighting, cfg-scale, etc - tech report is on the way.*
|
109 |
-
|
110 |
-
More examples [here](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236).
|
111 |
-
|
112 |
-
# Technical Documents
|
113 |
-
|
114 |
-
See also the documents of ControlNet 1.1:
|
115 |
-
|
116 |
-
https://github.com/lllyasviel/ControlNet-v1-1-nightly#model-specification
|
117 |
-
|
118 |
-
# Default Setting
|
119 |
-
|
120 |
-
This is my setting. If you run into any problem, you can use this setting as a sanity check
|
121 |
-
|
122 |
-
![image](https://user-images.githubusercontent.com/19834515/235620638-17937171-8ac1-45bc-a3cb-3aebf605b4ef.png)
|
123 |
-
|
124 |
-
# Use Previous Models
|
125 |
-
|
126 |
-
### Use ControlNet 1.0 Models
|
127 |
-
|
128 |
-
https://huggingface.co/lllyasviel/ControlNet/tree/main/models
|
129 |
-
|
130 |
-
You can still use all previous models in the previous ControlNet 1.0. Now, the previous "depth" is now called "depth_midas", the previous "normal" is called "normal_midas", the previous "hed" is called "softedge_hed". And starting from 1.1, all line maps, edge maps, lineart maps, boundary maps will have black background and white lines.
|
131 |
-
|
132 |
-
### Use T2I-Adapter Models
|
133 |
-
|
134 |
-
(From TencentARC/T2I-Adapter)
|
135 |
-
|
136 |
-
To use T2I-Adapter models:
|
137 |
-
|
138 |
-
1. Download files from https://huggingface.co/TencentARC/T2I-Adapter/tree/main/models
|
139 |
-
2. Put them in "stable-diffusion-webui\extensions\sd-webui-controlnet\models".
|
140 |
-
3. Make sure that the file names of pth files and yaml files are consistent.
|
141 |
-
|
142 |
-
*Note that "CoAdapter" is not implemented yet.*
|
143 |
-
|
144 |
-
# Gallery
|
145 |
-
|
146 |
-
The below results are from ControlNet 1.0.
|
147 |
-
|
148 |
-
| Source | Input | Output |
|
149 |
-
|:-------------------------:|:-------------------------:|:-------------------------:|
|
150 |
-
| (no preprocessor) | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/bal-source.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/bal-gen.png?raw=true"> |
|
151 |
-
| (no preprocessor) | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/dog_rel.jpg?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/dog_rel.png?raw=true"> |
|
152 |
-
|<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/mahiro_input.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/mahiro_canny.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/mahiro-out.png?raw=true"> |
|
153 |
-
|<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/evt_source.jpg?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/evt_hed.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/evt_gen.png?raw=true"> |
|
154 |
-
|<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/an-source.jpg?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/an-pose.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/an-gen.png?raw=true"> |
|
155 |
-
|<img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/sk-b-src.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/sk-b-dep.png?raw=true"> | <img width="256" alt="" src="https://github.com/Mikubill/sd-webui-controlnet/blob/main/samples/sk-b-out.png?raw=true"> |
|
156 |
-
|
157 |
-
The below examples are from T2I-Adapter.
|
158 |
-
|
159 |
-
From `t2iadapter_color_sd14v1.pth` :
|
160 |
-
|
161 |
-
| Source | Input | Output |
|
162 |
-
|:-------------------------:|:-------------------------:|:-------------------------:|
|
163 |
-
| <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947416-ec9e52a4-a1d0-48d8-bb81-736bf636145e.jpeg"> | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947435-1164e7d8-d857-42f9-ab10-2d4a4b25f33a.png"> | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947557-5520d5f8-88b4-474d-a576-5c9cd3acac3a.png"> |
|
164 |
-
|
165 |
-
From `t2iadapter_style_sd14v1.pth` :
|
166 |
-
|
167 |
-
| Source | Input | Output |
|
168 |
-
|:-------------------------:|:-------------------------:|:-------------------------:|
|
169 |
-
| <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222947416-ec9e52a4-a1d0-48d8-bb81-736bf636145e.jpeg"> | (clip, non-image) | <img width="256" alt="" src="https://user-images.githubusercontent.com/31246794/222965711-7b884c9e-7095-45cb-a91c-e50d296ba3a2.png"> |
|
170 |
-
|
171 |
-
# Minimum Requirements
|
172 |
-
|
173 |
-
* (Windows) (NVIDIA: Ampere) 4gb - with `--xformers` enabled, and `Low VRAM` mode ticked in the UI, goes up to 768x832
|
174 |
-
|
175 |
-
# Multi-ControlNet
|
176 |
-
|
177 |
-
This option allows multiple ControlNet inputs for a single generation. To enable this option, change `Multi ControlNet: Max models amount (requires restart)` in the settings. Note that you will need to restart the WebUI for changes to take effect.
|
178 |
-
|
179 |
-
<table width="100%">
|
180 |
-
<tr>
|
181 |
-
<td width="25%" style="text-align: center">Source A</td>
|
182 |
-
<td width="25%" style="text-align: center">Source B</td>
|
183 |
-
<td width="25%" style="text-align: center">Output</td>
|
184 |
-
</tr>
|
185 |
-
<tr>
|
186 |
-
<td width="25%" style="text-align: center"><img src="https://user-images.githubusercontent.com/31246794/220448620-cd3ede92-8d3f-43d5-b771-32dd8417618f.png"></td>
|
187 |
-
<td width="25%" style="text-align: center"><img src="https://user-images.githubusercontent.com/31246794/220448619-beed9bdb-f6bb-41c2-a7df-aa3ef1f653c5.png"></td>
|
188 |
-
<td width="25%" style="text-align: center"><img src="https://user-images.githubusercontent.com/31246794/220448613-c99a9e04-0450-40fd-bc73-a9122cefaa2c.png"></td>
|
189 |
-
</tr>
|
190 |
-
</table>
|
191 |
-
|
192 |
-
# Control Weight/Start/End
|
193 |
-
|
194 |
-
Weight is the weight of the controlnet "influence". It's analogous to prompt attention/emphasis. E.g. (myprompt: 1.2). Technically, it's the factor by which to multiply the ControlNet outputs before merging them with original SD Unet.
|
195 |
-
|
196 |
-
Guidance Start/End is the percentage of total steps the controlnet applies (guidance strength = guidance end). It's analogous to prompt editing/shifting. E.g. \[myprompt::0.8\] (It applies from the beginning until 80% of total steps)
|
197 |
-
|
198 |
-
# Batch Mode
|
199 |
-
|
200 |
-
Put any unit into batch mode to activate batch mode for all units. Specify a batch directory for each unit, or use the new textbox in the img2img batch tab as a fallback. Although the textbox is located in the img2img batch tab, you can use it to generate images in the txt2img tab as well.
|
201 |
-
|
202 |
-
Note that this feature is only available in the gradio user interface. Call the APIs as many times as you want for custom batch scheduling.
|
203 |
-
|
204 |
-
# API and Script Access
|
205 |
-
|
206 |
-
This extension can accept txt2img or img2img tasks via API or external extension call. Note that you may need to enable `Allow other scripts to control this extension` in settings for external calls.
|
207 |
-
|
208 |
-
To use the API: start WebUI with argument `--api` and go to `http://webui-address/docs` for documents or checkout [examples](https://github.com/Mikubill/sd-webui-controlnet/blob/main/example/api_txt2img.ipynb).
|
209 |
-
|
210 |
-
To use external call: Checkout [Wiki](https://github.com/Mikubill/sd-webui-controlnet/wiki/API)
|
211 |
-
|
212 |
-
# Command Line Arguments
|
213 |
-
|
214 |
-
This extension adds these command line arguments to the webui:
|
215 |
-
|
216 |
-
```
|
217 |
-
--controlnet-dir <path to directory with controlnet models> ADD a controlnet models directory
|
218 |
-
--controlnet-annotator-models-path <path to directory with annotator model directories> SET the directory for annotator models
|
219 |
-
--no-half-controlnet load controlnet models in full precision
|
220 |
-
--controlnet-preprocessor-cache-size Cache size for controlnet preprocessor results
|
221 |
-
--controlnet-loglevel Log level for the controlnet extension
|
222 |
-
```
|
223 |
-
|
224 |
-
# MacOS Support
|
225 |
-
|
226 |
-
Tested with pytorch nightly: https://github.com/Mikubill/sd-webui-controlnet/pull/143#issuecomment-1435058285
|
227 |
-
|
228 |
-
To use this extension with mps and normal pytorch, currently you may need to start WebUI with `--no-half`.
|
229 |
-
|
230 |
-
# Archive of Deprecated Versions
|
231 |
-
|
232 |
-
The previous version (sd-webui-controlnet 1.0) is archived in
|
233 |
-
|
234 |
-
https://github.com/lllyasviel/webui-controlnet-v1-archived
|
235 |
-
|
236 |
-
Using this version is not a temporary stop of updates. You will stop all updates forever.
|
237 |
-
|
238 |
-
Please consider this version if you work with professional studios that requires 100% reproducing of all previous results pixel by pixel.
|
239 |
-
|
240 |
-
# Thanks
|
241 |
-
|
242 |
-
This implementation is inspired by kohya-ss/sd-webui-additional-networks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/__pycache__/preload.cpython-310.pyc
DELETED
Binary file (1.03 kB)
|
|
extensions/sd-webui-controlnet/annotator/__pycache__/annotator_path.cpython-310.pyc
DELETED
Binary file (741 Bytes)
|
|
extensions/sd-webui-controlnet/annotator/__pycache__/util.cpython-310.pyc
DELETED
Binary file (2.19 kB)
|
|
extensions/sd-webui-controlnet/annotator/annotator_path.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from modules import shared
|
3 |
-
|
4 |
-
models_path = shared.opts.data.get('control_net_modules_path', None)
|
5 |
-
if not models_path:
|
6 |
-
models_path = getattr(shared.cmd_opts, 'controlnet_annotator_models_path', None)
|
7 |
-
if not models_path:
|
8 |
-
models_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'downloads')
|
9 |
-
|
10 |
-
if not os.path.isabs(models_path):
|
11 |
-
models_path = os.path.join(shared.data_path, models_path)
|
12 |
-
|
13 |
-
clip_vision_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'clip_vision')
|
14 |
-
# clip vision is always inside controlnet "extensions\sd-webui-controlnet"
|
15 |
-
# and any problem can be solved by removing controlnet and reinstall
|
16 |
-
|
17 |
-
models_path = os.path.realpath(models_path)
|
18 |
-
os.makedirs(models_path, exist_ok=True)
|
19 |
-
print(f'ControlNet preprocessor location: {models_path}')
|
20 |
-
# Make sure that the default location is inside controlnet "extensions\sd-webui-controlnet"
|
21 |
-
# so that any problem can be solved by removing controlnet and reinstall
|
22 |
-
# if users do not change configs on their own (otherwise users will know what is wrong)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/binary/__init__.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
|
3 |
-
|
4 |
-
def apply_binary(img, bin_threshold):
|
5 |
-
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
6 |
-
|
7 |
-
if bin_threshold == 0 or bin_threshold == 255:
|
8 |
-
# Otsu's threshold
|
9 |
-
otsu_threshold, img_bin = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
10 |
-
print("Otsu threshold:", otsu_threshold)
|
11 |
-
else:
|
12 |
-
_, img_bin = cv2.threshold(img_gray, bin_threshold, 255, cv2.THRESH_BINARY_INV)
|
13 |
-
|
14 |
-
return cv2.cvtColor(img_bin, cv2.COLOR_GRAY2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/canny/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
|
3 |
-
|
4 |
-
def apply_canny(img, low_threshold, high_threshold):
|
5 |
-
return cv2.Canny(img, low_threshold, high_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/canny/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (389 Bytes)
|
|
extensions/sd-webui-controlnet/annotator/clipvision/__init__.py
DELETED
@@ -1,127 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
|
4 |
-
from modules import devices
|
5 |
-
from modules.modelloader import load_file_from_url
|
6 |
-
from annotator.annotator_path import models_path
|
7 |
-
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor
|
8 |
-
|
9 |
-
|
10 |
-
config_clip_g = {
|
11 |
-
"attention_dropout": 0.0,
|
12 |
-
"dropout": 0.0,
|
13 |
-
"hidden_act": "gelu",
|
14 |
-
"hidden_size": 1664,
|
15 |
-
"image_size": 224,
|
16 |
-
"initializer_factor": 1.0,
|
17 |
-
"initializer_range": 0.02,
|
18 |
-
"intermediate_size": 8192,
|
19 |
-
"layer_norm_eps": 1e-05,
|
20 |
-
"model_type": "clip_vision_model",
|
21 |
-
"num_attention_heads": 16,
|
22 |
-
"num_channels": 3,
|
23 |
-
"num_hidden_layers": 48,
|
24 |
-
"patch_size": 14,
|
25 |
-
"projection_dim": 1280,
|
26 |
-
"torch_dtype": "float32"
|
27 |
-
}
|
28 |
-
|
29 |
-
config_clip_h = {
|
30 |
-
"attention_dropout": 0.0,
|
31 |
-
"dropout": 0.0,
|
32 |
-
"hidden_act": "gelu",
|
33 |
-
"hidden_size": 1280,
|
34 |
-
"image_size": 224,
|
35 |
-
"initializer_factor": 1.0,
|
36 |
-
"initializer_range": 0.02,
|
37 |
-
"intermediate_size": 5120,
|
38 |
-
"layer_norm_eps": 1e-05,
|
39 |
-
"model_type": "clip_vision_model",
|
40 |
-
"num_attention_heads": 16,
|
41 |
-
"num_channels": 3,
|
42 |
-
"num_hidden_layers": 32,
|
43 |
-
"patch_size": 14,
|
44 |
-
"projection_dim": 1024,
|
45 |
-
"torch_dtype": "float32"
|
46 |
-
}
|
47 |
-
|
48 |
-
config_clip_vitl = {
|
49 |
-
"attention_dropout": 0.0,
|
50 |
-
"dropout": 0.0,
|
51 |
-
"hidden_act": "quick_gelu",
|
52 |
-
"hidden_size": 1024,
|
53 |
-
"image_size": 224,
|
54 |
-
"initializer_factor": 1.0,
|
55 |
-
"initializer_range": 0.02,
|
56 |
-
"intermediate_size": 4096,
|
57 |
-
"layer_norm_eps": 1e-05,
|
58 |
-
"model_type": "clip_vision_model",
|
59 |
-
"num_attention_heads": 16,
|
60 |
-
"num_channels": 3,
|
61 |
-
"num_hidden_layers": 24,
|
62 |
-
"patch_size": 14,
|
63 |
-
"projection_dim": 768,
|
64 |
-
"torch_dtype": "float32"
|
65 |
-
}
|
66 |
-
|
67 |
-
configs = {
|
68 |
-
'clip_g': config_clip_g,
|
69 |
-
'clip_h': config_clip_h,
|
70 |
-
'clip_vitl': config_clip_vitl,
|
71 |
-
}
|
72 |
-
|
73 |
-
downloads = {
|
74 |
-
'clip_vitl': 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/pytorch_model.bin',
|
75 |
-
'clip_g': 'https://huggingface.co/lllyasviel/Annotators/resolve/main/clip_g.pth',
|
76 |
-
'clip_h': 'https://huggingface.co/h94/IP-Adapter/resolve/main/models/image_encoder/pytorch_model.bin'
|
77 |
-
}
|
78 |
-
|
79 |
-
|
80 |
-
clip_vision_h_uc = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'clip_vision_h_uc.data')
|
81 |
-
clip_vision_h_uc = torch.load(clip_vision_h_uc)['uc']
|
82 |
-
|
83 |
-
|
84 |
-
class ClipVisionDetector:
|
85 |
-
def __init__(self, config):
|
86 |
-
assert config in downloads
|
87 |
-
self.download_link = downloads[config]
|
88 |
-
self.model_path = os.path.join(models_path, 'clip_vision')
|
89 |
-
self.file_name = config + '.pth'
|
90 |
-
self.config = configs[config]
|
91 |
-
self.device = devices.get_device_for("controlnet")
|
92 |
-
os.makedirs(self.model_path, exist_ok=True)
|
93 |
-
file_path = os.path.join(self.model_path, self.file_name)
|
94 |
-
if not os.path.exists(file_path):
|
95 |
-
load_file_from_url(url=self.download_link, model_dir=self.model_path, file_name=self.file_name)
|
96 |
-
config = CLIPVisionConfig(**self.config)
|
97 |
-
self.model = CLIPVisionModelWithProjection(config)
|
98 |
-
self.processor = CLIPImageProcessor(crop_size=224,
|
99 |
-
do_center_crop=True,
|
100 |
-
do_convert_rgb=True,
|
101 |
-
do_normalize=True,
|
102 |
-
do_resize=True,
|
103 |
-
image_mean=[0.48145466, 0.4578275, 0.40821073],
|
104 |
-
image_std=[0.26862954, 0.26130258, 0.27577711],
|
105 |
-
resample=3,
|
106 |
-
size=224)
|
107 |
-
|
108 |
-
sd = torch.load(file_path, map_location=torch.device('cpu'))
|
109 |
-
self.model.load_state_dict(sd, strict=False)
|
110 |
-
del sd
|
111 |
-
|
112 |
-
self.model.eval()
|
113 |
-
self.model.cpu()
|
114 |
-
|
115 |
-
def unload_model(self):
|
116 |
-
if self.model is not None:
|
117 |
-
self.model.to('meta')
|
118 |
-
|
119 |
-
def __call__(self, input_image):
|
120 |
-
with torch.no_grad():
|
121 |
-
clip_vision_model = self.model.cpu()
|
122 |
-
feat = self.processor(images=input_image, return_tensors="pt")
|
123 |
-
feat['pixel_values'] = feat['pixel_values'].cpu()
|
124 |
-
result = clip_vision_model(**feat, output_hidden_states=True)
|
125 |
-
result['hidden_states'] = [v.to(devices.get_device_for("controlnet")) for v in result['hidden_states']]
|
126 |
-
result = {k: v.to(devices.get_device_for("controlnet")) if isinstance(v, torch.Tensor) else v for k, v in result.items()}
|
127 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/clipvision/clip_vision_h_uc.data
DELETED
Binary file (659 kB)
|
|
extensions/sd-webui-controlnet/annotator/color/__init__.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
|
3 |
-
def cv2_resize_shortest_edge(image, size):
|
4 |
-
h, w = image.shape[:2]
|
5 |
-
if h < w:
|
6 |
-
new_h = size
|
7 |
-
new_w = int(round(w / h * size))
|
8 |
-
else:
|
9 |
-
new_w = size
|
10 |
-
new_h = int(round(h / w * size))
|
11 |
-
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
12 |
-
return resized_image
|
13 |
-
|
14 |
-
def apply_color(img, res=512):
|
15 |
-
img = cv2_resize_shortest_edge(img, res)
|
16 |
-
h, w = img.shape[:2]
|
17 |
-
|
18 |
-
input_img_color = cv2.resize(img, (w//64, h//64), interpolation=cv2.INTER_CUBIC)
|
19 |
-
input_img_color = cv2.resize(input_img_color, (w, h), interpolation=cv2.INTER_NEAREST)
|
20 |
-
return input_img_color
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/downloads/leres/latest_net_G.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:50ec735d74ed6499562d898f41b49343e521808b8dae589aa3c2f5c9ac9f7462
|
3 |
-
size 318268048
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/downloads/leres/res101.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1d696b2ef3e8336b057d0c15bc82d2fecef821bfebe5ef9d7671a5ec5dde520b
|
3 |
-
size 530760553
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/downloads/midas/dpt_hybrid-midas-501f0c75.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:501f0c75b3bca7daec6b3682c5054c09b366765aef6fa3a09d03a5cb4b230853
|
3 |
-
size 492757791
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/downloads/oneformer/150_16_swin_l_oneformer_coco_100ep.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0684dfc39720c772b81d43639c3ae1896b5c15aa9ee9a76f4c593b19dfa33855
|
3 |
-
size 949602739
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/downloads/oneformer/250_16_swin_l_oneformer_ade20k_160k.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f7ac095c28ddea4715e854a587eaee24327c624cbbdb17095bc9903c51930b16
|
3 |
-
size 949729587
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/downloads/uniformer/upernet_global_small.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:bebfa1264c10381e389d8065056baaadbdadee8ddc6e36770d1ec339dc84d970
|
3 |
-
size 206313115
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/hed/__init__.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
|
2 |
-
# Please use this implementation in your products
|
3 |
-
# This implementation may produce slightly different results from Saining Xie's official implementations,
|
4 |
-
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
|
5 |
-
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
|
6 |
-
# and in this way it works better for gradio's RGB protocol
|
7 |
-
|
8 |
-
import os
|
9 |
-
import cv2
|
10 |
-
import torch
|
11 |
-
import numpy as np
|
12 |
-
|
13 |
-
from einops import rearrange
|
14 |
-
import os
|
15 |
-
from modules import devices
|
16 |
-
from annotator.annotator_path import models_path
|
17 |
-
from annotator.util import safe_step, nms
|
18 |
-
|
19 |
-
|
20 |
-
class DoubleConvBlock(torch.nn.Module):
|
21 |
-
def __init__(self, input_channel, output_channel, layer_number):
|
22 |
-
super().__init__()
|
23 |
-
self.convs = torch.nn.Sequential()
|
24 |
-
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
25 |
-
for i in range(1, layer_number):
|
26 |
-
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
|
27 |
-
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
|
28 |
-
|
29 |
-
def __call__(self, x, down_sampling=False):
|
30 |
-
h = x
|
31 |
-
if down_sampling:
|
32 |
-
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
33 |
-
for conv in self.convs:
|
34 |
-
h = conv(h)
|
35 |
-
h = torch.nn.functional.relu(h)
|
36 |
-
return h, self.projection(h)
|
37 |
-
|
38 |
-
|
39 |
-
class ControlNetHED_Apache2(torch.nn.Module):
|
40 |
-
def __init__(self):
|
41 |
-
super().__init__()
|
42 |
-
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
43 |
-
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
44 |
-
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
45 |
-
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
46 |
-
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
47 |
-
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
48 |
-
|
49 |
-
def __call__(self, x):
|
50 |
-
h = x - self.norm
|
51 |
-
h, projection1 = self.block1(h)
|
52 |
-
h, projection2 = self.block2(h, down_sampling=True)
|
53 |
-
h, projection3 = self.block3(h, down_sampling=True)
|
54 |
-
h, projection4 = self.block4(h, down_sampling=True)
|
55 |
-
h, projection5 = self.block5(h, down_sampling=True)
|
56 |
-
return projection1, projection2, projection3, projection4, projection5
|
57 |
-
|
58 |
-
|
59 |
-
netNetwork = None
|
60 |
-
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
|
61 |
-
modeldir = os.path.join(models_path, "hed")
|
62 |
-
old_modeldir = os.path.dirname(os.path.realpath(__file__))
|
63 |
-
|
64 |
-
|
65 |
-
def apply_hed(input_image, is_safe=False):
|
66 |
-
global netNetwork
|
67 |
-
if netNetwork is None:
|
68 |
-
modelpath = os.path.join(modeldir, "ControlNetHED.pth")
|
69 |
-
old_modelpath = os.path.join(old_modeldir, "ControlNetHED.pth")
|
70 |
-
if os.path.exists(old_modelpath):
|
71 |
-
modelpath = old_modelpath
|
72 |
-
elif not os.path.exists(modelpath):
|
73 |
-
from basicsr.utils.download_util import load_file_from_url
|
74 |
-
load_file_from_url(remote_model_path, model_dir=modeldir)
|
75 |
-
netNetwork = ControlNetHED_Apache2().to(devices.get_device_for("controlnet"))
|
76 |
-
netNetwork.load_state_dict(torch.load(modelpath, map_location='cpu'))
|
77 |
-
netNetwork.to(devices.get_device_for("controlnet")).float().eval()
|
78 |
-
|
79 |
-
assert input_image.ndim == 3
|
80 |
-
H, W, C = input_image.shape
|
81 |
-
with torch.no_grad():
|
82 |
-
image_hed = torch.from_numpy(input_image.copy()).float().to(devices.get_device_for("controlnet"))
|
83 |
-
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
84 |
-
edges = netNetwork(image_hed)
|
85 |
-
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
86 |
-
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
|
87 |
-
edges = np.stack(edges, axis=2)
|
88 |
-
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
89 |
-
if is_safe:
|
90 |
-
edge = safe_step(edge)
|
91 |
-
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
92 |
-
return edge
|
93 |
-
|
94 |
-
|
95 |
-
def unload_hed_model():
|
96 |
-
global netNetwork
|
97 |
-
if netNetwork is not None:
|
98 |
-
netNetwork.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/keypose/__init__.py
DELETED
@@ -1,212 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import torch
|
4 |
-
|
5 |
-
import os
|
6 |
-
from modules import devices
|
7 |
-
from annotator.annotator_path import models_path
|
8 |
-
|
9 |
-
import mmcv
|
10 |
-
from mmdet.apis import inference_detector, init_detector
|
11 |
-
from mmpose.apis import inference_top_down_pose_model
|
12 |
-
from mmpose.apis import init_pose_model, process_mmdet_results, vis_pose_result
|
13 |
-
|
14 |
-
|
15 |
-
def preprocessing(image, device):
|
16 |
-
# Resize
|
17 |
-
scale = 640 / max(image.shape[:2])
|
18 |
-
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
|
19 |
-
raw_image = image.astype(np.uint8)
|
20 |
-
|
21 |
-
# Subtract mean values
|
22 |
-
image = image.astype(np.float32)
|
23 |
-
image -= np.array(
|
24 |
-
[
|
25 |
-
float(104.008),
|
26 |
-
float(116.669),
|
27 |
-
float(122.675),
|
28 |
-
]
|
29 |
-
)
|
30 |
-
|
31 |
-
# Convert to torch.Tensor and add "batch" axis
|
32 |
-
image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
|
33 |
-
image = image.to(device)
|
34 |
-
|
35 |
-
return image, raw_image
|
36 |
-
|
37 |
-
|
38 |
-
def imshow_keypoints(img,
|
39 |
-
pose_result,
|
40 |
-
skeleton=None,
|
41 |
-
kpt_score_thr=0.1,
|
42 |
-
pose_kpt_color=None,
|
43 |
-
pose_link_color=None,
|
44 |
-
radius=4,
|
45 |
-
thickness=1):
|
46 |
-
"""Draw keypoints and links on an image.
|
47 |
-
Args:
|
48 |
-
img (ndarry): The image to draw poses on.
|
49 |
-
pose_result (list[kpts]): The poses to draw. Each element kpts is
|
50 |
-
a set of K keypoints as an Kx3 numpy.ndarray, where each
|
51 |
-
keypoint is represented as x, y, score.
|
52 |
-
kpt_score_thr (float, optional): Minimum score of keypoints
|
53 |
-
to be shown. Default: 0.3.
|
54 |
-
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
|
55 |
-
the keypoint will not be drawn.
|
56 |
-
pose_link_color (np.array[Mx3]): Color of M links. If None, the
|
57 |
-
links will not be drawn.
|
58 |
-
thickness (int): Thickness of lines.
|
59 |
-
"""
|
60 |
-
|
61 |
-
img_h, img_w, _ = img.shape
|
62 |
-
img = np.zeros(img.shape)
|
63 |
-
|
64 |
-
for idx, kpts in enumerate(pose_result):
|
65 |
-
if idx > 1:
|
66 |
-
continue
|
67 |
-
kpts = kpts['keypoints']
|
68 |
-
# print(kpts)
|
69 |
-
kpts = np.array(kpts, copy=False)
|
70 |
-
|
71 |
-
# draw each point on image
|
72 |
-
if pose_kpt_color is not None:
|
73 |
-
assert len(pose_kpt_color) == len(kpts)
|
74 |
-
|
75 |
-
for kid, kpt in enumerate(kpts):
|
76 |
-
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
|
77 |
-
|
78 |
-
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
|
79 |
-
# skip the point that should not be drawn
|
80 |
-
continue
|
81 |
-
|
82 |
-
color = tuple(int(c) for c in pose_kpt_color[kid])
|
83 |
-
cv2.circle(img, (int(x_coord), int(y_coord)),
|
84 |
-
radius, color, -1)
|
85 |
-
|
86 |
-
# draw links
|
87 |
-
if skeleton is not None and pose_link_color is not None:
|
88 |
-
assert len(pose_link_color) == len(skeleton)
|
89 |
-
|
90 |
-
for sk_id, sk in enumerate(skeleton):
|
91 |
-
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
|
92 |
-
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
|
93 |
-
|
94 |
-
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0
|
95 |
-
or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr
|
96 |
-
or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None):
|
97 |
-
# skip the link that should not be drawn
|
98 |
-
continue
|
99 |
-
color = tuple(int(c) for c in pose_link_color[sk_id])
|
100 |
-
cv2.line(img, pos1, pos2, color, thickness=thickness)
|
101 |
-
|
102 |
-
return img
|
103 |
-
|
104 |
-
|
105 |
-
human_det, pose_model = None, None
|
106 |
-
det_model_path = "https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
|
107 |
-
pose_model_path = "https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth"
|
108 |
-
|
109 |
-
modeldir = os.path.join(models_path, "keypose")
|
110 |
-
old_modeldir = os.path.dirname(os.path.realpath(__file__))
|
111 |
-
|
112 |
-
det_config = 'faster_rcnn_r50_fpn_coco.py'
|
113 |
-
pose_config = 'hrnet_w48_coco_256x192.py'
|
114 |
-
|
115 |
-
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
|
116 |
-
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
|
117 |
-
det_cat_id = 1
|
118 |
-
bbox_thr = 0.2
|
119 |
-
|
120 |
-
skeleton = [
|
121 |
-
[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8],
|
122 |
-
[7, 9], [8, 10],
|
123 |
-
[1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]
|
124 |
-
]
|
125 |
-
|
126 |
-
pose_kpt_color = [
|
127 |
-
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
128 |
-
[0, 255, 0],
|
129 |
-
[255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0],
|
130 |
-
[255, 128, 0],
|
131 |
-
[0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0]
|
132 |
-
]
|
133 |
-
|
134 |
-
pose_link_color = [
|
135 |
-
[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0],
|
136 |
-
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0],
|
137 |
-
[255, 128, 0],
|
138 |
-
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
|
139 |
-
[51, 153, 255],
|
140 |
-
[51, 153, 255], [51, 153, 255], [51, 153, 255]
|
141 |
-
]
|
142 |
-
|
143 |
-
def find_download_model(checkpoint, remote_path):
|
144 |
-
modelpath = os.path.join(modeldir, checkpoint)
|
145 |
-
old_modelpath = os.path.join(old_modeldir, checkpoint)
|
146 |
-
|
147 |
-
if os.path.exists(old_modelpath):
|
148 |
-
modelpath = old_modelpath
|
149 |
-
elif not os.path.exists(modelpath):
|
150 |
-
from basicsr.utils.download_util import load_file_from_url
|
151 |
-
load_file_from_url(remote_path, model_dir=modeldir)
|
152 |
-
|
153 |
-
return modelpath
|
154 |
-
|
155 |
-
def apply_keypose(input_image):
|
156 |
-
global human_det, pose_model
|
157 |
-
if netNetwork is None:
|
158 |
-
det_model_local = find_download_model(det_checkpoint, det_model_path)
|
159 |
-
hrnet_model_local = find_download_model(pose_checkpoint, pose_model_path)
|
160 |
-
det_config_mmcv = mmcv.Config.fromfile(det_config)
|
161 |
-
pose_config_mmcv = mmcv.Config.fromfile(pose_config)
|
162 |
-
human_det = init_detector(det_config_mmcv, det_model_local, device=devices.get_device_for("controlnet"))
|
163 |
-
pose_model = init_pose_model(pose_config_mmcv, hrnet_model_local, device=devices.get_device_for("controlnet"))
|
164 |
-
|
165 |
-
assert input_image.ndim == 3
|
166 |
-
input_image = input_image.copy()
|
167 |
-
with torch.no_grad():
|
168 |
-
image = torch.from_numpy(input_image).float().to(devices.get_device_for("controlnet"))
|
169 |
-
image = image / 255.0
|
170 |
-
mmdet_results = inference_detector(human_det, image)
|
171 |
-
|
172 |
-
# keep the person class bounding boxes.
|
173 |
-
person_results = process_mmdet_results(mmdet_results, det_cat_id)
|
174 |
-
|
175 |
-
return_heatmap = False
|
176 |
-
dataset = pose_model.cfg.data['test']['type']
|
177 |
-
|
178 |
-
# e.g. use ('backbone', ) to return backbone feature
|
179 |
-
output_layer_names = None
|
180 |
-
pose_results, _ = inference_top_down_pose_model(
|
181 |
-
pose_model,
|
182 |
-
image,
|
183 |
-
person_results,
|
184 |
-
bbox_thr=bbox_thr,
|
185 |
-
format='xyxy',
|
186 |
-
dataset=dataset,
|
187 |
-
dataset_info=None,
|
188 |
-
return_heatmap=return_heatmap,
|
189 |
-
outputs=output_layer_names
|
190 |
-
)
|
191 |
-
|
192 |
-
im_keypose_out = imshow_keypoints(
|
193 |
-
image,
|
194 |
-
pose_results,
|
195 |
-
skeleton=skeleton,
|
196 |
-
pose_kpt_color=pose_kpt_color,
|
197 |
-
pose_link_color=pose_link_color,
|
198 |
-
radius=2,
|
199 |
-
thickness=2
|
200 |
-
)
|
201 |
-
im_keypose_out = im_keypose_out.astype(np.uint8)
|
202 |
-
|
203 |
-
# image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
204 |
-
# edge = netNetwork(image_hed)[0]
|
205 |
-
# edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
206 |
-
return im_keypose_out
|
207 |
-
|
208 |
-
|
209 |
-
def unload_hed_model():
|
210 |
-
global netNetwork
|
211 |
-
if netNetwork is not None:
|
212 |
-
netNetwork.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/keypose/faster_rcnn_r50_fpn_coco.py
DELETED
@@ -1,182 +0,0 @@
|
|
1 |
-
checkpoint_config = dict(interval=1)
|
2 |
-
# yapf:disable
|
3 |
-
log_config = dict(
|
4 |
-
interval=50,
|
5 |
-
hooks=[
|
6 |
-
dict(type='TextLoggerHook'),
|
7 |
-
# dict(type='TensorboardLoggerHook')
|
8 |
-
])
|
9 |
-
# yapf:enable
|
10 |
-
dist_params = dict(backend='nccl')
|
11 |
-
log_level = 'INFO'
|
12 |
-
load_from = None
|
13 |
-
resume_from = None
|
14 |
-
workflow = [('train', 1)]
|
15 |
-
# optimizer
|
16 |
-
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
17 |
-
optimizer_config = dict(grad_clip=None)
|
18 |
-
# learning policy
|
19 |
-
lr_config = dict(
|
20 |
-
policy='step',
|
21 |
-
warmup='linear',
|
22 |
-
warmup_iters=500,
|
23 |
-
warmup_ratio=0.001,
|
24 |
-
step=[8, 11])
|
25 |
-
total_epochs = 12
|
26 |
-
|
27 |
-
model = dict(
|
28 |
-
type='FasterRCNN',
|
29 |
-
pretrained='torchvision://resnet50',
|
30 |
-
backbone=dict(
|
31 |
-
type='ResNet',
|
32 |
-
depth=50,
|
33 |
-
num_stages=4,
|
34 |
-
out_indices=(0, 1, 2, 3),
|
35 |
-
frozen_stages=1,
|
36 |
-
norm_cfg=dict(type='BN', requires_grad=True),
|
37 |
-
norm_eval=True,
|
38 |
-
style='pytorch'),
|
39 |
-
neck=dict(
|
40 |
-
type='FPN',
|
41 |
-
in_channels=[256, 512, 1024, 2048],
|
42 |
-
out_channels=256,
|
43 |
-
num_outs=5),
|
44 |
-
rpn_head=dict(
|
45 |
-
type='RPNHead',
|
46 |
-
in_channels=256,
|
47 |
-
feat_channels=256,
|
48 |
-
anchor_generator=dict(
|
49 |
-
type='AnchorGenerator',
|
50 |
-
scales=[8],
|
51 |
-
ratios=[0.5, 1.0, 2.0],
|
52 |
-
strides=[4, 8, 16, 32, 64]),
|
53 |
-
bbox_coder=dict(
|
54 |
-
type='DeltaXYWHBBoxCoder',
|
55 |
-
target_means=[.0, .0, .0, .0],
|
56 |
-
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
57 |
-
loss_cls=dict(
|
58 |
-
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
59 |
-
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
60 |
-
roi_head=dict(
|
61 |
-
type='StandardRoIHead',
|
62 |
-
bbox_roi_extractor=dict(
|
63 |
-
type='SingleRoIExtractor',
|
64 |
-
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
65 |
-
out_channels=256,
|
66 |
-
featmap_strides=[4, 8, 16, 32]),
|
67 |
-
bbox_head=dict(
|
68 |
-
type='Shared2FCBBoxHead',
|
69 |
-
in_channels=256,
|
70 |
-
fc_out_channels=1024,
|
71 |
-
roi_feat_size=7,
|
72 |
-
num_classes=80,
|
73 |
-
bbox_coder=dict(
|
74 |
-
type='DeltaXYWHBBoxCoder',
|
75 |
-
target_means=[0., 0., 0., 0.],
|
76 |
-
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
77 |
-
reg_class_agnostic=False,
|
78 |
-
loss_cls=dict(
|
79 |
-
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
80 |
-
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
81 |
-
# model training and testing settings
|
82 |
-
train_cfg=dict(
|
83 |
-
rpn=dict(
|
84 |
-
assigner=dict(
|
85 |
-
type='MaxIoUAssigner',
|
86 |
-
pos_iou_thr=0.7,
|
87 |
-
neg_iou_thr=0.3,
|
88 |
-
min_pos_iou=0.3,
|
89 |
-
match_low_quality=True,
|
90 |
-
ignore_iof_thr=-1),
|
91 |
-
sampler=dict(
|
92 |
-
type='RandomSampler',
|
93 |
-
num=256,
|
94 |
-
pos_fraction=0.5,
|
95 |
-
neg_pos_ub=-1,
|
96 |
-
add_gt_as_proposals=False),
|
97 |
-
allowed_border=-1,
|
98 |
-
pos_weight=-1,
|
99 |
-
debug=False),
|
100 |
-
rpn_proposal=dict(
|
101 |
-
nms_pre=2000,
|
102 |
-
max_per_img=1000,
|
103 |
-
nms=dict(type='nms', iou_threshold=0.7),
|
104 |
-
min_bbox_size=0),
|
105 |
-
rcnn=dict(
|
106 |
-
assigner=dict(
|
107 |
-
type='MaxIoUAssigner',
|
108 |
-
pos_iou_thr=0.5,
|
109 |
-
neg_iou_thr=0.5,
|
110 |
-
min_pos_iou=0.5,
|
111 |
-
match_low_quality=False,
|
112 |
-
ignore_iof_thr=-1),
|
113 |
-
sampler=dict(
|
114 |
-
type='RandomSampler',
|
115 |
-
num=512,
|
116 |
-
pos_fraction=0.25,
|
117 |
-
neg_pos_ub=-1,
|
118 |
-
add_gt_as_proposals=True),
|
119 |
-
pos_weight=-1,
|
120 |
-
debug=False)),
|
121 |
-
test_cfg=dict(
|
122 |
-
rpn=dict(
|
123 |
-
nms_pre=1000,
|
124 |
-
max_per_img=1000,
|
125 |
-
nms=dict(type='nms', iou_threshold=0.7),
|
126 |
-
min_bbox_size=0),
|
127 |
-
rcnn=dict(
|
128 |
-
score_thr=0.05,
|
129 |
-
nms=dict(type='nms', iou_threshold=0.5),
|
130 |
-
max_per_img=100)
|
131 |
-
# soft-nms is also supported for rcnn testing
|
132 |
-
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
133 |
-
))
|
134 |
-
|
135 |
-
dataset_type = 'CocoDataset'
|
136 |
-
data_root = 'data/coco'
|
137 |
-
img_norm_cfg = dict(
|
138 |
-
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
139 |
-
train_pipeline = [
|
140 |
-
dict(type='LoadImageFromFile'),
|
141 |
-
dict(type='LoadAnnotations', with_bbox=True),
|
142 |
-
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
143 |
-
dict(type='RandomFlip', flip_ratio=0.5),
|
144 |
-
dict(type='Normalize', **img_norm_cfg),
|
145 |
-
dict(type='Pad', size_divisor=32),
|
146 |
-
dict(type='DefaultFormatBundle'),
|
147 |
-
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
|
148 |
-
]
|
149 |
-
test_pipeline = [
|
150 |
-
dict(type='LoadImageFromFile'),
|
151 |
-
dict(
|
152 |
-
type='MultiScaleFlipAug',
|
153 |
-
img_scale=(1333, 800),
|
154 |
-
flip=False,
|
155 |
-
transforms=[
|
156 |
-
dict(type='Resize', keep_ratio=True),
|
157 |
-
dict(type='RandomFlip'),
|
158 |
-
dict(type='Normalize', **img_norm_cfg),
|
159 |
-
dict(type='Pad', size_divisor=32),
|
160 |
-
dict(type='DefaultFormatBundle'),
|
161 |
-
dict(type='Collect', keys=['img']),
|
162 |
-
])
|
163 |
-
]
|
164 |
-
data = dict(
|
165 |
-
samples_per_gpu=2,
|
166 |
-
workers_per_gpu=2,
|
167 |
-
train=dict(
|
168 |
-
type=dataset_type,
|
169 |
-
ann_file=f'{data_root}/annotations/instances_train2017.json',
|
170 |
-
img_prefix=f'{data_root}/train2017/',
|
171 |
-
pipeline=train_pipeline),
|
172 |
-
val=dict(
|
173 |
-
type=dataset_type,
|
174 |
-
ann_file=f'{data_root}/annotations/instances_val2017.json',
|
175 |
-
img_prefix=f'{data_root}/val2017/',
|
176 |
-
pipeline=test_pipeline),
|
177 |
-
test=dict(
|
178 |
-
type=dataset_type,
|
179 |
-
ann_file=f'{data_root}/annotations/instances_val2017.json',
|
180 |
-
img_prefix=f'{data_root}/val2017/',
|
181 |
-
pipeline=test_pipeline))
|
182 |
-
evaluation = dict(interval=1, metric='bbox')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/keypose/hrnet_w48_coco_256x192.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
# _base_ = [
|
2 |
-
# '../../../../_base_/default_runtime.py',
|
3 |
-
# '../../../../_base_/datasets/coco.py'
|
4 |
-
# ]
|
5 |
-
evaluation = dict(interval=10, metric='mAP', save_best='AP')
|
6 |
-
|
7 |
-
optimizer = dict(
|
8 |
-
type='Adam',
|
9 |
-
lr=5e-4,
|
10 |
-
)
|
11 |
-
optimizer_config = dict(grad_clip=None)
|
12 |
-
# learning policy
|
13 |
-
lr_config = dict(
|
14 |
-
policy='step',
|
15 |
-
warmup='linear',
|
16 |
-
warmup_iters=500,
|
17 |
-
warmup_ratio=0.001,
|
18 |
-
step=[170, 200])
|
19 |
-
total_epochs = 210
|
20 |
-
channel_cfg = dict(
|
21 |
-
num_output_channels=17,
|
22 |
-
dataset_joints=17,
|
23 |
-
dataset_channel=[
|
24 |
-
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
|
25 |
-
],
|
26 |
-
inference_channel=[
|
27 |
-
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
28 |
-
])
|
29 |
-
|
30 |
-
# model settings
|
31 |
-
model = dict(
|
32 |
-
type='TopDown',
|
33 |
-
pretrained='https://download.openmmlab.com/mmpose/'
|
34 |
-
'pretrain_models/hrnet_w48-8ef0771d.pth',
|
35 |
-
backbone=dict(
|
36 |
-
type='HRNet',
|
37 |
-
in_channels=3,
|
38 |
-
extra=dict(
|
39 |
-
stage1=dict(
|
40 |
-
num_modules=1,
|
41 |
-
num_branches=1,
|
42 |
-
block='BOTTLENECK',
|
43 |
-
num_blocks=(4, ),
|
44 |
-
num_channels=(64, )),
|
45 |
-
stage2=dict(
|
46 |
-
num_modules=1,
|
47 |
-
num_branches=2,
|
48 |
-
block='BASIC',
|
49 |
-
num_blocks=(4, 4),
|
50 |
-
num_channels=(48, 96)),
|
51 |
-
stage3=dict(
|
52 |
-
num_modules=4,
|
53 |
-
num_branches=3,
|
54 |
-
block='BASIC',
|
55 |
-
num_blocks=(4, 4, 4),
|
56 |
-
num_channels=(48, 96, 192)),
|
57 |
-
stage4=dict(
|
58 |
-
num_modules=3,
|
59 |
-
num_branches=4,
|
60 |
-
block='BASIC',
|
61 |
-
num_blocks=(4, 4, 4, 4),
|
62 |
-
num_channels=(48, 96, 192, 384))),
|
63 |
-
),
|
64 |
-
keypoint_head=dict(
|
65 |
-
type='TopdownHeatmapSimpleHead',
|
66 |
-
in_channels=48,
|
67 |
-
out_channels=channel_cfg['num_output_channels'],
|
68 |
-
num_deconv_layers=0,
|
69 |
-
extra=dict(final_conv_kernel=1, ),
|
70 |
-
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
|
71 |
-
train_cfg=dict(),
|
72 |
-
test_cfg=dict(
|
73 |
-
flip_test=True,
|
74 |
-
post_process='default',
|
75 |
-
shift_heatmap=True,
|
76 |
-
modulate_kernel=11))
|
77 |
-
|
78 |
-
data_cfg = dict(
|
79 |
-
image_size=[192, 256],
|
80 |
-
heatmap_size=[48, 64],
|
81 |
-
num_output_channels=channel_cfg['num_output_channels'],
|
82 |
-
num_joints=channel_cfg['dataset_joints'],
|
83 |
-
dataset_channel=channel_cfg['dataset_channel'],
|
84 |
-
inference_channel=channel_cfg['inference_channel'],
|
85 |
-
soft_nms=False,
|
86 |
-
nms_thr=1.0,
|
87 |
-
oks_thr=0.9,
|
88 |
-
vis_thr=0.2,
|
89 |
-
use_gt_bbox=False,
|
90 |
-
det_bbox_thr=0.0,
|
91 |
-
bbox_file='data/coco/person_detection_results/'
|
92 |
-
'COCO_val2017_detections_AP_H_56_person.json',
|
93 |
-
)
|
94 |
-
|
95 |
-
train_pipeline = [
|
96 |
-
dict(type='LoadImageFromFile'),
|
97 |
-
dict(type='TopDownGetBboxCenterScale', padding=1.25),
|
98 |
-
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
|
99 |
-
dict(type='TopDownRandomFlip', flip_prob=0.5),
|
100 |
-
dict(
|
101 |
-
type='TopDownHalfBodyTransform',
|
102 |
-
num_joints_half_body=8,
|
103 |
-
prob_half_body=0.3),
|
104 |
-
dict(
|
105 |
-
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
|
106 |
-
dict(type='TopDownAffine'),
|
107 |
-
dict(type='ToTensor'),
|
108 |
-
dict(
|
109 |
-
type='NormalizeTensor',
|
110 |
-
mean=[0.485, 0.456, 0.406],
|
111 |
-
std=[0.229, 0.224, 0.225]),
|
112 |
-
dict(type='TopDownGenerateTarget', sigma=2),
|
113 |
-
dict(
|
114 |
-
type='Collect',
|
115 |
-
keys=['img', 'target', 'target_weight'],
|
116 |
-
meta_keys=[
|
117 |
-
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
|
118 |
-
'rotation', 'bbox_score', 'flip_pairs'
|
119 |
-
]),
|
120 |
-
]
|
121 |
-
|
122 |
-
val_pipeline = [
|
123 |
-
dict(type='LoadImageFromFile'),
|
124 |
-
dict(type='TopDownGetBboxCenterScale', padding=1.25),
|
125 |
-
dict(type='TopDownAffine'),
|
126 |
-
dict(type='ToTensor'),
|
127 |
-
dict(
|
128 |
-
type='NormalizeTensor',
|
129 |
-
mean=[0.485, 0.456, 0.406],
|
130 |
-
std=[0.229, 0.224, 0.225]),
|
131 |
-
dict(
|
132 |
-
type='Collect',
|
133 |
-
keys=['img'],
|
134 |
-
meta_keys=[
|
135 |
-
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
136 |
-
'flip_pairs'
|
137 |
-
]),
|
138 |
-
]
|
139 |
-
|
140 |
-
test_pipeline = val_pipeline
|
141 |
-
|
142 |
-
data_root = 'data/coco'
|
143 |
-
data = dict(
|
144 |
-
samples_per_gpu=32,
|
145 |
-
workers_per_gpu=2,
|
146 |
-
val_dataloader=dict(samples_per_gpu=32),
|
147 |
-
test_dataloader=dict(samples_per_gpu=32),
|
148 |
-
train=dict(
|
149 |
-
type='TopDownCocoDataset',
|
150 |
-
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
|
151 |
-
img_prefix=f'{data_root}/train2017/',
|
152 |
-
data_cfg=data_cfg,
|
153 |
-
pipeline=train_pipeline,
|
154 |
-
dataset_info={{_base_.dataset_info}}),
|
155 |
-
val=dict(
|
156 |
-
type='TopDownCocoDataset',
|
157 |
-
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
|
158 |
-
img_prefix=f'{data_root}/val2017/',
|
159 |
-
data_cfg=data_cfg,
|
160 |
-
pipeline=val_pipeline,
|
161 |
-
dataset_info={{_base_.dataset_info}}),
|
162 |
-
test=dict(
|
163 |
-
type='TopDownCocoDataset',
|
164 |
-
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
|
165 |
-
img_prefix=f'{data_root}/val2017/',
|
166 |
-
data_cfg=data_cfg,
|
167 |
-
pipeline=test_pipeline,
|
168 |
-
dataset_info={{_base_.dataset_info}}),
|
169 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/__init__.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
# https://github.com/advimman/lama
|
2 |
-
|
3 |
-
import yaml
|
4 |
-
import torch
|
5 |
-
from omegaconf import OmegaConf
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
from einops import rearrange
|
9 |
-
import os
|
10 |
-
from modules import devices
|
11 |
-
from annotator.annotator_path import models_path
|
12 |
-
from annotator.lama.saicinpainting.training.trainers import load_checkpoint
|
13 |
-
|
14 |
-
|
15 |
-
class LamaInpainting:
|
16 |
-
model_dir = os.path.join(models_path, "lama")
|
17 |
-
|
18 |
-
def __init__(self):
|
19 |
-
self.model = None
|
20 |
-
self.device = devices.get_device_for("controlnet")
|
21 |
-
|
22 |
-
def load_model(self):
|
23 |
-
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetLama.pth"
|
24 |
-
modelpath = os.path.join(self.model_dir, "ControlNetLama.pth")
|
25 |
-
if not os.path.exists(modelpath):
|
26 |
-
from basicsr.utils.download_util import load_file_from_url
|
27 |
-
load_file_from_url(remote_model_path, model_dir=self.model_dir)
|
28 |
-
config_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.yaml')
|
29 |
-
cfg = yaml.safe_load(open(config_path, 'rt'))
|
30 |
-
cfg = OmegaConf.create(cfg)
|
31 |
-
cfg.training_model.predict_only = True
|
32 |
-
cfg.visualizer.kind = 'noop'
|
33 |
-
self.model = load_checkpoint(cfg, os.path.abspath(modelpath), strict=False, map_location='cpu')
|
34 |
-
self.model = self.model.to(self.device)
|
35 |
-
self.model.eval()
|
36 |
-
|
37 |
-
def unload_model(self):
|
38 |
-
if self.model is not None:
|
39 |
-
self.model.cpu()
|
40 |
-
|
41 |
-
def __call__(self, input_image):
|
42 |
-
if self.model is None:
|
43 |
-
self.load_model()
|
44 |
-
self.model.to(self.device)
|
45 |
-
color = np.ascontiguousarray(input_image[:, :, 0:3]).astype(np.float32) / 255.0
|
46 |
-
mask = np.ascontiguousarray(input_image[:, :, 3:4]).astype(np.float32) / 255.0
|
47 |
-
with torch.no_grad():
|
48 |
-
color = torch.from_numpy(color).float().to(self.device)
|
49 |
-
mask = torch.from_numpy(mask).float().to(self.device)
|
50 |
-
mask = (mask > 0.5).float()
|
51 |
-
color = color * (1 - mask)
|
52 |
-
image_feed = torch.cat([color, mask], dim=2)
|
53 |
-
image_feed = rearrange(image_feed, 'h w c -> 1 c h w')
|
54 |
-
result = self.model(image_feed)[0]
|
55 |
-
result = rearrange(result, 'c h w -> h w c')
|
56 |
-
result = result * mask + color * (1 - mask)
|
57 |
-
result *= 255.0
|
58 |
-
return result.detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/config.yaml
DELETED
@@ -1,157 +0,0 @@
|
|
1 |
-
run_title: b18_ffc075_batch8x15
|
2 |
-
training_model:
|
3 |
-
kind: default
|
4 |
-
visualize_each_iters: 1000
|
5 |
-
concat_mask: true
|
6 |
-
store_discr_outputs_for_vis: true
|
7 |
-
losses:
|
8 |
-
l1:
|
9 |
-
weight_missing: 0
|
10 |
-
weight_known: 10
|
11 |
-
perceptual:
|
12 |
-
weight: 0
|
13 |
-
adversarial:
|
14 |
-
kind: r1
|
15 |
-
weight: 10
|
16 |
-
gp_coef: 0.001
|
17 |
-
mask_as_fake_target: true
|
18 |
-
allow_scale_mask: true
|
19 |
-
feature_matching:
|
20 |
-
weight: 100
|
21 |
-
resnet_pl:
|
22 |
-
weight: 30
|
23 |
-
weights_path: ${env:TORCH_HOME}
|
24 |
-
|
25 |
-
optimizers:
|
26 |
-
generator:
|
27 |
-
kind: adam
|
28 |
-
lr: 0.001
|
29 |
-
discriminator:
|
30 |
-
kind: adam
|
31 |
-
lr: 0.0001
|
32 |
-
visualizer:
|
33 |
-
key_order:
|
34 |
-
- image
|
35 |
-
- predicted_image
|
36 |
-
- discr_output_fake
|
37 |
-
- discr_output_real
|
38 |
-
- inpainted
|
39 |
-
rescale_keys:
|
40 |
-
- discr_output_fake
|
41 |
-
- discr_output_real
|
42 |
-
kind: directory
|
43 |
-
outdir: /group-volume/User-Driven-Content-Generation/r.suvorov/inpainting/experiments/r.suvorov_2021-04-30_14-41-12_train_simple_pix2pix2_gap_sdpl_novgg_large_b18_ffc075_batch8x15/samples
|
44 |
-
location:
|
45 |
-
data_root_dir: /group-volume/User-Driven-Content-Generation/datasets/inpainting_data_root_large
|
46 |
-
out_root_dir: /group-volume/User-Driven-Content-Generation/${env:USER}/inpainting/experiments
|
47 |
-
tb_dir: /group-volume/User-Driven-Content-Generation/${env:USER}/inpainting/tb_logs
|
48 |
-
data:
|
49 |
-
batch_size: 15
|
50 |
-
val_batch_size: 2
|
51 |
-
num_workers: 3
|
52 |
-
train:
|
53 |
-
indir: ${location.data_root_dir}/train
|
54 |
-
out_size: 256
|
55 |
-
mask_gen_kwargs:
|
56 |
-
irregular_proba: 1
|
57 |
-
irregular_kwargs:
|
58 |
-
max_angle: 4
|
59 |
-
max_len: 200
|
60 |
-
max_width: 100
|
61 |
-
max_times: 5
|
62 |
-
min_times: 1
|
63 |
-
box_proba: 1
|
64 |
-
box_kwargs:
|
65 |
-
margin: 10
|
66 |
-
bbox_min_size: 30
|
67 |
-
bbox_max_size: 150
|
68 |
-
max_times: 3
|
69 |
-
min_times: 1
|
70 |
-
segm_proba: 0
|
71 |
-
segm_kwargs:
|
72 |
-
confidence_threshold: 0.5
|
73 |
-
max_object_area: 0.5
|
74 |
-
min_mask_area: 0.07
|
75 |
-
downsample_levels: 6
|
76 |
-
num_variants_per_mask: 1
|
77 |
-
rigidness_mode: 1
|
78 |
-
max_foreground_coverage: 0.3
|
79 |
-
max_foreground_intersection: 0.7
|
80 |
-
max_mask_intersection: 0.1
|
81 |
-
max_hidden_area: 0.1
|
82 |
-
max_scale_change: 0.25
|
83 |
-
horizontal_flip: true
|
84 |
-
max_vertical_shift: 0.2
|
85 |
-
position_shuffle: true
|
86 |
-
transform_variant: distortions
|
87 |
-
dataloader_kwargs:
|
88 |
-
batch_size: ${data.batch_size}
|
89 |
-
shuffle: true
|
90 |
-
num_workers: ${data.num_workers}
|
91 |
-
val:
|
92 |
-
indir: ${location.data_root_dir}/val
|
93 |
-
img_suffix: .png
|
94 |
-
dataloader_kwargs:
|
95 |
-
batch_size: ${data.val_batch_size}
|
96 |
-
shuffle: false
|
97 |
-
num_workers: ${data.num_workers}
|
98 |
-
visual_test:
|
99 |
-
indir: ${location.data_root_dir}/korean_test
|
100 |
-
img_suffix: _input.png
|
101 |
-
pad_out_to_modulo: 32
|
102 |
-
dataloader_kwargs:
|
103 |
-
batch_size: 1
|
104 |
-
shuffle: false
|
105 |
-
num_workers: ${data.num_workers}
|
106 |
-
generator:
|
107 |
-
kind: ffc_resnet
|
108 |
-
input_nc: 4
|
109 |
-
output_nc: 3
|
110 |
-
ngf: 64
|
111 |
-
n_downsampling: 3
|
112 |
-
n_blocks: 18
|
113 |
-
add_out_act: sigmoid
|
114 |
-
init_conv_kwargs:
|
115 |
-
ratio_gin: 0
|
116 |
-
ratio_gout: 0
|
117 |
-
enable_lfu: false
|
118 |
-
downsample_conv_kwargs:
|
119 |
-
ratio_gin: ${generator.init_conv_kwargs.ratio_gout}
|
120 |
-
ratio_gout: ${generator.downsample_conv_kwargs.ratio_gin}
|
121 |
-
enable_lfu: false
|
122 |
-
resnet_conv_kwargs:
|
123 |
-
ratio_gin: 0.75
|
124 |
-
ratio_gout: ${generator.resnet_conv_kwargs.ratio_gin}
|
125 |
-
enable_lfu: false
|
126 |
-
discriminator:
|
127 |
-
kind: pix2pixhd_nlayer
|
128 |
-
input_nc: 3
|
129 |
-
ndf: 64
|
130 |
-
n_layers: 4
|
131 |
-
evaluator:
|
132 |
-
kind: default
|
133 |
-
inpainted_key: inpainted
|
134 |
-
integral_kind: ssim_fid100_f1
|
135 |
-
trainer:
|
136 |
-
kwargs:
|
137 |
-
gpus: -1
|
138 |
-
accelerator: ddp
|
139 |
-
max_epochs: 200
|
140 |
-
gradient_clip_val: 1
|
141 |
-
log_gpu_memory: None
|
142 |
-
limit_train_batches: 25000
|
143 |
-
val_check_interval: ${trainer.kwargs.limit_train_batches}
|
144 |
-
log_every_n_steps: 1000
|
145 |
-
precision: 32
|
146 |
-
terminate_on_nan: false
|
147 |
-
check_val_every_n_epoch: 1
|
148 |
-
num_sanity_val_steps: 8
|
149 |
-
limit_val_batches: 1000
|
150 |
-
replace_sampler_ddp: false
|
151 |
-
checkpoint_kwargs:
|
152 |
-
verbose: true
|
153 |
-
save_top_k: 5
|
154 |
-
save_last: true
|
155 |
-
period: 1
|
156 |
-
monitor: val_ssim_fid100_f1_total_mean
|
157 |
-
mode: max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/__init__.py
DELETED
File without changes
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/__init__.py
DELETED
File without changes
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/data/__init__.py
DELETED
File without changes
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/data/masks.py
DELETED
@@ -1,332 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import random
|
3 |
-
import hashlib
|
4 |
-
import logging
|
5 |
-
from enum import Enum
|
6 |
-
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
# from annotator.lama.saicinpainting.evaluation.masks.mask import SegmentationMask
|
11 |
-
from annotator.lama.saicinpainting.utils import LinearRamp
|
12 |
-
|
13 |
-
LOGGER = logging.getLogger(__name__)
|
14 |
-
|
15 |
-
|
16 |
-
class DrawMethod(Enum):
|
17 |
-
LINE = 'line'
|
18 |
-
CIRCLE = 'circle'
|
19 |
-
SQUARE = 'square'
|
20 |
-
|
21 |
-
|
22 |
-
def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10,
|
23 |
-
draw_method=DrawMethod.LINE):
|
24 |
-
draw_method = DrawMethod(draw_method)
|
25 |
-
|
26 |
-
height, width = shape
|
27 |
-
mask = np.zeros((height, width), np.float32)
|
28 |
-
times = np.random.randint(min_times, max_times + 1)
|
29 |
-
for i in range(times):
|
30 |
-
start_x = np.random.randint(width)
|
31 |
-
start_y = np.random.randint(height)
|
32 |
-
for j in range(1 + np.random.randint(5)):
|
33 |
-
angle = 0.01 + np.random.randint(max_angle)
|
34 |
-
if i % 2 == 0:
|
35 |
-
angle = 2 * 3.1415926 - angle
|
36 |
-
length = 10 + np.random.randint(max_len)
|
37 |
-
brush_w = 5 + np.random.randint(max_width)
|
38 |
-
end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width)
|
39 |
-
end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height)
|
40 |
-
if draw_method == DrawMethod.LINE:
|
41 |
-
cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w)
|
42 |
-
elif draw_method == DrawMethod.CIRCLE:
|
43 |
-
cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1)
|
44 |
-
elif draw_method == DrawMethod.SQUARE:
|
45 |
-
radius = brush_w // 2
|
46 |
-
mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1
|
47 |
-
start_x, start_y = end_x, end_y
|
48 |
-
return mask[None, ...]
|
49 |
-
|
50 |
-
|
51 |
-
class RandomIrregularMaskGenerator:
|
52 |
-
def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None,
|
53 |
-
draw_method=DrawMethod.LINE):
|
54 |
-
self.max_angle = max_angle
|
55 |
-
self.max_len = max_len
|
56 |
-
self.max_width = max_width
|
57 |
-
self.min_times = min_times
|
58 |
-
self.max_times = max_times
|
59 |
-
self.draw_method = draw_method
|
60 |
-
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None
|
61 |
-
|
62 |
-
def __call__(self, img, iter_i=None, raw_image=None):
|
63 |
-
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
|
64 |
-
cur_max_len = int(max(1, self.max_len * coef))
|
65 |
-
cur_max_width = int(max(1, self.max_width * coef))
|
66 |
-
cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef)
|
67 |
-
return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len,
|
68 |
-
max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times,
|
69 |
-
draw_method=self.draw_method)
|
70 |
-
|
71 |
-
|
72 |
-
def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3):
|
73 |
-
height, width = shape
|
74 |
-
mask = np.zeros((height, width), np.float32)
|
75 |
-
bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2)
|
76 |
-
times = np.random.randint(min_times, max_times + 1)
|
77 |
-
for i in range(times):
|
78 |
-
box_width = np.random.randint(bbox_min_size, bbox_max_size)
|
79 |
-
box_height = np.random.randint(bbox_min_size, bbox_max_size)
|
80 |
-
start_x = np.random.randint(margin, width - margin - box_width + 1)
|
81 |
-
start_y = np.random.randint(margin, height - margin - box_height + 1)
|
82 |
-
mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1
|
83 |
-
return mask[None, ...]
|
84 |
-
|
85 |
-
|
86 |
-
class RandomRectangleMaskGenerator:
|
87 |
-
def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None):
|
88 |
-
self.margin = margin
|
89 |
-
self.bbox_min_size = bbox_min_size
|
90 |
-
self.bbox_max_size = bbox_max_size
|
91 |
-
self.min_times = min_times
|
92 |
-
self.max_times = max_times
|
93 |
-
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None
|
94 |
-
|
95 |
-
def __call__(self, img, iter_i=None, raw_image=None):
|
96 |
-
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
|
97 |
-
cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef)
|
98 |
-
cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef)
|
99 |
-
return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size,
|
100 |
-
bbox_max_size=cur_bbox_max_size, min_times=self.min_times,
|
101 |
-
max_times=cur_max_times)
|
102 |
-
|
103 |
-
|
104 |
-
class RandomSegmentationMaskGenerator:
|
105 |
-
def __init__(self, **kwargs):
|
106 |
-
self.impl = None # will be instantiated in first call (effectively in subprocess)
|
107 |
-
self.kwargs = kwargs
|
108 |
-
|
109 |
-
def __call__(self, img, iter_i=None, raw_image=None):
|
110 |
-
if self.impl is None:
|
111 |
-
self.impl = SegmentationMask(**self.kwargs)
|
112 |
-
|
113 |
-
masks = self.impl.get_masks(np.transpose(img, (1, 2, 0)))
|
114 |
-
masks = [m for m in masks if len(np.unique(m)) > 1]
|
115 |
-
return np.random.choice(masks)
|
116 |
-
|
117 |
-
|
118 |
-
def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3):
|
119 |
-
height, width = shape
|
120 |
-
mask = np.zeros((height, width), np.float32)
|
121 |
-
step_x = np.random.randint(min_step, max_step + 1)
|
122 |
-
width_x = np.random.randint(min_width, min(step_x, max_width + 1))
|
123 |
-
offset_x = np.random.randint(0, step_x)
|
124 |
-
|
125 |
-
step_y = np.random.randint(min_step, max_step + 1)
|
126 |
-
width_y = np.random.randint(min_width, min(step_y, max_width + 1))
|
127 |
-
offset_y = np.random.randint(0, step_y)
|
128 |
-
|
129 |
-
for dy in range(width_y):
|
130 |
-
mask[offset_y + dy::step_y] = 1
|
131 |
-
for dx in range(width_x):
|
132 |
-
mask[:, offset_x + dx::step_x] = 1
|
133 |
-
return mask[None, ...]
|
134 |
-
|
135 |
-
|
136 |
-
class RandomSuperresMaskGenerator:
|
137 |
-
def __init__(self, **kwargs):
|
138 |
-
self.kwargs = kwargs
|
139 |
-
|
140 |
-
def __call__(self, img, iter_i=None):
|
141 |
-
return make_random_superres_mask(img.shape[1:], **self.kwargs)
|
142 |
-
|
143 |
-
|
144 |
-
class DumbAreaMaskGenerator:
|
145 |
-
min_ratio = 0.1
|
146 |
-
max_ratio = 0.35
|
147 |
-
default_ratio = 0.225
|
148 |
-
|
149 |
-
def __init__(self, is_training):
|
150 |
-
#Parameters:
|
151 |
-
# is_training(bool): If true - random rectangular mask, if false - central square mask
|
152 |
-
self.is_training = is_training
|
153 |
-
|
154 |
-
def _random_vector(self, dimension):
|
155 |
-
if self.is_training:
|
156 |
-
lower_limit = math.sqrt(self.min_ratio)
|
157 |
-
upper_limit = math.sqrt(self.max_ratio)
|
158 |
-
mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension)
|
159 |
-
u = random.randint(0, dimension-mask_side-1)
|
160 |
-
v = u+mask_side
|
161 |
-
else:
|
162 |
-
margin = (math.sqrt(self.default_ratio) / 2) * dimension
|
163 |
-
u = round(dimension/2 - margin)
|
164 |
-
v = round(dimension/2 + margin)
|
165 |
-
return u, v
|
166 |
-
|
167 |
-
def __call__(self, img, iter_i=None, raw_image=None):
|
168 |
-
c, height, width = img.shape
|
169 |
-
mask = np.zeros((height, width), np.float32)
|
170 |
-
x1, x2 = self._random_vector(width)
|
171 |
-
y1, y2 = self._random_vector(height)
|
172 |
-
mask[x1:x2, y1:y2] = 1
|
173 |
-
return mask[None, ...]
|
174 |
-
|
175 |
-
|
176 |
-
class OutpaintingMaskGenerator:
|
177 |
-
def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5,
|
178 |
-
right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False):
|
179 |
-
"""
|
180 |
-
is_fixed_randomness - get identical paddings for the same image if args are the same
|
181 |
-
"""
|
182 |
-
self.min_padding_percent = min_padding_percent
|
183 |
-
self.max_padding_percent = max_padding_percent
|
184 |
-
self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob]
|
185 |
-
self.is_fixed_randomness = is_fixed_randomness
|
186 |
-
|
187 |
-
assert self.min_padding_percent <= self.max_padding_percent
|
188 |
-
assert self.max_padding_percent > 0
|
189 |
-
assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]"
|
190 |
-
assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}"
|
191 |
-
assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}"
|
192 |
-
if len([x for x in self.probs if x > 0]) == 1:
|
193 |
-
LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side")
|
194 |
-
|
195 |
-
def apply_padding(self, mask, coord):
|
196 |
-
mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h),
|
197 |
-
int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1
|
198 |
-
return mask
|
199 |
-
|
200 |
-
def get_padding(self, size):
|
201 |
-
n1 = int(self.min_padding_percent*size)
|
202 |
-
n2 = int(self.max_padding_percent*size)
|
203 |
-
return self.rnd.randint(n1, n2) / size
|
204 |
-
|
205 |
-
@staticmethod
|
206 |
-
def _img2rs(img):
|
207 |
-
arr = np.ascontiguousarray(img.astype(np.uint8))
|
208 |
-
str_hash = hashlib.sha1(arr).hexdigest()
|
209 |
-
res = hash(str_hash)%(2**32)
|
210 |
-
return res
|
211 |
-
|
212 |
-
def __call__(self, img, iter_i=None, raw_image=None):
|
213 |
-
c, self.img_h, self.img_w = img.shape
|
214 |
-
mask = np.zeros((self.img_h, self.img_w), np.float32)
|
215 |
-
at_least_one_mask_applied = False
|
216 |
-
|
217 |
-
if self.is_fixed_randomness:
|
218 |
-
assert raw_image is not None, f"Cant calculate hash on raw_image=None"
|
219 |
-
rs = self._img2rs(raw_image)
|
220 |
-
self.rnd = np.random.RandomState(rs)
|
221 |
-
else:
|
222 |
-
self.rnd = np.random
|
223 |
-
|
224 |
-
coords = [[
|
225 |
-
(0,0),
|
226 |
-
(1,self.get_padding(size=self.img_h))
|
227 |
-
],
|
228 |
-
[
|
229 |
-
(0,0),
|
230 |
-
(self.get_padding(size=self.img_w),1)
|
231 |
-
],
|
232 |
-
[
|
233 |
-
(0,1-self.get_padding(size=self.img_h)),
|
234 |
-
(1,1)
|
235 |
-
],
|
236 |
-
[
|
237 |
-
(1-self.get_padding(size=self.img_w),0),
|
238 |
-
(1,1)
|
239 |
-
]]
|
240 |
-
|
241 |
-
for pp, coord in zip(self.probs, coords):
|
242 |
-
if self.rnd.random() < pp:
|
243 |
-
at_least_one_mask_applied = True
|
244 |
-
mask = self.apply_padding(mask=mask, coord=coord)
|
245 |
-
|
246 |
-
if not at_least_one_mask_applied:
|
247 |
-
idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs))
|
248 |
-
mask = self.apply_padding(mask=mask, coord=coords[idx])
|
249 |
-
return mask[None, ...]
|
250 |
-
|
251 |
-
|
252 |
-
class MixedMaskGenerator:
|
253 |
-
def __init__(self, irregular_proba=1/3, irregular_kwargs=None,
|
254 |
-
box_proba=1/3, box_kwargs=None,
|
255 |
-
segm_proba=1/3, segm_kwargs=None,
|
256 |
-
squares_proba=0, squares_kwargs=None,
|
257 |
-
superres_proba=0, superres_kwargs=None,
|
258 |
-
outpainting_proba=0, outpainting_kwargs=None,
|
259 |
-
invert_proba=0):
|
260 |
-
self.probas = []
|
261 |
-
self.gens = []
|
262 |
-
|
263 |
-
if irregular_proba > 0:
|
264 |
-
self.probas.append(irregular_proba)
|
265 |
-
if irregular_kwargs is None:
|
266 |
-
irregular_kwargs = {}
|
267 |
-
else:
|
268 |
-
irregular_kwargs = dict(irregular_kwargs)
|
269 |
-
irregular_kwargs['draw_method'] = DrawMethod.LINE
|
270 |
-
self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs))
|
271 |
-
|
272 |
-
if box_proba > 0:
|
273 |
-
self.probas.append(box_proba)
|
274 |
-
if box_kwargs is None:
|
275 |
-
box_kwargs = {}
|
276 |
-
self.gens.append(RandomRectangleMaskGenerator(**box_kwargs))
|
277 |
-
|
278 |
-
if segm_proba > 0:
|
279 |
-
self.probas.append(segm_proba)
|
280 |
-
if segm_kwargs is None:
|
281 |
-
segm_kwargs = {}
|
282 |
-
self.gens.append(RandomSegmentationMaskGenerator(**segm_kwargs))
|
283 |
-
|
284 |
-
if squares_proba > 0:
|
285 |
-
self.probas.append(squares_proba)
|
286 |
-
if squares_kwargs is None:
|
287 |
-
squares_kwargs = {}
|
288 |
-
else:
|
289 |
-
squares_kwargs = dict(squares_kwargs)
|
290 |
-
squares_kwargs['draw_method'] = DrawMethod.SQUARE
|
291 |
-
self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs))
|
292 |
-
|
293 |
-
if superres_proba > 0:
|
294 |
-
self.probas.append(superres_proba)
|
295 |
-
if superres_kwargs is None:
|
296 |
-
superres_kwargs = {}
|
297 |
-
self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs))
|
298 |
-
|
299 |
-
if outpainting_proba > 0:
|
300 |
-
self.probas.append(outpainting_proba)
|
301 |
-
if outpainting_kwargs is None:
|
302 |
-
outpainting_kwargs = {}
|
303 |
-
self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs))
|
304 |
-
|
305 |
-
self.probas = np.array(self.probas, dtype='float32')
|
306 |
-
self.probas /= self.probas.sum()
|
307 |
-
self.invert_proba = invert_proba
|
308 |
-
|
309 |
-
def __call__(self, img, iter_i=None, raw_image=None):
|
310 |
-
kind = np.random.choice(len(self.probas), p=self.probas)
|
311 |
-
gen = self.gens[kind]
|
312 |
-
result = gen(img, iter_i=iter_i, raw_image=raw_image)
|
313 |
-
if self.invert_proba > 0 and random.random() < self.invert_proba:
|
314 |
-
result = 1 - result
|
315 |
-
return result
|
316 |
-
|
317 |
-
|
318 |
-
def get_mask_generator(kind, kwargs):
|
319 |
-
if kind is None:
|
320 |
-
kind = "mixed"
|
321 |
-
if kwargs is None:
|
322 |
-
kwargs = {}
|
323 |
-
|
324 |
-
if kind == "mixed":
|
325 |
-
cl = MixedMaskGenerator
|
326 |
-
elif kind == "outpainting":
|
327 |
-
cl = OutpaintingMaskGenerator
|
328 |
-
elif kind == "dumb":
|
329 |
-
cl = DumbAreaMaskGenerator
|
330 |
-
else:
|
331 |
-
raise NotImplementedError(f"No such generator kind = {kind}")
|
332 |
-
return cl(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/__init__.py
DELETED
File without changes
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/adversarial.py
DELETED
@@ -1,177 +0,0 @@
|
|
1 |
-
from typing import Tuple, Dict, Optional
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.nn.functional as F
|
6 |
-
|
7 |
-
|
8 |
-
class BaseAdversarialLoss:
|
9 |
-
def pre_generator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
10 |
-
generator: nn.Module, discriminator: nn.Module):
|
11 |
-
"""
|
12 |
-
Prepare for generator step
|
13 |
-
:param real_batch: Tensor, a batch of real samples
|
14 |
-
:param fake_batch: Tensor, a batch of samples produced by generator
|
15 |
-
:param generator:
|
16 |
-
:param discriminator:
|
17 |
-
:return: None
|
18 |
-
"""
|
19 |
-
|
20 |
-
def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
21 |
-
generator: nn.Module, discriminator: nn.Module):
|
22 |
-
"""
|
23 |
-
Prepare for discriminator step
|
24 |
-
:param real_batch: Tensor, a batch of real samples
|
25 |
-
:param fake_batch: Tensor, a batch of samples produced by generator
|
26 |
-
:param generator:
|
27 |
-
:param discriminator:
|
28 |
-
:return: None
|
29 |
-
"""
|
30 |
-
|
31 |
-
def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
32 |
-
discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
|
33 |
-
mask: Optional[torch.Tensor] = None) \
|
34 |
-
-> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
35 |
-
"""
|
36 |
-
Calculate generator loss
|
37 |
-
:param real_batch: Tensor, a batch of real samples
|
38 |
-
:param fake_batch: Tensor, a batch of samples produced by generator
|
39 |
-
:param discr_real_pred: Tensor, discriminator output for real_batch
|
40 |
-
:param discr_fake_pred: Tensor, discriminator output for fake_batch
|
41 |
-
:param mask: Tensor, actual mask, which was at input of generator when making fake_batch
|
42 |
-
:return: total generator loss along with some values that might be interesting to log
|
43 |
-
"""
|
44 |
-
raise NotImplemented()
|
45 |
-
|
46 |
-
def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
47 |
-
discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
|
48 |
-
mask: Optional[torch.Tensor] = None) \
|
49 |
-
-> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
50 |
-
"""
|
51 |
-
Calculate discriminator loss and call .backward() on it
|
52 |
-
:param real_batch: Tensor, a batch of real samples
|
53 |
-
:param fake_batch: Tensor, a batch of samples produced by generator
|
54 |
-
:param discr_real_pred: Tensor, discriminator output for real_batch
|
55 |
-
:param discr_fake_pred: Tensor, discriminator output for fake_batch
|
56 |
-
:param mask: Tensor, actual mask, which was at input of generator when making fake_batch
|
57 |
-
:return: total discriminator loss along with some values that might be interesting to log
|
58 |
-
"""
|
59 |
-
raise NotImplemented()
|
60 |
-
|
61 |
-
def interpolate_mask(self, mask, shape):
|
62 |
-
assert mask is not None
|
63 |
-
assert self.allow_scale_mask or shape == mask.shape[-2:]
|
64 |
-
if shape != mask.shape[-2:] and self.allow_scale_mask:
|
65 |
-
if self.mask_scale_mode == 'maxpool':
|
66 |
-
mask = F.adaptive_max_pool2d(mask, shape)
|
67 |
-
else:
|
68 |
-
mask = F.interpolate(mask, size=shape, mode=self.mask_scale_mode)
|
69 |
-
return mask
|
70 |
-
|
71 |
-
def make_r1_gp(discr_real_pred, real_batch):
|
72 |
-
if torch.is_grad_enabled():
|
73 |
-
grad_real = torch.autograd.grad(outputs=discr_real_pred.sum(), inputs=real_batch, create_graph=True)[0]
|
74 |
-
grad_penalty = (grad_real.view(grad_real.shape[0], -1).norm(2, dim=1) ** 2).mean()
|
75 |
-
else:
|
76 |
-
grad_penalty = 0
|
77 |
-
real_batch.requires_grad = False
|
78 |
-
|
79 |
-
return grad_penalty
|
80 |
-
|
81 |
-
class NonSaturatingWithR1(BaseAdversarialLoss):
|
82 |
-
def __init__(self, gp_coef=5, weight=1, mask_as_fake_target=False, allow_scale_mask=False,
|
83 |
-
mask_scale_mode='nearest', extra_mask_weight_for_gen=0,
|
84 |
-
use_unmasked_for_gen=True, use_unmasked_for_discr=True):
|
85 |
-
self.gp_coef = gp_coef
|
86 |
-
self.weight = weight
|
87 |
-
# use for discr => use for gen;
|
88 |
-
# otherwise we teach only the discr to pay attention to very small difference
|
89 |
-
assert use_unmasked_for_gen or (not use_unmasked_for_discr)
|
90 |
-
# mask as target => use unmasked for discr:
|
91 |
-
# if we don't care about unmasked regions at all
|
92 |
-
# then it doesn't matter if the value of mask_as_fake_target is true or false
|
93 |
-
assert use_unmasked_for_discr or (not mask_as_fake_target)
|
94 |
-
self.use_unmasked_for_gen = use_unmasked_for_gen
|
95 |
-
self.use_unmasked_for_discr = use_unmasked_for_discr
|
96 |
-
self.mask_as_fake_target = mask_as_fake_target
|
97 |
-
self.allow_scale_mask = allow_scale_mask
|
98 |
-
self.mask_scale_mode = mask_scale_mode
|
99 |
-
self.extra_mask_weight_for_gen = extra_mask_weight_for_gen
|
100 |
-
|
101 |
-
def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
102 |
-
discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
|
103 |
-
mask=None) \
|
104 |
-
-> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
105 |
-
fake_loss = F.softplus(-discr_fake_pred)
|
106 |
-
if (self.mask_as_fake_target and self.extra_mask_weight_for_gen > 0) or \
|
107 |
-
not self.use_unmasked_for_gen: # == if masked region should be treated differently
|
108 |
-
mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:])
|
109 |
-
if not self.use_unmasked_for_gen:
|
110 |
-
fake_loss = fake_loss * mask
|
111 |
-
else:
|
112 |
-
pixel_weights = 1 + mask * self.extra_mask_weight_for_gen
|
113 |
-
fake_loss = fake_loss * pixel_weights
|
114 |
-
|
115 |
-
return fake_loss.mean() * self.weight, dict()
|
116 |
-
|
117 |
-
def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
118 |
-
generator: nn.Module, discriminator: nn.Module):
|
119 |
-
real_batch.requires_grad = True
|
120 |
-
|
121 |
-
def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
122 |
-
discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
|
123 |
-
mask=None) \
|
124 |
-
-> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
125 |
-
|
126 |
-
real_loss = F.softplus(-discr_real_pred)
|
127 |
-
grad_penalty = make_r1_gp(discr_real_pred, real_batch) * self.gp_coef
|
128 |
-
fake_loss = F.softplus(discr_fake_pred)
|
129 |
-
|
130 |
-
if not self.use_unmasked_for_discr or self.mask_as_fake_target:
|
131 |
-
# == if masked region should be treated differently
|
132 |
-
mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:])
|
133 |
-
# use_unmasked_for_discr=False only makes sense for fakes;
|
134 |
-
# for reals there is no difference beetween two regions
|
135 |
-
fake_loss = fake_loss * mask
|
136 |
-
if self.mask_as_fake_target:
|
137 |
-
fake_loss = fake_loss + (1 - mask) * F.softplus(-discr_fake_pred)
|
138 |
-
|
139 |
-
sum_discr_loss = real_loss + grad_penalty + fake_loss
|
140 |
-
metrics = dict(discr_real_out=discr_real_pred.mean(),
|
141 |
-
discr_fake_out=discr_fake_pred.mean(),
|
142 |
-
discr_real_gp=grad_penalty)
|
143 |
-
return sum_discr_loss.mean(), metrics
|
144 |
-
|
145 |
-
class BCELoss(BaseAdversarialLoss):
|
146 |
-
def __init__(self, weight):
|
147 |
-
self.weight = weight
|
148 |
-
self.bce_loss = nn.BCEWithLogitsLoss()
|
149 |
-
|
150 |
-
def generator_loss(self, discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
151 |
-
real_mask_gt = torch.zeros(discr_fake_pred.shape).to(discr_fake_pred.device)
|
152 |
-
fake_loss = self.bce_loss(discr_fake_pred, real_mask_gt) * self.weight
|
153 |
-
return fake_loss, dict()
|
154 |
-
|
155 |
-
def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
|
156 |
-
generator: nn.Module, discriminator: nn.Module):
|
157 |
-
real_batch.requires_grad = True
|
158 |
-
|
159 |
-
def discriminator_loss(self,
|
160 |
-
mask: torch.Tensor,
|
161 |
-
discr_real_pred: torch.Tensor,
|
162 |
-
discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
163 |
-
|
164 |
-
real_mask_gt = torch.zeros(discr_real_pred.shape).to(discr_real_pred.device)
|
165 |
-
sum_discr_loss = (self.bce_loss(discr_real_pred, real_mask_gt) + self.bce_loss(discr_fake_pred, mask)) / 2
|
166 |
-
metrics = dict(discr_real_out=discr_real_pred.mean(),
|
167 |
-
discr_fake_out=discr_fake_pred.mean(),
|
168 |
-
discr_real_gp=0)
|
169 |
-
return sum_discr_loss, metrics
|
170 |
-
|
171 |
-
|
172 |
-
def make_discrim_loss(kind, **kwargs):
|
173 |
-
if kind == 'r1':
|
174 |
-
return NonSaturatingWithR1(**kwargs)
|
175 |
-
elif kind == 'bce':
|
176 |
-
return BCELoss(**kwargs)
|
177 |
-
raise ValueError(f'Unknown adversarial loss kind {kind}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/constants.py
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
weights = {"ade20k":
|
2 |
-
[6.34517766497462,
|
3 |
-
9.328358208955224,
|
4 |
-
11.389521640091116,
|
5 |
-
16.10305958132045,
|
6 |
-
20.833333333333332,
|
7 |
-
22.22222222222222,
|
8 |
-
25.125628140703515,
|
9 |
-
43.29004329004329,
|
10 |
-
50.5050505050505,
|
11 |
-
54.6448087431694,
|
12 |
-
55.24861878453038,
|
13 |
-
60.24096385542168,
|
14 |
-
62.5,
|
15 |
-
66.2251655629139,
|
16 |
-
84.74576271186442,
|
17 |
-
90.90909090909092,
|
18 |
-
91.74311926605505,
|
19 |
-
96.15384615384616,
|
20 |
-
96.15384615384616,
|
21 |
-
97.08737864077669,
|
22 |
-
102.04081632653062,
|
23 |
-
135.13513513513513,
|
24 |
-
149.2537313432836,
|
25 |
-
153.84615384615384,
|
26 |
-
163.93442622950818,
|
27 |
-
166.66666666666666,
|
28 |
-
188.67924528301887,
|
29 |
-
192.30769230769232,
|
30 |
-
217.3913043478261,
|
31 |
-
227.27272727272725,
|
32 |
-
227.27272727272725,
|
33 |
-
227.27272727272725,
|
34 |
-
303.03030303030306,
|
35 |
-
322.5806451612903,
|
36 |
-
333.3333333333333,
|
37 |
-
370.3703703703703,
|
38 |
-
384.61538461538464,
|
39 |
-
416.6666666666667,
|
40 |
-
416.6666666666667,
|
41 |
-
434.7826086956522,
|
42 |
-
434.7826086956522,
|
43 |
-
454.5454545454545,
|
44 |
-
454.5454545454545,
|
45 |
-
500.0,
|
46 |
-
526.3157894736842,
|
47 |
-
526.3157894736842,
|
48 |
-
555.5555555555555,
|
49 |
-
555.5555555555555,
|
50 |
-
555.5555555555555,
|
51 |
-
555.5555555555555,
|
52 |
-
555.5555555555555,
|
53 |
-
555.5555555555555,
|
54 |
-
555.5555555555555,
|
55 |
-
588.2352941176471,
|
56 |
-
588.2352941176471,
|
57 |
-
588.2352941176471,
|
58 |
-
588.2352941176471,
|
59 |
-
588.2352941176471,
|
60 |
-
666.6666666666666,
|
61 |
-
666.6666666666666,
|
62 |
-
666.6666666666666,
|
63 |
-
666.6666666666666,
|
64 |
-
714.2857142857143,
|
65 |
-
714.2857142857143,
|
66 |
-
714.2857142857143,
|
67 |
-
714.2857142857143,
|
68 |
-
714.2857142857143,
|
69 |
-
769.2307692307693,
|
70 |
-
769.2307692307693,
|
71 |
-
769.2307692307693,
|
72 |
-
833.3333333333334,
|
73 |
-
833.3333333333334,
|
74 |
-
833.3333333333334,
|
75 |
-
833.3333333333334,
|
76 |
-
909.090909090909,
|
77 |
-
1000.0,
|
78 |
-
1111.111111111111,
|
79 |
-
1111.111111111111,
|
80 |
-
1111.111111111111,
|
81 |
-
1111.111111111111,
|
82 |
-
1111.111111111111,
|
83 |
-
1250.0,
|
84 |
-
1250.0,
|
85 |
-
1250.0,
|
86 |
-
1250.0,
|
87 |
-
1250.0,
|
88 |
-
1428.5714285714287,
|
89 |
-
1428.5714285714287,
|
90 |
-
1428.5714285714287,
|
91 |
-
1428.5714285714287,
|
92 |
-
1428.5714285714287,
|
93 |
-
1428.5714285714287,
|
94 |
-
1428.5714285714287,
|
95 |
-
1666.6666666666667,
|
96 |
-
1666.6666666666667,
|
97 |
-
1666.6666666666667,
|
98 |
-
1666.6666666666667,
|
99 |
-
1666.6666666666667,
|
100 |
-
1666.6666666666667,
|
101 |
-
1666.6666666666667,
|
102 |
-
1666.6666666666667,
|
103 |
-
1666.6666666666667,
|
104 |
-
1666.6666666666667,
|
105 |
-
1666.6666666666667,
|
106 |
-
2000.0,
|
107 |
-
2000.0,
|
108 |
-
2000.0,
|
109 |
-
2000.0,
|
110 |
-
2000.0,
|
111 |
-
2000.0,
|
112 |
-
2000.0,
|
113 |
-
2000.0,
|
114 |
-
2000.0,
|
115 |
-
2000.0,
|
116 |
-
2000.0,
|
117 |
-
2000.0,
|
118 |
-
2000.0,
|
119 |
-
2000.0,
|
120 |
-
2000.0,
|
121 |
-
2000.0,
|
122 |
-
2000.0,
|
123 |
-
2500.0,
|
124 |
-
2500.0,
|
125 |
-
2500.0,
|
126 |
-
2500.0,
|
127 |
-
2500.0,
|
128 |
-
2500.0,
|
129 |
-
2500.0,
|
130 |
-
2500.0,
|
131 |
-
2500.0,
|
132 |
-
2500.0,
|
133 |
-
2500.0,
|
134 |
-
2500.0,
|
135 |
-
2500.0,
|
136 |
-
3333.3333333333335,
|
137 |
-
3333.3333333333335,
|
138 |
-
3333.3333333333335,
|
139 |
-
3333.3333333333335,
|
140 |
-
3333.3333333333335,
|
141 |
-
3333.3333333333335,
|
142 |
-
3333.3333333333335,
|
143 |
-
3333.3333333333335,
|
144 |
-
3333.3333333333335,
|
145 |
-
3333.3333333333335,
|
146 |
-
3333.3333333333335,
|
147 |
-
3333.3333333333335,
|
148 |
-
3333.3333333333335,
|
149 |
-
5000.0,
|
150 |
-
5000.0,
|
151 |
-
5000.0]
|
152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/distance_weighting.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torchvision
|
5 |
-
|
6 |
-
from annotator.lama.saicinpainting.training.losses.perceptual import IMAGENET_STD, IMAGENET_MEAN
|
7 |
-
|
8 |
-
|
9 |
-
def dummy_distance_weighter(real_img, pred_img, mask):
|
10 |
-
return mask
|
11 |
-
|
12 |
-
|
13 |
-
def get_gauss_kernel(kernel_size, width_factor=1):
|
14 |
-
coords = torch.stack(torch.meshgrid(torch.arange(kernel_size),
|
15 |
-
torch.arange(kernel_size)),
|
16 |
-
dim=0).float()
|
17 |
-
diff = torch.exp(-((coords - kernel_size // 2) ** 2).sum(0) / kernel_size / width_factor)
|
18 |
-
diff /= diff.sum()
|
19 |
-
return diff
|
20 |
-
|
21 |
-
|
22 |
-
class BlurMask(nn.Module):
|
23 |
-
def __init__(self, kernel_size=5, width_factor=1):
|
24 |
-
super().__init__()
|
25 |
-
self.filter = nn.Conv2d(1, 1, kernel_size, padding=kernel_size // 2, padding_mode='replicate', bias=False)
|
26 |
-
self.filter.weight.data.copy_(get_gauss_kernel(kernel_size, width_factor=width_factor))
|
27 |
-
|
28 |
-
def forward(self, real_img, pred_img, mask):
|
29 |
-
with torch.no_grad():
|
30 |
-
result = self.filter(mask) * mask
|
31 |
-
return result
|
32 |
-
|
33 |
-
|
34 |
-
class EmulatedEDTMask(nn.Module):
|
35 |
-
def __init__(self, dilate_kernel_size=5, blur_kernel_size=5, width_factor=1):
|
36 |
-
super().__init__()
|
37 |
-
self.dilate_filter = nn.Conv2d(1, 1, dilate_kernel_size, padding=dilate_kernel_size// 2, padding_mode='replicate',
|
38 |
-
bias=False)
|
39 |
-
self.dilate_filter.weight.data.copy_(torch.ones(1, 1, dilate_kernel_size, dilate_kernel_size, dtype=torch.float))
|
40 |
-
self.blur_filter = nn.Conv2d(1, 1, blur_kernel_size, padding=blur_kernel_size // 2, padding_mode='replicate', bias=False)
|
41 |
-
self.blur_filter.weight.data.copy_(get_gauss_kernel(blur_kernel_size, width_factor=width_factor))
|
42 |
-
|
43 |
-
def forward(self, real_img, pred_img, mask):
|
44 |
-
with torch.no_grad():
|
45 |
-
known_mask = 1 - mask
|
46 |
-
dilated_known_mask = (self.dilate_filter(known_mask) > 1).float()
|
47 |
-
result = self.blur_filter(1 - dilated_known_mask) * mask
|
48 |
-
return result
|
49 |
-
|
50 |
-
|
51 |
-
class PropagatePerceptualSim(nn.Module):
|
52 |
-
def __init__(self, level=2, max_iters=10, temperature=500, erode_mask_size=3):
|
53 |
-
super().__init__()
|
54 |
-
vgg = torchvision.models.vgg19(pretrained=True).features
|
55 |
-
vgg_avg_pooling = []
|
56 |
-
|
57 |
-
for weights in vgg.parameters():
|
58 |
-
weights.requires_grad = False
|
59 |
-
|
60 |
-
cur_level_i = 0
|
61 |
-
for module in vgg.modules():
|
62 |
-
if module.__class__.__name__ == 'Sequential':
|
63 |
-
continue
|
64 |
-
elif module.__class__.__name__ == 'MaxPool2d':
|
65 |
-
vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0))
|
66 |
-
else:
|
67 |
-
vgg_avg_pooling.append(module)
|
68 |
-
if module.__class__.__name__ == 'ReLU':
|
69 |
-
cur_level_i += 1
|
70 |
-
if cur_level_i == level:
|
71 |
-
break
|
72 |
-
|
73 |
-
self.features = nn.Sequential(*vgg_avg_pooling)
|
74 |
-
|
75 |
-
self.max_iters = max_iters
|
76 |
-
self.temperature = temperature
|
77 |
-
self.do_erode = erode_mask_size > 0
|
78 |
-
if self.do_erode:
|
79 |
-
self.erode_mask = nn.Conv2d(1, 1, erode_mask_size, padding=erode_mask_size // 2, bias=False)
|
80 |
-
self.erode_mask.weight.data.fill_(1)
|
81 |
-
|
82 |
-
def forward(self, real_img, pred_img, mask):
|
83 |
-
with torch.no_grad():
|
84 |
-
real_img = (real_img - IMAGENET_MEAN.to(real_img)) / IMAGENET_STD.to(real_img)
|
85 |
-
real_feats = self.features(real_img)
|
86 |
-
|
87 |
-
vertical_sim = torch.exp(-(real_feats[:, :, 1:] - real_feats[:, :, :-1]).pow(2).sum(1, keepdim=True)
|
88 |
-
/ self.temperature)
|
89 |
-
horizontal_sim = torch.exp(-(real_feats[:, :, :, 1:] - real_feats[:, :, :, :-1]).pow(2).sum(1, keepdim=True)
|
90 |
-
/ self.temperature)
|
91 |
-
|
92 |
-
mask_scaled = F.interpolate(mask, size=real_feats.shape[-2:], mode='bilinear', align_corners=False)
|
93 |
-
if self.do_erode:
|
94 |
-
mask_scaled = (self.erode_mask(mask_scaled) > 1).float()
|
95 |
-
|
96 |
-
cur_knowness = 1 - mask_scaled
|
97 |
-
|
98 |
-
for iter_i in range(self.max_iters):
|
99 |
-
new_top_knowness = F.pad(cur_knowness[:, :, :-1] * vertical_sim, (0, 0, 1, 0), mode='replicate')
|
100 |
-
new_bottom_knowness = F.pad(cur_knowness[:, :, 1:] * vertical_sim, (0, 0, 0, 1), mode='replicate')
|
101 |
-
|
102 |
-
new_left_knowness = F.pad(cur_knowness[:, :, :, :-1] * horizontal_sim, (1, 0, 0, 0), mode='replicate')
|
103 |
-
new_right_knowness = F.pad(cur_knowness[:, :, :, 1:] * horizontal_sim, (0, 1, 0, 0), mode='replicate')
|
104 |
-
|
105 |
-
new_knowness = torch.stack([new_top_knowness, new_bottom_knowness,
|
106 |
-
new_left_knowness, new_right_knowness],
|
107 |
-
dim=0).max(0).values
|
108 |
-
|
109 |
-
cur_knowness = torch.max(cur_knowness, new_knowness)
|
110 |
-
|
111 |
-
cur_knowness = F.interpolate(cur_knowness, size=mask.shape[-2:], mode='bilinear')
|
112 |
-
result = torch.min(mask, 1 - cur_knowness)
|
113 |
-
|
114 |
-
return result
|
115 |
-
|
116 |
-
|
117 |
-
def make_mask_distance_weighter(kind='none', **kwargs):
|
118 |
-
if kind == 'none':
|
119 |
-
return dummy_distance_weighter
|
120 |
-
if kind == 'blur':
|
121 |
-
return BlurMask(**kwargs)
|
122 |
-
if kind == 'edt':
|
123 |
-
return EmulatedEDTMask(**kwargs)
|
124 |
-
if kind == 'pps':
|
125 |
-
return PropagatePerceptualSim(**kwargs)
|
126 |
-
raise ValueError(f'Unknown mask distance weighter kind {kind}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/feature_matching.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
|
7 |
-
def masked_l2_loss(pred, target, mask, weight_known, weight_missing):
|
8 |
-
per_pixel_l2 = F.mse_loss(pred, target, reduction='none')
|
9 |
-
pixel_weights = mask * weight_missing + (1 - mask) * weight_known
|
10 |
-
return (pixel_weights * per_pixel_l2).mean()
|
11 |
-
|
12 |
-
|
13 |
-
def masked_l1_loss(pred, target, mask, weight_known, weight_missing):
|
14 |
-
per_pixel_l1 = F.l1_loss(pred, target, reduction='none')
|
15 |
-
pixel_weights = mask * weight_missing + (1 - mask) * weight_known
|
16 |
-
return (pixel_weights * per_pixel_l1).mean()
|
17 |
-
|
18 |
-
|
19 |
-
def feature_matching_loss(fake_features: List[torch.Tensor], target_features: List[torch.Tensor], mask=None):
|
20 |
-
if mask is None:
|
21 |
-
res = torch.stack([F.mse_loss(fake_feat, target_feat)
|
22 |
-
for fake_feat, target_feat in zip(fake_features, target_features)]).mean()
|
23 |
-
else:
|
24 |
-
res = 0
|
25 |
-
norm = 0
|
26 |
-
for fake_feat, target_feat in zip(fake_features, target_features):
|
27 |
-
cur_mask = F.interpolate(mask, size=fake_feat.shape[-2:], mode='bilinear', align_corners=False)
|
28 |
-
error_weights = 1 - cur_mask
|
29 |
-
cur_val = ((fake_feat - target_feat).pow(2) * error_weights).mean()
|
30 |
-
res = res + cur_val
|
31 |
-
norm += 1
|
32 |
-
res = res / norm
|
33 |
-
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/perceptual.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torchvision
|
5 |
-
|
6 |
-
# from models.ade20k import ModelBuilder
|
7 |
-
from annotator.lama.saicinpainting.utils import check_and_warn_input_range
|
8 |
-
|
9 |
-
|
10 |
-
IMAGENET_MEAN = torch.FloatTensor([0.485, 0.456, 0.406])[None, :, None, None]
|
11 |
-
IMAGENET_STD = torch.FloatTensor([0.229, 0.224, 0.225])[None, :, None, None]
|
12 |
-
|
13 |
-
|
14 |
-
class PerceptualLoss(nn.Module):
|
15 |
-
def __init__(self, normalize_inputs=True):
|
16 |
-
super(PerceptualLoss, self).__init__()
|
17 |
-
|
18 |
-
self.normalize_inputs = normalize_inputs
|
19 |
-
self.mean_ = IMAGENET_MEAN
|
20 |
-
self.std_ = IMAGENET_STD
|
21 |
-
|
22 |
-
vgg = torchvision.models.vgg19(pretrained=True).features
|
23 |
-
vgg_avg_pooling = []
|
24 |
-
|
25 |
-
for weights in vgg.parameters():
|
26 |
-
weights.requires_grad = False
|
27 |
-
|
28 |
-
for module in vgg.modules():
|
29 |
-
if module.__class__.__name__ == 'Sequential':
|
30 |
-
continue
|
31 |
-
elif module.__class__.__name__ == 'MaxPool2d':
|
32 |
-
vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0))
|
33 |
-
else:
|
34 |
-
vgg_avg_pooling.append(module)
|
35 |
-
|
36 |
-
self.vgg = nn.Sequential(*vgg_avg_pooling)
|
37 |
-
|
38 |
-
def do_normalize_inputs(self, x):
|
39 |
-
return (x - self.mean_.to(x.device)) / self.std_.to(x.device)
|
40 |
-
|
41 |
-
def partial_losses(self, input, target, mask=None):
|
42 |
-
check_and_warn_input_range(target, 0, 1, 'PerceptualLoss target in partial_losses')
|
43 |
-
|
44 |
-
# we expect input and target to be in [0, 1] range
|
45 |
-
losses = []
|
46 |
-
|
47 |
-
if self.normalize_inputs:
|
48 |
-
features_input = self.do_normalize_inputs(input)
|
49 |
-
features_target = self.do_normalize_inputs(target)
|
50 |
-
else:
|
51 |
-
features_input = input
|
52 |
-
features_target = target
|
53 |
-
|
54 |
-
for layer in self.vgg[:30]:
|
55 |
-
|
56 |
-
features_input = layer(features_input)
|
57 |
-
features_target = layer(features_target)
|
58 |
-
|
59 |
-
if layer.__class__.__name__ == 'ReLU':
|
60 |
-
loss = F.mse_loss(features_input, features_target, reduction='none')
|
61 |
-
|
62 |
-
if mask is not None:
|
63 |
-
cur_mask = F.interpolate(mask, size=features_input.shape[-2:],
|
64 |
-
mode='bilinear', align_corners=False)
|
65 |
-
loss = loss * (1 - cur_mask)
|
66 |
-
|
67 |
-
loss = loss.mean(dim=tuple(range(1, len(loss.shape))))
|
68 |
-
losses.append(loss)
|
69 |
-
|
70 |
-
return losses
|
71 |
-
|
72 |
-
def forward(self, input, target, mask=None):
|
73 |
-
losses = self.partial_losses(input, target, mask=mask)
|
74 |
-
return torch.stack(losses).sum(dim=0)
|
75 |
-
|
76 |
-
def get_global_features(self, input):
|
77 |
-
check_and_warn_input_range(input, 0, 1, 'PerceptualLoss input in get_global_features')
|
78 |
-
|
79 |
-
if self.normalize_inputs:
|
80 |
-
features_input = self.do_normalize_inputs(input)
|
81 |
-
else:
|
82 |
-
features_input = input
|
83 |
-
|
84 |
-
features_input = self.vgg(features_input)
|
85 |
-
return features_input
|
86 |
-
|
87 |
-
|
88 |
-
class ResNetPL(nn.Module):
|
89 |
-
def __init__(self, weight=1,
|
90 |
-
weights_path=None, arch_encoder='resnet50dilated', segmentation=True):
|
91 |
-
super().__init__()
|
92 |
-
self.impl = ModelBuilder.get_encoder(weights_path=weights_path,
|
93 |
-
arch_encoder=arch_encoder,
|
94 |
-
arch_decoder='ppm_deepsup',
|
95 |
-
fc_dim=2048,
|
96 |
-
segmentation=segmentation)
|
97 |
-
self.impl.eval()
|
98 |
-
for w in self.impl.parameters():
|
99 |
-
w.requires_grad_(False)
|
100 |
-
|
101 |
-
self.weight = weight
|
102 |
-
|
103 |
-
def forward(self, pred, target):
|
104 |
-
pred = (pred - IMAGENET_MEAN.to(pred)) / IMAGENET_STD.to(pred)
|
105 |
-
target = (target - IMAGENET_MEAN.to(target)) / IMAGENET_STD.to(target)
|
106 |
-
|
107 |
-
pred_feats = self.impl(pred, return_feature_maps=True)
|
108 |
-
target_feats = self.impl(target, return_feature_maps=True)
|
109 |
-
|
110 |
-
result = torch.stack([F.mse_loss(cur_pred, cur_target)
|
111 |
-
for cur_pred, cur_target
|
112 |
-
in zip(pred_feats, target_feats)]).sum() * self.weight
|
113 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/segmentation.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
from .constants import weights as constant_weights
|
6 |
-
|
7 |
-
|
8 |
-
class CrossEntropy2d(nn.Module):
|
9 |
-
def __init__(self, reduction="mean", ignore_label=255, weights=None, *args, **kwargs):
|
10 |
-
"""
|
11 |
-
weight (Tensor, optional): a manual rescaling weight given to each class.
|
12 |
-
If given, has to be a Tensor of size "nclasses"
|
13 |
-
"""
|
14 |
-
super(CrossEntropy2d, self).__init__()
|
15 |
-
self.reduction = reduction
|
16 |
-
self.ignore_label = ignore_label
|
17 |
-
self.weights = weights
|
18 |
-
if self.weights is not None:
|
19 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
-
self.weights = torch.FloatTensor(constant_weights[weights]).to(device)
|
21 |
-
|
22 |
-
def forward(self, predict, target):
|
23 |
-
"""
|
24 |
-
Args:
|
25 |
-
predict:(n, c, h, w)
|
26 |
-
target:(n, 1, h, w)
|
27 |
-
"""
|
28 |
-
target = target.long()
|
29 |
-
assert not target.requires_grad
|
30 |
-
assert predict.dim() == 4, "{0}".format(predict.size())
|
31 |
-
assert target.dim() == 4, "{0}".format(target.size())
|
32 |
-
assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0))
|
33 |
-
assert target.size(1) == 1, "{0}".format(target.size(1))
|
34 |
-
assert predict.size(2) == target.size(2), "{0} vs {1} ".format(predict.size(2), target.size(2))
|
35 |
-
assert predict.size(3) == target.size(3), "{0} vs {1} ".format(predict.size(3), target.size(3))
|
36 |
-
target = target.squeeze(1)
|
37 |
-
n, c, h, w = predict.size()
|
38 |
-
target_mask = (target >= 0) * (target != self.ignore_label)
|
39 |
-
target = target[target_mask]
|
40 |
-
predict = predict.transpose(1, 2).transpose(2, 3).contiguous()
|
41 |
-
predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c)
|
42 |
-
loss = F.cross_entropy(predict, target, weight=self.weights, reduction=self.reduction)
|
43 |
-
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/losses/style_loss.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torchvision.models as models
|
4 |
-
|
5 |
-
|
6 |
-
class PerceptualLoss(nn.Module):
|
7 |
-
r"""
|
8 |
-
Perceptual loss, VGG-based
|
9 |
-
https://arxiv.org/abs/1603.08155
|
10 |
-
https://github.com/dxyang/StyleTransfer/blob/master/utils.py
|
11 |
-
"""
|
12 |
-
|
13 |
-
def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]):
|
14 |
-
super(PerceptualLoss, self).__init__()
|
15 |
-
self.add_module('vgg', VGG19())
|
16 |
-
self.criterion = torch.nn.L1Loss()
|
17 |
-
self.weights = weights
|
18 |
-
|
19 |
-
def __call__(self, x, y):
|
20 |
-
# Compute features
|
21 |
-
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
|
22 |
-
|
23 |
-
content_loss = 0.0
|
24 |
-
content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1'])
|
25 |
-
content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1'])
|
26 |
-
content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1'])
|
27 |
-
content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1'])
|
28 |
-
content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1'])
|
29 |
-
|
30 |
-
|
31 |
-
return content_loss
|
32 |
-
|
33 |
-
|
34 |
-
class VGG19(torch.nn.Module):
|
35 |
-
def __init__(self):
|
36 |
-
super(VGG19, self).__init__()
|
37 |
-
features = models.vgg19(pretrained=True).features
|
38 |
-
self.relu1_1 = torch.nn.Sequential()
|
39 |
-
self.relu1_2 = torch.nn.Sequential()
|
40 |
-
|
41 |
-
self.relu2_1 = torch.nn.Sequential()
|
42 |
-
self.relu2_2 = torch.nn.Sequential()
|
43 |
-
|
44 |
-
self.relu3_1 = torch.nn.Sequential()
|
45 |
-
self.relu3_2 = torch.nn.Sequential()
|
46 |
-
self.relu3_3 = torch.nn.Sequential()
|
47 |
-
self.relu3_4 = torch.nn.Sequential()
|
48 |
-
|
49 |
-
self.relu4_1 = torch.nn.Sequential()
|
50 |
-
self.relu4_2 = torch.nn.Sequential()
|
51 |
-
self.relu4_3 = torch.nn.Sequential()
|
52 |
-
self.relu4_4 = torch.nn.Sequential()
|
53 |
-
|
54 |
-
self.relu5_1 = torch.nn.Sequential()
|
55 |
-
self.relu5_2 = torch.nn.Sequential()
|
56 |
-
self.relu5_3 = torch.nn.Sequential()
|
57 |
-
self.relu5_4 = torch.nn.Sequential()
|
58 |
-
|
59 |
-
for x in range(2):
|
60 |
-
self.relu1_1.add_module(str(x), features[x])
|
61 |
-
|
62 |
-
for x in range(2, 4):
|
63 |
-
self.relu1_2.add_module(str(x), features[x])
|
64 |
-
|
65 |
-
for x in range(4, 7):
|
66 |
-
self.relu2_1.add_module(str(x), features[x])
|
67 |
-
|
68 |
-
for x in range(7, 9):
|
69 |
-
self.relu2_2.add_module(str(x), features[x])
|
70 |
-
|
71 |
-
for x in range(9, 12):
|
72 |
-
self.relu3_1.add_module(str(x), features[x])
|
73 |
-
|
74 |
-
for x in range(12, 14):
|
75 |
-
self.relu3_2.add_module(str(x), features[x])
|
76 |
-
|
77 |
-
for x in range(14, 16):
|
78 |
-
self.relu3_2.add_module(str(x), features[x])
|
79 |
-
|
80 |
-
for x in range(16, 18):
|
81 |
-
self.relu3_4.add_module(str(x), features[x])
|
82 |
-
|
83 |
-
for x in range(18, 21):
|
84 |
-
self.relu4_1.add_module(str(x), features[x])
|
85 |
-
|
86 |
-
for x in range(21, 23):
|
87 |
-
self.relu4_2.add_module(str(x), features[x])
|
88 |
-
|
89 |
-
for x in range(23, 25):
|
90 |
-
self.relu4_3.add_module(str(x), features[x])
|
91 |
-
|
92 |
-
for x in range(25, 27):
|
93 |
-
self.relu4_4.add_module(str(x), features[x])
|
94 |
-
|
95 |
-
for x in range(27, 30):
|
96 |
-
self.relu5_1.add_module(str(x), features[x])
|
97 |
-
|
98 |
-
for x in range(30, 32):
|
99 |
-
self.relu5_2.add_module(str(x), features[x])
|
100 |
-
|
101 |
-
for x in range(32, 34):
|
102 |
-
self.relu5_3.add_module(str(x), features[x])
|
103 |
-
|
104 |
-
for x in range(34, 36):
|
105 |
-
self.relu5_4.add_module(str(x), features[x])
|
106 |
-
|
107 |
-
# don't need the gradients, just want the features
|
108 |
-
for param in self.parameters():
|
109 |
-
param.requires_grad = False
|
110 |
-
|
111 |
-
def forward(self, x):
|
112 |
-
relu1_1 = self.relu1_1(x)
|
113 |
-
relu1_2 = self.relu1_2(relu1_1)
|
114 |
-
|
115 |
-
relu2_1 = self.relu2_1(relu1_2)
|
116 |
-
relu2_2 = self.relu2_2(relu2_1)
|
117 |
-
|
118 |
-
relu3_1 = self.relu3_1(relu2_2)
|
119 |
-
relu3_2 = self.relu3_2(relu3_1)
|
120 |
-
relu3_3 = self.relu3_3(relu3_2)
|
121 |
-
relu3_4 = self.relu3_4(relu3_3)
|
122 |
-
|
123 |
-
relu4_1 = self.relu4_1(relu3_4)
|
124 |
-
relu4_2 = self.relu4_2(relu4_1)
|
125 |
-
relu4_3 = self.relu4_3(relu4_2)
|
126 |
-
relu4_4 = self.relu4_4(relu4_3)
|
127 |
-
|
128 |
-
relu5_1 = self.relu5_1(relu4_4)
|
129 |
-
relu5_2 = self.relu5_2(relu5_1)
|
130 |
-
relu5_3 = self.relu5_3(relu5_2)
|
131 |
-
relu5_4 = self.relu5_4(relu5_3)
|
132 |
-
|
133 |
-
out = {
|
134 |
-
'relu1_1': relu1_1,
|
135 |
-
'relu1_2': relu1_2,
|
136 |
-
|
137 |
-
'relu2_1': relu2_1,
|
138 |
-
'relu2_2': relu2_2,
|
139 |
-
|
140 |
-
'relu3_1': relu3_1,
|
141 |
-
'relu3_2': relu3_2,
|
142 |
-
'relu3_3': relu3_3,
|
143 |
-
'relu3_4': relu3_4,
|
144 |
-
|
145 |
-
'relu4_1': relu4_1,
|
146 |
-
'relu4_2': relu4_2,
|
147 |
-
'relu4_3': relu4_3,
|
148 |
-
'relu4_4': relu4_4,
|
149 |
-
|
150 |
-
'relu5_1': relu5_1,
|
151 |
-
'relu5_2': relu5_2,
|
152 |
-
'relu5_3': relu5_3,
|
153 |
-
'relu5_4': relu5_4,
|
154 |
-
}
|
155 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/__init__.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
|
3 |
-
from annotator.lama.saicinpainting.training.modules.ffc import FFCResNetGenerator
|
4 |
-
from annotator.lama.saicinpainting.training.modules.pix2pixhd import GlobalGenerator, MultiDilatedGlobalGenerator, \
|
5 |
-
NLayerDiscriminator, MultidilatedNLayerDiscriminator
|
6 |
-
|
7 |
-
def make_generator(config, kind, **kwargs):
|
8 |
-
logging.info(f'Make generator {kind}')
|
9 |
-
|
10 |
-
if kind == 'pix2pixhd_multidilated':
|
11 |
-
return MultiDilatedGlobalGenerator(**kwargs)
|
12 |
-
|
13 |
-
if kind == 'pix2pixhd_global':
|
14 |
-
return GlobalGenerator(**kwargs)
|
15 |
-
|
16 |
-
if kind == 'ffc_resnet':
|
17 |
-
return FFCResNetGenerator(**kwargs)
|
18 |
-
|
19 |
-
raise ValueError(f'Unknown generator kind {kind}')
|
20 |
-
|
21 |
-
|
22 |
-
def make_discriminator(kind, **kwargs):
|
23 |
-
logging.info(f'Make discriminator {kind}')
|
24 |
-
|
25 |
-
if kind == 'pix2pixhd_nlayer_multidilated':
|
26 |
-
return MultidilatedNLayerDiscriminator(**kwargs)
|
27 |
-
|
28 |
-
if kind == 'pix2pixhd_nlayer':
|
29 |
-
return NLayerDiscriminator(**kwargs)
|
30 |
-
|
31 |
-
raise ValueError(f'Unknown discriminator kind {kind}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/base.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
import abc
|
2 |
-
from typing import Tuple, List
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
|
7 |
-
from annotator.lama.saicinpainting.training.modules.depthwise_sep_conv import DepthWiseSeperableConv
|
8 |
-
from annotator.lama.saicinpainting.training.modules.multidilated_conv import MultidilatedConv
|
9 |
-
|
10 |
-
|
11 |
-
class BaseDiscriminator(nn.Module):
|
12 |
-
@abc.abstractmethod
|
13 |
-
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
14 |
-
"""
|
15 |
-
Predict scores and get intermediate activations. Useful for feature matching loss
|
16 |
-
:return tuple (scores, list of intermediate activations)
|
17 |
-
"""
|
18 |
-
raise NotImplemented()
|
19 |
-
|
20 |
-
|
21 |
-
def get_conv_block_ctor(kind='default'):
|
22 |
-
if not isinstance(kind, str):
|
23 |
-
return kind
|
24 |
-
if kind == 'default':
|
25 |
-
return nn.Conv2d
|
26 |
-
if kind == 'depthwise':
|
27 |
-
return DepthWiseSeperableConv
|
28 |
-
if kind == 'multidilated':
|
29 |
-
return MultidilatedConv
|
30 |
-
raise ValueError(f'Unknown convolutional block kind {kind}')
|
31 |
-
|
32 |
-
|
33 |
-
def get_norm_layer(kind='bn'):
|
34 |
-
if not isinstance(kind, str):
|
35 |
-
return kind
|
36 |
-
if kind == 'bn':
|
37 |
-
return nn.BatchNorm2d
|
38 |
-
if kind == 'in':
|
39 |
-
return nn.InstanceNorm2d
|
40 |
-
raise ValueError(f'Unknown norm block kind {kind}')
|
41 |
-
|
42 |
-
|
43 |
-
def get_activation(kind='tanh'):
|
44 |
-
if kind == 'tanh':
|
45 |
-
return nn.Tanh()
|
46 |
-
if kind == 'sigmoid':
|
47 |
-
return nn.Sigmoid()
|
48 |
-
if kind is False:
|
49 |
-
return nn.Identity()
|
50 |
-
raise ValueError(f'Unknown activation kind {kind}')
|
51 |
-
|
52 |
-
|
53 |
-
class SimpleMultiStepGenerator(nn.Module):
|
54 |
-
def __init__(self, steps: List[nn.Module]):
|
55 |
-
super().__init__()
|
56 |
-
self.steps = nn.ModuleList(steps)
|
57 |
-
|
58 |
-
def forward(self, x):
|
59 |
-
cur_in = x
|
60 |
-
outs = []
|
61 |
-
for step in self.steps:
|
62 |
-
cur_out = step(cur_in)
|
63 |
-
outs.append(cur_out)
|
64 |
-
cur_in = torch.cat((cur_in, cur_out), dim=1)
|
65 |
-
return torch.cat(outs[::-1], dim=1)
|
66 |
-
|
67 |
-
def deconv_factory(kind, ngf, mult, norm_layer, activation, max_features):
|
68 |
-
if kind == 'convtranspose':
|
69 |
-
return [nn.ConvTranspose2d(min(max_features, ngf * mult),
|
70 |
-
min(max_features, int(ngf * mult / 2)),
|
71 |
-
kernel_size=3, stride=2, padding=1, output_padding=1),
|
72 |
-
norm_layer(min(max_features, int(ngf * mult / 2))), activation]
|
73 |
-
elif kind == 'bilinear':
|
74 |
-
return [nn.Upsample(scale_factor=2, mode='bilinear'),
|
75 |
-
DepthWiseSeperableConv(min(max_features, ngf * mult),
|
76 |
-
min(max_features, int(ngf * mult / 2)),
|
77 |
-
kernel_size=3, stride=1, padding=1),
|
78 |
-
norm_layer(min(max_features, int(ngf * mult / 2))), activation]
|
79 |
-
else:
|
80 |
-
raise Exception(f"Invalid deconv kind: {kind}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/depthwise_sep_conv.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
class DepthWiseSeperableConv(nn.Module):
|
5 |
-
def __init__(self, in_dim, out_dim, *args, **kwargs):
|
6 |
-
super().__init__()
|
7 |
-
if 'groups' in kwargs:
|
8 |
-
# ignoring groups for Depthwise Sep Conv
|
9 |
-
del kwargs['groups']
|
10 |
-
|
11 |
-
self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, **kwargs)
|
12 |
-
self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
13 |
-
|
14 |
-
def forward(self, x):
|
15 |
-
out = self.depthwise(x)
|
16 |
-
out = self.pointwise(out)
|
17 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/fake_fakes.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from kornia import SamplePadding
|
3 |
-
from kornia.augmentation import RandomAffine, CenterCrop
|
4 |
-
|
5 |
-
|
6 |
-
class FakeFakesGenerator:
|
7 |
-
def __init__(self, aug_proba=0.5, img_aug_degree=30, img_aug_translate=0.2):
|
8 |
-
self.grad_aug = RandomAffine(degrees=360,
|
9 |
-
translate=0.2,
|
10 |
-
padding_mode=SamplePadding.REFLECTION,
|
11 |
-
keepdim=False,
|
12 |
-
p=1)
|
13 |
-
self.img_aug = RandomAffine(degrees=img_aug_degree,
|
14 |
-
translate=img_aug_translate,
|
15 |
-
padding_mode=SamplePadding.REFLECTION,
|
16 |
-
keepdim=True,
|
17 |
-
p=1)
|
18 |
-
self.aug_proba = aug_proba
|
19 |
-
|
20 |
-
def __call__(self, input_images, masks):
|
21 |
-
blend_masks = self._fill_masks_with_gradient(masks)
|
22 |
-
blend_target = self._make_blend_target(input_images)
|
23 |
-
result = input_images * (1 - blend_masks) + blend_target * blend_masks
|
24 |
-
return result, blend_masks
|
25 |
-
|
26 |
-
def _make_blend_target(self, input_images):
|
27 |
-
batch_size = input_images.shape[0]
|
28 |
-
permuted = input_images[torch.randperm(batch_size)]
|
29 |
-
augmented = self.img_aug(input_images)
|
30 |
-
is_aug = (torch.rand(batch_size, device=input_images.device)[:, None, None, None] < self.aug_proba).float()
|
31 |
-
result = augmented * is_aug + permuted * (1 - is_aug)
|
32 |
-
return result
|
33 |
-
|
34 |
-
def _fill_masks_with_gradient(self, masks):
|
35 |
-
batch_size, _, height, width = masks.shape
|
36 |
-
grad = torch.linspace(0, 1, steps=width * 2, device=masks.device, dtype=masks.dtype) \
|
37 |
-
.view(1, 1, 1, -1).expand(batch_size, 1, height * 2, width * 2)
|
38 |
-
grad = self.grad_aug(grad)
|
39 |
-
grad = CenterCrop((height, width))(grad)
|
40 |
-
grad *= masks
|
41 |
-
|
42 |
-
grad_for_min = grad + (1 - masks) * 10
|
43 |
-
grad -= grad_for_min.view(batch_size, -1).min(-1).values[:, None, None, None]
|
44 |
-
grad /= grad.view(batch_size, -1).max(-1).values[:, None, None, None] + 1e-6
|
45 |
-
grad.clamp_(min=0, max=1)
|
46 |
-
|
47 |
-
return grad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/ffc.py
DELETED
@@ -1,485 +0,0 @@
|
|
1 |
-
# Fast Fourier Convolution NeurIPS 2020
|
2 |
-
# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
|
3 |
-
# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
import torch.nn.functional as F
|
9 |
-
|
10 |
-
from annotator.lama.saicinpainting.training.modules.base import get_activation, BaseDiscriminator
|
11 |
-
from annotator.lama.saicinpainting.training.modules.spatial_transform import LearnableSpatialTransformWrapper
|
12 |
-
from annotator.lama.saicinpainting.training.modules.squeeze_excitation import SELayer
|
13 |
-
from annotator.lama.saicinpainting.utils import get_shape
|
14 |
-
|
15 |
-
|
16 |
-
class FFCSE_block(nn.Module):
|
17 |
-
|
18 |
-
def __init__(self, channels, ratio_g):
|
19 |
-
super(FFCSE_block, self).__init__()
|
20 |
-
in_cg = int(channels * ratio_g)
|
21 |
-
in_cl = channels - in_cg
|
22 |
-
r = 16
|
23 |
-
|
24 |
-
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
25 |
-
self.conv1 = nn.Conv2d(channels, channels // r,
|
26 |
-
kernel_size=1, bias=True)
|
27 |
-
self.relu1 = nn.ReLU(inplace=True)
|
28 |
-
self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
|
29 |
-
channels // r, in_cl, kernel_size=1, bias=True)
|
30 |
-
self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
|
31 |
-
channels // r, in_cg, kernel_size=1, bias=True)
|
32 |
-
self.sigmoid = nn.Sigmoid()
|
33 |
-
|
34 |
-
def forward(self, x):
|
35 |
-
x = x if type(x) is tuple else (x, 0)
|
36 |
-
id_l, id_g = x
|
37 |
-
|
38 |
-
x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
|
39 |
-
x = self.avgpool(x)
|
40 |
-
x = self.relu1(self.conv1(x))
|
41 |
-
|
42 |
-
x_l = 0 if self.conv_a2l is None else id_l * \
|
43 |
-
self.sigmoid(self.conv_a2l(x))
|
44 |
-
x_g = 0 if self.conv_a2g is None else id_g * \
|
45 |
-
self.sigmoid(self.conv_a2g(x))
|
46 |
-
return x_l, x_g
|
47 |
-
|
48 |
-
|
49 |
-
class FourierUnit(nn.Module):
|
50 |
-
|
51 |
-
def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
|
52 |
-
spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
|
53 |
-
# bn_layer not used
|
54 |
-
super(FourierUnit, self).__init__()
|
55 |
-
self.groups = groups
|
56 |
-
|
57 |
-
self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
|
58 |
-
out_channels=out_channels * 2,
|
59 |
-
kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
|
60 |
-
self.bn = torch.nn.BatchNorm2d(out_channels * 2)
|
61 |
-
self.relu = torch.nn.ReLU(inplace=True)
|
62 |
-
|
63 |
-
# squeeze and excitation block
|
64 |
-
self.use_se = use_se
|
65 |
-
if use_se:
|
66 |
-
if se_kwargs is None:
|
67 |
-
se_kwargs = {}
|
68 |
-
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
|
69 |
-
|
70 |
-
self.spatial_scale_factor = spatial_scale_factor
|
71 |
-
self.spatial_scale_mode = spatial_scale_mode
|
72 |
-
self.spectral_pos_encoding = spectral_pos_encoding
|
73 |
-
self.ffc3d = ffc3d
|
74 |
-
self.fft_norm = fft_norm
|
75 |
-
|
76 |
-
def forward(self, x):
|
77 |
-
batch = x.shape[0]
|
78 |
-
|
79 |
-
if self.spatial_scale_factor is not None:
|
80 |
-
orig_size = x.shape[-2:]
|
81 |
-
x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)
|
82 |
-
|
83 |
-
r_size = x.size()
|
84 |
-
# (batch, c, h, w/2+1, 2)
|
85 |
-
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
|
86 |
-
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
|
87 |
-
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
|
88 |
-
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
|
89 |
-
ffted = ffted.view((batch, -1,) + ffted.size()[3:])
|
90 |
-
|
91 |
-
if self.spectral_pos_encoding:
|
92 |
-
height, width = ffted.shape[-2:]
|
93 |
-
coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
|
94 |
-
coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
|
95 |
-
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
|
96 |
-
|
97 |
-
if self.use_se:
|
98 |
-
ffted = self.se(ffted)
|
99 |
-
|
100 |
-
ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
|
101 |
-
ffted = self.relu(self.bn(ffted))
|
102 |
-
|
103 |
-
ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
|
104 |
-
0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
|
105 |
-
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
|
106 |
-
|
107 |
-
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
|
108 |
-
output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)
|
109 |
-
|
110 |
-
if self.spatial_scale_factor is not None:
|
111 |
-
output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)
|
112 |
-
|
113 |
-
return output
|
114 |
-
|
115 |
-
|
116 |
-
class SeparableFourierUnit(nn.Module):
|
117 |
-
|
118 |
-
def __init__(self, in_channels, out_channels, groups=1, kernel_size=3):
|
119 |
-
# bn_layer not used
|
120 |
-
super(SeparableFourierUnit, self).__init__()
|
121 |
-
self.groups = groups
|
122 |
-
row_out_channels = out_channels // 2
|
123 |
-
col_out_channels = out_channels - row_out_channels
|
124 |
-
self.row_conv = torch.nn.Conv2d(in_channels=in_channels * 2,
|
125 |
-
out_channels=row_out_channels * 2,
|
126 |
-
kernel_size=(kernel_size, 1), # kernel size is always like this, but the data will be transposed
|
127 |
-
stride=1, padding=(kernel_size // 2, 0),
|
128 |
-
padding_mode='reflect',
|
129 |
-
groups=self.groups, bias=False)
|
130 |
-
self.col_conv = torch.nn.Conv2d(in_channels=in_channels * 2,
|
131 |
-
out_channels=col_out_channels * 2,
|
132 |
-
kernel_size=(kernel_size, 1), # kernel size is always like this, but the data will be transposed
|
133 |
-
stride=1, padding=(kernel_size // 2, 0),
|
134 |
-
padding_mode='reflect',
|
135 |
-
groups=self.groups, bias=False)
|
136 |
-
self.row_bn = torch.nn.BatchNorm2d(row_out_channels * 2)
|
137 |
-
self.col_bn = torch.nn.BatchNorm2d(col_out_channels * 2)
|
138 |
-
self.relu = torch.nn.ReLU(inplace=True)
|
139 |
-
|
140 |
-
def process_branch(self, x, conv, bn):
|
141 |
-
batch = x.shape[0]
|
142 |
-
|
143 |
-
r_size = x.size()
|
144 |
-
# (batch, c, h, w/2+1, 2)
|
145 |
-
ffted = torch.fft.rfft(x, norm="ortho")
|
146 |
-
ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
|
147 |
-
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
|
148 |
-
ffted = ffted.view((batch, -1,) + ffted.size()[3:])
|
149 |
-
|
150 |
-
ffted = self.relu(bn(conv(ffted)))
|
151 |
-
|
152 |
-
ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
|
153 |
-
0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
|
154 |
-
ffted = torch.complex(ffted[..., 0], ffted[..., 1])
|
155 |
-
|
156 |
-
output = torch.fft.irfft(ffted, s=x.shape[-1:], norm="ortho")
|
157 |
-
return output
|
158 |
-
|
159 |
-
|
160 |
-
def forward(self, x):
|
161 |
-
rowwise = self.process_branch(x, self.row_conv, self.row_bn)
|
162 |
-
colwise = self.process_branch(x.permute(0, 1, 3, 2), self.col_conv, self.col_bn).permute(0, 1, 3, 2)
|
163 |
-
out = torch.cat((rowwise, colwise), dim=1)
|
164 |
-
return out
|
165 |
-
|
166 |
-
|
167 |
-
class SpectralTransform(nn.Module):
|
168 |
-
|
169 |
-
def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, separable_fu=False, **fu_kwargs):
|
170 |
-
# bn_layer not used
|
171 |
-
super(SpectralTransform, self).__init__()
|
172 |
-
self.enable_lfu = enable_lfu
|
173 |
-
if stride == 2:
|
174 |
-
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
|
175 |
-
else:
|
176 |
-
self.downsample = nn.Identity()
|
177 |
-
|
178 |
-
self.stride = stride
|
179 |
-
self.conv1 = nn.Sequential(
|
180 |
-
nn.Conv2d(in_channels, out_channels //
|
181 |
-
2, kernel_size=1, groups=groups, bias=False),
|
182 |
-
nn.BatchNorm2d(out_channels // 2),
|
183 |
-
nn.ReLU(inplace=True)
|
184 |
-
)
|
185 |
-
fu_class = SeparableFourierUnit if separable_fu else FourierUnit
|
186 |
-
self.fu = fu_class(
|
187 |
-
out_channels // 2, out_channels // 2, groups, **fu_kwargs)
|
188 |
-
if self.enable_lfu:
|
189 |
-
self.lfu = fu_class(
|
190 |
-
out_channels // 2, out_channels // 2, groups)
|
191 |
-
self.conv2 = torch.nn.Conv2d(
|
192 |
-
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
|
193 |
-
|
194 |
-
def forward(self, x):
|
195 |
-
|
196 |
-
x = self.downsample(x)
|
197 |
-
x = self.conv1(x)
|
198 |
-
output = self.fu(x)
|
199 |
-
|
200 |
-
if self.enable_lfu:
|
201 |
-
n, c, h, w = x.shape
|
202 |
-
split_no = 2
|
203 |
-
split_s = h // split_no
|
204 |
-
xs = torch.cat(torch.split(
|
205 |
-
x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
|
206 |
-
xs = torch.cat(torch.split(xs, split_s, dim=-1),
|
207 |
-
dim=1).contiguous()
|
208 |
-
xs = self.lfu(xs)
|
209 |
-
xs = xs.repeat(1, 1, split_no, split_no).contiguous()
|
210 |
-
else:
|
211 |
-
xs = 0
|
212 |
-
|
213 |
-
output = self.conv2(x + output + xs)
|
214 |
-
|
215 |
-
return output
|
216 |
-
|
217 |
-
|
218 |
-
class FFC(nn.Module):
|
219 |
-
|
220 |
-
def __init__(self, in_channels, out_channels, kernel_size,
|
221 |
-
ratio_gin, ratio_gout, stride=1, padding=0,
|
222 |
-
dilation=1, groups=1, bias=False, enable_lfu=True,
|
223 |
-
padding_type='reflect', gated=False, **spectral_kwargs):
|
224 |
-
super(FFC, self).__init__()
|
225 |
-
|
226 |
-
assert stride == 1 or stride == 2, "Stride should be 1 or 2."
|
227 |
-
self.stride = stride
|
228 |
-
|
229 |
-
in_cg = int(in_channels * ratio_gin)
|
230 |
-
in_cl = in_channels - in_cg
|
231 |
-
out_cg = int(out_channels * ratio_gout)
|
232 |
-
out_cl = out_channels - out_cg
|
233 |
-
#groups_g = 1 if groups == 1 else int(groups * ratio_gout)
|
234 |
-
#groups_l = 1 if groups == 1 else groups - groups_g
|
235 |
-
|
236 |
-
self.ratio_gin = ratio_gin
|
237 |
-
self.ratio_gout = ratio_gout
|
238 |
-
self.global_in_num = in_cg
|
239 |
-
|
240 |
-
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
|
241 |
-
self.convl2l = module(in_cl, out_cl, kernel_size,
|
242 |
-
stride, padding, dilation, groups, bias, padding_mode=padding_type)
|
243 |
-
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
|
244 |
-
self.convl2g = module(in_cl, out_cg, kernel_size,
|
245 |
-
stride, padding, dilation, groups, bias, padding_mode=padding_type)
|
246 |
-
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
|
247 |
-
self.convg2l = module(in_cg, out_cl, kernel_size,
|
248 |
-
stride, padding, dilation, groups, bias, padding_mode=padding_type)
|
249 |
-
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
|
250 |
-
self.convg2g = module(
|
251 |
-
in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)
|
252 |
-
|
253 |
-
self.gated = gated
|
254 |
-
module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
|
255 |
-
self.gate = module(in_channels, 2, 1)
|
256 |
-
|
257 |
-
def forward(self, x):
|
258 |
-
x_l, x_g = x if type(x) is tuple else (x, 0)
|
259 |
-
out_xl, out_xg = 0, 0
|
260 |
-
|
261 |
-
if self.gated:
|
262 |
-
total_input_parts = [x_l]
|
263 |
-
if torch.is_tensor(x_g):
|
264 |
-
total_input_parts.append(x_g)
|
265 |
-
total_input = torch.cat(total_input_parts, dim=1)
|
266 |
-
|
267 |
-
gates = torch.sigmoid(self.gate(total_input))
|
268 |
-
g2l_gate, l2g_gate = gates.chunk(2, dim=1)
|
269 |
-
else:
|
270 |
-
g2l_gate, l2g_gate = 1, 1
|
271 |
-
|
272 |
-
if self.ratio_gout != 1:
|
273 |
-
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
|
274 |
-
if self.ratio_gout != 0:
|
275 |
-
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
|
276 |
-
|
277 |
-
return out_xl, out_xg
|
278 |
-
|
279 |
-
|
280 |
-
class FFC_BN_ACT(nn.Module):
|
281 |
-
|
282 |
-
def __init__(self, in_channels, out_channels,
|
283 |
-
kernel_size, ratio_gin, ratio_gout,
|
284 |
-
stride=1, padding=0, dilation=1, groups=1, bias=False,
|
285 |
-
norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity,
|
286 |
-
padding_type='reflect',
|
287 |
-
enable_lfu=True, **kwargs):
|
288 |
-
super(FFC_BN_ACT, self).__init__()
|
289 |
-
self.ffc = FFC(in_channels, out_channels, kernel_size,
|
290 |
-
ratio_gin, ratio_gout, stride, padding, dilation,
|
291 |
-
groups, bias, enable_lfu, padding_type=padding_type, **kwargs)
|
292 |
-
lnorm = nn.Identity if ratio_gout == 1 else norm_layer
|
293 |
-
gnorm = nn.Identity if ratio_gout == 0 else norm_layer
|
294 |
-
global_channels = int(out_channels * ratio_gout)
|
295 |
-
self.bn_l = lnorm(out_channels - global_channels)
|
296 |
-
self.bn_g = gnorm(global_channels)
|
297 |
-
|
298 |
-
lact = nn.Identity if ratio_gout == 1 else activation_layer
|
299 |
-
gact = nn.Identity if ratio_gout == 0 else activation_layer
|
300 |
-
self.act_l = lact(inplace=True)
|
301 |
-
self.act_g = gact(inplace=True)
|
302 |
-
|
303 |
-
def forward(self, x):
|
304 |
-
x_l, x_g = self.ffc(x)
|
305 |
-
x_l = self.act_l(self.bn_l(x_l))
|
306 |
-
x_g = self.act_g(self.bn_g(x_g))
|
307 |
-
return x_l, x_g
|
308 |
-
|
309 |
-
|
310 |
-
class FFCResnetBlock(nn.Module):
|
311 |
-
def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1,
|
312 |
-
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
|
313 |
-
super().__init__()
|
314 |
-
self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
|
315 |
-
norm_layer=norm_layer,
|
316 |
-
activation_layer=activation_layer,
|
317 |
-
padding_type=padding_type,
|
318 |
-
**conv_kwargs)
|
319 |
-
self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
|
320 |
-
norm_layer=norm_layer,
|
321 |
-
activation_layer=activation_layer,
|
322 |
-
padding_type=padding_type,
|
323 |
-
**conv_kwargs)
|
324 |
-
if spatial_transform_kwargs is not None:
|
325 |
-
self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs)
|
326 |
-
self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs)
|
327 |
-
self.inline = inline
|
328 |
-
|
329 |
-
def forward(self, x):
|
330 |
-
if self.inline:
|
331 |
-
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
|
332 |
-
else:
|
333 |
-
x_l, x_g = x if type(x) is tuple else (x, 0)
|
334 |
-
|
335 |
-
id_l, id_g = x_l, x_g
|
336 |
-
|
337 |
-
x_l, x_g = self.conv1((x_l, x_g))
|
338 |
-
x_l, x_g = self.conv2((x_l, x_g))
|
339 |
-
|
340 |
-
x_l, x_g = id_l + x_l, id_g + x_g
|
341 |
-
out = x_l, x_g
|
342 |
-
if self.inline:
|
343 |
-
out = torch.cat(out, dim=1)
|
344 |
-
return out
|
345 |
-
|
346 |
-
|
347 |
-
class ConcatTupleLayer(nn.Module):
|
348 |
-
def forward(self, x):
|
349 |
-
assert isinstance(x, tuple)
|
350 |
-
x_l, x_g = x
|
351 |
-
assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
|
352 |
-
if not torch.is_tensor(x_g):
|
353 |
-
return x_l
|
354 |
-
return torch.cat(x, dim=1)
|
355 |
-
|
356 |
-
|
357 |
-
class FFCResNetGenerator(nn.Module):
|
358 |
-
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
|
359 |
-
padding_type='reflect', activation_layer=nn.ReLU,
|
360 |
-
up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True),
|
361 |
-
init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={},
|
362 |
-
spatial_transform_layers=None, spatial_transform_kwargs={},
|
363 |
-
add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}):
|
364 |
-
assert (n_blocks >= 0)
|
365 |
-
super().__init__()
|
366 |
-
|
367 |
-
model = [nn.ReflectionPad2d(3),
|
368 |
-
FFC_BN_ACT(input_nc, ngf, kernel_size=7, padding=0, norm_layer=norm_layer,
|
369 |
-
activation_layer=activation_layer, **init_conv_kwargs)]
|
370 |
-
|
371 |
-
### downsample
|
372 |
-
for i in range(n_downsampling):
|
373 |
-
mult = 2 ** i
|
374 |
-
if i == n_downsampling - 1:
|
375 |
-
cur_conv_kwargs = dict(downsample_conv_kwargs)
|
376 |
-
cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0)
|
377 |
-
else:
|
378 |
-
cur_conv_kwargs = downsample_conv_kwargs
|
379 |
-
model += [FFC_BN_ACT(min(max_features, ngf * mult),
|
380 |
-
min(max_features, ngf * mult * 2),
|
381 |
-
kernel_size=3, stride=2, padding=1,
|
382 |
-
norm_layer=norm_layer,
|
383 |
-
activation_layer=activation_layer,
|
384 |
-
**cur_conv_kwargs)]
|
385 |
-
|
386 |
-
mult = 2 ** n_downsampling
|
387 |
-
feats_num_bottleneck = min(max_features, ngf * mult)
|
388 |
-
|
389 |
-
### resnet blocks
|
390 |
-
for i in range(n_blocks):
|
391 |
-
cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer,
|
392 |
-
norm_layer=norm_layer, **resnet_conv_kwargs)
|
393 |
-
if spatial_transform_layers is not None and i in spatial_transform_layers:
|
394 |
-
cur_resblock = LearnableSpatialTransformWrapper(cur_resblock, **spatial_transform_kwargs)
|
395 |
-
model += [cur_resblock]
|
396 |
-
|
397 |
-
model += [ConcatTupleLayer()]
|
398 |
-
|
399 |
-
### upsample
|
400 |
-
for i in range(n_downsampling):
|
401 |
-
mult = 2 ** (n_downsampling - i)
|
402 |
-
model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
|
403 |
-
min(max_features, int(ngf * mult / 2)),
|
404 |
-
kernel_size=3, stride=2, padding=1, output_padding=1),
|
405 |
-
up_norm_layer(min(max_features, int(ngf * mult / 2))),
|
406 |
-
up_activation]
|
407 |
-
|
408 |
-
if out_ffc:
|
409 |
-
model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer,
|
410 |
-
norm_layer=norm_layer, inline=True, **out_ffc_kwargs)]
|
411 |
-
|
412 |
-
model += [nn.ReflectionPad2d(3),
|
413 |
-
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
|
414 |
-
if add_out_act:
|
415 |
-
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
|
416 |
-
self.model = nn.Sequential(*model)
|
417 |
-
|
418 |
-
def forward(self, input):
|
419 |
-
return self.model(input)
|
420 |
-
|
421 |
-
|
422 |
-
class FFCNLayerDiscriminator(BaseDiscriminator):
|
423 |
-
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, max_features=512,
|
424 |
-
init_conv_kwargs={}, conv_kwargs={}):
|
425 |
-
super().__init__()
|
426 |
-
self.n_layers = n_layers
|
427 |
-
|
428 |
-
def _act_ctor(inplace=True):
|
429 |
-
return nn.LeakyReLU(negative_slope=0.2, inplace=inplace)
|
430 |
-
|
431 |
-
kw = 3
|
432 |
-
padw = int(np.ceil((kw-1.0)/2))
|
433 |
-
sequence = [[FFC_BN_ACT(input_nc, ndf, kernel_size=kw, padding=padw, norm_layer=norm_layer,
|
434 |
-
activation_layer=_act_ctor, **init_conv_kwargs)]]
|
435 |
-
|
436 |
-
nf = ndf
|
437 |
-
for n in range(1, n_layers):
|
438 |
-
nf_prev = nf
|
439 |
-
nf = min(nf * 2, max_features)
|
440 |
-
|
441 |
-
cur_model = [
|
442 |
-
FFC_BN_ACT(nf_prev, nf,
|
443 |
-
kernel_size=kw, stride=2, padding=padw,
|
444 |
-
norm_layer=norm_layer,
|
445 |
-
activation_layer=_act_ctor,
|
446 |
-
**conv_kwargs)
|
447 |
-
]
|
448 |
-
sequence.append(cur_model)
|
449 |
-
|
450 |
-
nf_prev = nf
|
451 |
-
nf = min(nf * 2, 512)
|
452 |
-
|
453 |
-
cur_model = [
|
454 |
-
FFC_BN_ACT(nf_prev, nf,
|
455 |
-
kernel_size=kw, stride=1, padding=padw,
|
456 |
-
norm_layer=norm_layer,
|
457 |
-
activation_layer=lambda *args, **kwargs: nn.LeakyReLU(*args, negative_slope=0.2, **kwargs),
|
458 |
-
**conv_kwargs),
|
459 |
-
ConcatTupleLayer()
|
460 |
-
]
|
461 |
-
sequence.append(cur_model)
|
462 |
-
|
463 |
-
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
|
464 |
-
|
465 |
-
for n in range(len(sequence)):
|
466 |
-
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
|
467 |
-
|
468 |
-
def get_all_activations(self, x):
|
469 |
-
res = [x]
|
470 |
-
for n in range(self.n_layers + 2):
|
471 |
-
model = getattr(self, 'model' + str(n))
|
472 |
-
res.append(model(res[-1]))
|
473 |
-
return res[1:]
|
474 |
-
|
475 |
-
def forward(self, x):
|
476 |
-
act = self.get_all_activations(x)
|
477 |
-
feats = []
|
478 |
-
for out in act[:-1]:
|
479 |
-
if isinstance(out, tuple):
|
480 |
-
if torch.is_tensor(out[1]):
|
481 |
-
out = torch.cat(out, dim=1)
|
482 |
-
else:
|
483 |
-
out = out[0]
|
484 |
-
feats.append(out)
|
485 |
-
return act[-1], feats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/multidilated_conv.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import random
|
4 |
-
from annotator.lama.saicinpainting.training.modules.depthwise_sep_conv import DepthWiseSeperableConv
|
5 |
-
|
6 |
-
class MultidilatedConv(nn.Module):
|
7 |
-
def __init__(self, in_dim, out_dim, kernel_size, dilation_num=3, comb_mode='sum', equal_dim=True,
|
8 |
-
shared_weights=False, padding=1, min_dilation=1, shuffle_in_channels=False, use_depthwise=False, **kwargs):
|
9 |
-
super().__init__()
|
10 |
-
convs = []
|
11 |
-
self.equal_dim = equal_dim
|
12 |
-
assert comb_mode in ('cat_out', 'sum', 'cat_in', 'cat_both'), comb_mode
|
13 |
-
if comb_mode in ('cat_out', 'cat_both'):
|
14 |
-
self.cat_out = True
|
15 |
-
if equal_dim:
|
16 |
-
assert out_dim % dilation_num == 0
|
17 |
-
out_dims = [out_dim // dilation_num] * dilation_num
|
18 |
-
self.index = sum([[i + j * (out_dims[0]) for j in range(dilation_num)] for i in range(out_dims[0])], [])
|
19 |
-
else:
|
20 |
-
out_dims = [out_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
|
21 |
-
out_dims.append(out_dim - sum(out_dims))
|
22 |
-
index = []
|
23 |
-
starts = [0] + out_dims[:-1]
|
24 |
-
lengths = [out_dims[i] // out_dims[-1] for i in range(dilation_num)]
|
25 |
-
for i in range(out_dims[-1]):
|
26 |
-
for j in range(dilation_num):
|
27 |
-
index += list(range(starts[j], starts[j] + lengths[j]))
|
28 |
-
starts[j] += lengths[j]
|
29 |
-
self.index = index
|
30 |
-
assert(len(index) == out_dim)
|
31 |
-
self.out_dims = out_dims
|
32 |
-
else:
|
33 |
-
self.cat_out = False
|
34 |
-
self.out_dims = [out_dim] * dilation_num
|
35 |
-
|
36 |
-
if comb_mode in ('cat_in', 'cat_both'):
|
37 |
-
if equal_dim:
|
38 |
-
assert in_dim % dilation_num == 0
|
39 |
-
in_dims = [in_dim // dilation_num] * dilation_num
|
40 |
-
else:
|
41 |
-
in_dims = [in_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
|
42 |
-
in_dims.append(in_dim - sum(in_dims))
|
43 |
-
self.in_dims = in_dims
|
44 |
-
self.cat_in = True
|
45 |
-
else:
|
46 |
-
self.cat_in = False
|
47 |
-
self.in_dims = [in_dim] * dilation_num
|
48 |
-
|
49 |
-
conv_type = DepthWiseSeperableConv if use_depthwise else nn.Conv2d
|
50 |
-
dilation = min_dilation
|
51 |
-
for i in range(dilation_num):
|
52 |
-
if isinstance(padding, int):
|
53 |
-
cur_padding = padding * dilation
|
54 |
-
else:
|
55 |
-
cur_padding = padding[i]
|
56 |
-
convs.append(conv_type(
|
57 |
-
self.in_dims[i], self.out_dims[i], kernel_size, padding=cur_padding, dilation=dilation, **kwargs
|
58 |
-
))
|
59 |
-
if i > 0 and shared_weights:
|
60 |
-
convs[-1].weight = convs[0].weight
|
61 |
-
convs[-1].bias = convs[0].bias
|
62 |
-
dilation *= 2
|
63 |
-
self.convs = nn.ModuleList(convs)
|
64 |
-
|
65 |
-
self.shuffle_in_channels = shuffle_in_channels
|
66 |
-
if self.shuffle_in_channels:
|
67 |
-
# shuffle list as shuffling of tensors is nondeterministic
|
68 |
-
in_channels_permute = list(range(in_dim))
|
69 |
-
random.shuffle(in_channels_permute)
|
70 |
-
# save as buffer so it is saved and loaded with checkpoint
|
71 |
-
self.register_buffer('in_channels_permute', torch.tensor(in_channels_permute))
|
72 |
-
|
73 |
-
def forward(self, x):
|
74 |
-
if self.shuffle_in_channels:
|
75 |
-
x = x[:, self.in_channels_permute]
|
76 |
-
|
77 |
-
outs = []
|
78 |
-
if self.cat_in:
|
79 |
-
if self.equal_dim:
|
80 |
-
x = x.chunk(len(self.convs), dim=1)
|
81 |
-
else:
|
82 |
-
new_x = []
|
83 |
-
start = 0
|
84 |
-
for dim in self.in_dims:
|
85 |
-
new_x.append(x[:, start:start+dim])
|
86 |
-
start += dim
|
87 |
-
x = new_x
|
88 |
-
for i, conv in enumerate(self.convs):
|
89 |
-
if self.cat_in:
|
90 |
-
input = x[i]
|
91 |
-
else:
|
92 |
-
input = x
|
93 |
-
outs.append(conv(input))
|
94 |
-
if self.cat_out:
|
95 |
-
out = torch.cat(outs, dim=1)[:, self.index]
|
96 |
-
else:
|
97 |
-
out = sum(outs)
|
98 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/multiscale.py
DELETED
@@ -1,244 +0,0 @@
|
|
1 |
-
from typing import List, Tuple, Union, Optional
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.nn.functional as F
|
6 |
-
|
7 |
-
from annotator.lama.saicinpainting.training.modules.base import get_conv_block_ctor, get_activation
|
8 |
-
from annotator.lama.saicinpainting.training.modules.pix2pixhd import ResnetBlock
|
9 |
-
|
10 |
-
|
11 |
-
class ResNetHead(nn.Module):
|
12 |
-
def __init__(self, input_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
|
13 |
-
padding_type='reflect', conv_kind='default', activation=nn.ReLU(True)):
|
14 |
-
assert (n_blocks >= 0)
|
15 |
-
super(ResNetHead, self).__init__()
|
16 |
-
|
17 |
-
conv_layer = get_conv_block_ctor(conv_kind)
|
18 |
-
|
19 |
-
model = [nn.ReflectionPad2d(3),
|
20 |
-
conv_layer(input_nc, ngf, kernel_size=7, padding=0),
|
21 |
-
norm_layer(ngf),
|
22 |
-
activation]
|
23 |
-
|
24 |
-
### downsample
|
25 |
-
for i in range(n_downsampling):
|
26 |
-
mult = 2 ** i
|
27 |
-
model += [conv_layer(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
|
28 |
-
norm_layer(ngf * mult * 2),
|
29 |
-
activation]
|
30 |
-
|
31 |
-
mult = 2 ** n_downsampling
|
32 |
-
|
33 |
-
### resnet blocks
|
34 |
-
for i in range(n_blocks):
|
35 |
-
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
|
36 |
-
conv_kind=conv_kind)]
|
37 |
-
|
38 |
-
self.model = nn.Sequential(*model)
|
39 |
-
|
40 |
-
def forward(self, input):
|
41 |
-
return self.model(input)
|
42 |
-
|
43 |
-
|
44 |
-
class ResNetTail(nn.Module):
|
45 |
-
def __init__(self, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
|
46 |
-
padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
|
47 |
-
up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0,
|
48 |
-
add_in_proj=None):
|
49 |
-
assert (n_blocks >= 0)
|
50 |
-
super(ResNetTail, self).__init__()
|
51 |
-
|
52 |
-
mult = 2 ** n_downsampling
|
53 |
-
|
54 |
-
model = []
|
55 |
-
|
56 |
-
if add_in_proj is not None:
|
57 |
-
model.append(nn.Conv2d(add_in_proj, ngf * mult, kernel_size=1))
|
58 |
-
|
59 |
-
### resnet blocks
|
60 |
-
for i in range(n_blocks):
|
61 |
-
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
|
62 |
-
conv_kind=conv_kind)]
|
63 |
-
|
64 |
-
### upsample
|
65 |
-
for i in range(n_downsampling):
|
66 |
-
mult = 2 ** (n_downsampling - i)
|
67 |
-
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1,
|
68 |
-
output_padding=1),
|
69 |
-
up_norm_layer(int(ngf * mult / 2)),
|
70 |
-
up_activation]
|
71 |
-
self.model = nn.Sequential(*model)
|
72 |
-
|
73 |
-
out_layers = []
|
74 |
-
for _ in range(out_extra_layers_n):
|
75 |
-
out_layers += [nn.Conv2d(ngf, ngf, kernel_size=1, padding=0),
|
76 |
-
up_norm_layer(ngf),
|
77 |
-
up_activation]
|
78 |
-
out_layers += [nn.ReflectionPad2d(3),
|
79 |
-
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
|
80 |
-
|
81 |
-
if add_out_act:
|
82 |
-
out_layers.append(get_activation('tanh' if add_out_act is True else add_out_act))
|
83 |
-
|
84 |
-
self.out_proj = nn.Sequential(*out_layers)
|
85 |
-
|
86 |
-
def forward(self, input, return_last_act=False):
|
87 |
-
features = self.model(input)
|
88 |
-
out = self.out_proj(features)
|
89 |
-
if return_last_act:
|
90 |
-
return out, features
|
91 |
-
else:
|
92 |
-
return out
|
93 |
-
|
94 |
-
|
95 |
-
class MultiscaleResNet(nn.Module):
|
96 |
-
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=2, n_blocks_head=2, n_blocks_tail=6, n_scales=3,
|
97 |
-
norm_layer=nn.BatchNorm2d, padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
|
98 |
-
up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0,
|
99 |
-
out_cumulative=False, return_only_hr=False):
|
100 |
-
super().__init__()
|
101 |
-
|
102 |
-
self.heads = nn.ModuleList([ResNetHead(input_nc, ngf=ngf, n_downsampling=n_downsampling,
|
103 |
-
n_blocks=n_blocks_head, norm_layer=norm_layer, padding_type=padding_type,
|
104 |
-
conv_kind=conv_kind, activation=activation)
|
105 |
-
for i in range(n_scales)])
|
106 |
-
tail_in_feats = ngf * (2 ** n_downsampling) + ngf
|
107 |
-
self.tails = nn.ModuleList([ResNetTail(output_nc,
|
108 |
-
ngf=ngf, n_downsampling=n_downsampling,
|
109 |
-
n_blocks=n_blocks_tail, norm_layer=norm_layer, padding_type=padding_type,
|
110 |
-
conv_kind=conv_kind, activation=activation, up_norm_layer=up_norm_layer,
|
111 |
-
up_activation=up_activation, add_out_act=add_out_act,
|
112 |
-
out_extra_layers_n=out_extra_layers_n,
|
113 |
-
add_in_proj=None if (i == n_scales - 1) else tail_in_feats)
|
114 |
-
for i in range(n_scales)])
|
115 |
-
|
116 |
-
self.out_cumulative = out_cumulative
|
117 |
-
self.return_only_hr = return_only_hr
|
118 |
-
|
119 |
-
@property
|
120 |
-
def num_scales(self):
|
121 |
-
return len(self.heads)
|
122 |
-
|
123 |
-
def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \
|
124 |
-
-> Union[torch.Tensor, List[torch.Tensor]]:
|
125 |
-
"""
|
126 |
-
:param ms_inputs: List of inputs of different resolutions from HR to LR
|
127 |
-
:param smallest_scales_num: int or None, number of smallest scales to take at input
|
128 |
-
:return: Depending on return_only_hr:
|
129 |
-
True: Only the most HR output
|
130 |
-
False: List of outputs of different resolutions from HR to LR
|
131 |
-
"""
|
132 |
-
if smallest_scales_num is None:
|
133 |
-
assert len(self.heads) == len(ms_inputs), (len(self.heads), len(ms_inputs), smallest_scales_num)
|
134 |
-
smallest_scales_num = len(self.heads)
|
135 |
-
else:
|
136 |
-
assert smallest_scales_num == len(ms_inputs) <= len(self.heads), (len(self.heads), len(ms_inputs), smallest_scales_num)
|
137 |
-
|
138 |
-
cur_heads = self.heads[-smallest_scales_num:]
|
139 |
-
ms_features = [cur_head(cur_inp) for cur_head, cur_inp in zip(cur_heads, ms_inputs)]
|
140 |
-
|
141 |
-
all_outputs = []
|
142 |
-
prev_tail_features = None
|
143 |
-
for i in range(len(ms_features)):
|
144 |
-
scale_i = -i - 1
|
145 |
-
|
146 |
-
cur_tail_input = ms_features[-i - 1]
|
147 |
-
if prev_tail_features is not None:
|
148 |
-
if prev_tail_features.shape != cur_tail_input.shape:
|
149 |
-
prev_tail_features = F.interpolate(prev_tail_features, size=cur_tail_input.shape[2:],
|
150 |
-
mode='bilinear', align_corners=False)
|
151 |
-
cur_tail_input = torch.cat((cur_tail_input, prev_tail_features), dim=1)
|
152 |
-
|
153 |
-
cur_out, cur_tail_feats = self.tails[scale_i](cur_tail_input, return_last_act=True)
|
154 |
-
|
155 |
-
prev_tail_features = cur_tail_feats
|
156 |
-
all_outputs.append(cur_out)
|
157 |
-
|
158 |
-
if self.out_cumulative:
|
159 |
-
all_outputs_cum = [all_outputs[0]]
|
160 |
-
for i in range(1, len(ms_features)):
|
161 |
-
cur_out = all_outputs[i]
|
162 |
-
cur_out_cum = cur_out + F.interpolate(all_outputs_cum[-1], size=cur_out.shape[2:],
|
163 |
-
mode='bilinear', align_corners=False)
|
164 |
-
all_outputs_cum.append(cur_out_cum)
|
165 |
-
all_outputs = all_outputs_cum
|
166 |
-
|
167 |
-
if self.return_only_hr:
|
168 |
-
return all_outputs[-1]
|
169 |
-
else:
|
170 |
-
return all_outputs[::-1]
|
171 |
-
|
172 |
-
|
173 |
-
class MultiscaleDiscriminatorSimple(nn.Module):
|
174 |
-
def __init__(self, ms_impl):
|
175 |
-
super().__init__()
|
176 |
-
self.ms_impl = nn.ModuleList(ms_impl)
|
177 |
-
|
178 |
-
@property
|
179 |
-
def num_scales(self):
|
180 |
-
return len(self.ms_impl)
|
181 |
-
|
182 |
-
def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \
|
183 |
-
-> List[Tuple[torch.Tensor, List[torch.Tensor]]]:
|
184 |
-
"""
|
185 |
-
:param ms_inputs: List of inputs of different resolutions from HR to LR
|
186 |
-
:param smallest_scales_num: int or None, number of smallest scales to take at input
|
187 |
-
:return: List of pairs (prediction, features) for different resolutions from HR to LR
|
188 |
-
"""
|
189 |
-
if smallest_scales_num is None:
|
190 |
-
assert len(self.ms_impl) == len(ms_inputs), (len(self.ms_impl), len(ms_inputs), smallest_scales_num)
|
191 |
-
smallest_scales_num = len(self.heads)
|
192 |
-
else:
|
193 |
-
assert smallest_scales_num == len(ms_inputs) <= len(self.ms_impl), \
|
194 |
-
(len(self.ms_impl), len(ms_inputs), smallest_scales_num)
|
195 |
-
|
196 |
-
return [cur_discr(cur_input) for cur_discr, cur_input in zip(self.ms_impl[-smallest_scales_num:], ms_inputs)]
|
197 |
-
|
198 |
-
|
199 |
-
class SingleToMultiScaleInputMixin:
|
200 |
-
def forward(self, x: torch.Tensor) -> List:
|
201 |
-
orig_height, orig_width = x.shape[2:]
|
202 |
-
factors = [2 ** i for i in range(self.num_scales)]
|
203 |
-
ms_inputs = [F.interpolate(x, size=(orig_height // f, orig_width // f), mode='bilinear', align_corners=False)
|
204 |
-
for f in factors]
|
205 |
-
return super().forward(ms_inputs)
|
206 |
-
|
207 |
-
|
208 |
-
class GeneratorMultiToSingleOutputMixin:
|
209 |
-
def forward(self, x):
|
210 |
-
return super().forward(x)[0]
|
211 |
-
|
212 |
-
|
213 |
-
class DiscriminatorMultiToSingleOutputMixin:
|
214 |
-
def forward(self, x):
|
215 |
-
out_feat_tuples = super().forward(x)
|
216 |
-
return out_feat_tuples[0][0], [f for _, flist in out_feat_tuples for f in flist]
|
217 |
-
|
218 |
-
|
219 |
-
class DiscriminatorMultiToSingleOutputStackedMixin:
|
220 |
-
def __init__(self, *args, return_feats_only_levels=None, **kwargs):
|
221 |
-
super().__init__(*args, **kwargs)
|
222 |
-
self.return_feats_only_levels = return_feats_only_levels
|
223 |
-
|
224 |
-
def forward(self, x):
|
225 |
-
out_feat_tuples = super().forward(x)
|
226 |
-
outs = [out for out, _ in out_feat_tuples]
|
227 |
-
scaled_outs = [outs[0]] + [F.interpolate(cur_out, size=outs[0].shape[-2:],
|
228 |
-
mode='bilinear', align_corners=False)
|
229 |
-
for cur_out in outs[1:]]
|
230 |
-
out = torch.cat(scaled_outs, dim=1)
|
231 |
-
if self.return_feats_only_levels is not None:
|
232 |
-
feat_lists = [out_feat_tuples[i][1] for i in self.return_feats_only_levels]
|
233 |
-
else:
|
234 |
-
feat_lists = [flist for _, flist in out_feat_tuples]
|
235 |
-
feats = [f for flist in feat_lists for f in flist]
|
236 |
-
return out, feats
|
237 |
-
|
238 |
-
|
239 |
-
class MultiscaleDiscrSingleInput(SingleToMultiScaleInputMixin, DiscriminatorMultiToSingleOutputStackedMixin, MultiscaleDiscriminatorSimple):
|
240 |
-
pass
|
241 |
-
|
242 |
-
|
243 |
-
class MultiscaleResNetSingle(GeneratorMultiToSingleOutputMixin, SingleToMultiScaleInputMixin, MultiscaleResNet):
|
244 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/pix2pixhd.py
DELETED
@@ -1,669 +0,0 @@
|
|
1 |
-
# original: https://github.com/NVIDIA/pix2pixHD/blob/master/models/networks.py
|
2 |
-
import collections
|
3 |
-
from functools import partial
|
4 |
-
import functools
|
5 |
-
import logging
|
6 |
-
from collections import defaultdict
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import torch.nn as nn
|
10 |
-
|
11 |
-
from annotator.lama.saicinpainting.training.modules.base import BaseDiscriminator, deconv_factory, get_conv_block_ctor, get_norm_layer, get_activation
|
12 |
-
from annotator.lama.saicinpainting.training.modules.ffc import FFCResnetBlock
|
13 |
-
from annotator.lama.saicinpainting.training.modules.multidilated_conv import MultidilatedConv
|
14 |
-
|
15 |
-
class DotDict(defaultdict):
|
16 |
-
# https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
|
17 |
-
"""dot.notation access to dictionary attributes"""
|
18 |
-
__getattr__ = defaultdict.get
|
19 |
-
__setattr__ = defaultdict.__setitem__
|
20 |
-
__delattr__ = defaultdict.__delitem__
|
21 |
-
|
22 |
-
class Identity(nn.Module):
|
23 |
-
def __init__(self):
|
24 |
-
super().__init__()
|
25 |
-
|
26 |
-
def forward(self, x):
|
27 |
-
return x
|
28 |
-
|
29 |
-
|
30 |
-
class ResnetBlock(nn.Module):
|
31 |
-
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default',
|
32 |
-
dilation=1, in_dim=None, groups=1, second_dilation=None):
|
33 |
-
super(ResnetBlock, self).__init__()
|
34 |
-
self.in_dim = in_dim
|
35 |
-
self.dim = dim
|
36 |
-
if second_dilation is None:
|
37 |
-
second_dilation = dilation
|
38 |
-
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout,
|
39 |
-
conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups,
|
40 |
-
second_dilation=second_dilation)
|
41 |
-
|
42 |
-
if self.in_dim is not None:
|
43 |
-
self.input_conv = nn.Conv2d(in_dim, dim, 1)
|
44 |
-
|
45 |
-
self.out_channnels = dim
|
46 |
-
|
47 |
-
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default',
|
48 |
-
dilation=1, in_dim=None, groups=1, second_dilation=1):
|
49 |
-
conv_layer = get_conv_block_ctor(conv_kind)
|
50 |
-
|
51 |
-
conv_block = []
|
52 |
-
p = 0
|
53 |
-
if padding_type == 'reflect':
|
54 |
-
conv_block += [nn.ReflectionPad2d(dilation)]
|
55 |
-
elif padding_type == 'replicate':
|
56 |
-
conv_block += [nn.ReplicationPad2d(dilation)]
|
57 |
-
elif padding_type == 'zero':
|
58 |
-
p = dilation
|
59 |
-
else:
|
60 |
-
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
|
61 |
-
|
62 |
-
if in_dim is None:
|
63 |
-
in_dim = dim
|
64 |
-
|
65 |
-
conv_block += [conv_layer(in_dim, dim, kernel_size=3, padding=p, dilation=dilation),
|
66 |
-
norm_layer(dim),
|
67 |
-
activation]
|
68 |
-
if use_dropout:
|
69 |
-
conv_block += [nn.Dropout(0.5)]
|
70 |
-
|
71 |
-
p = 0
|
72 |
-
if padding_type == 'reflect':
|
73 |
-
conv_block += [nn.ReflectionPad2d(second_dilation)]
|
74 |
-
elif padding_type == 'replicate':
|
75 |
-
conv_block += [nn.ReplicationPad2d(second_dilation)]
|
76 |
-
elif padding_type == 'zero':
|
77 |
-
p = second_dilation
|
78 |
-
else:
|
79 |
-
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
|
80 |
-
conv_block += [conv_layer(dim, dim, kernel_size=3, padding=p, dilation=second_dilation, groups=groups),
|
81 |
-
norm_layer(dim)]
|
82 |
-
|
83 |
-
return nn.Sequential(*conv_block)
|
84 |
-
|
85 |
-
def forward(self, x):
|
86 |
-
x_before = x
|
87 |
-
if self.in_dim is not None:
|
88 |
-
x = self.input_conv(x)
|
89 |
-
out = x + self.conv_block(x_before)
|
90 |
-
return out
|
91 |
-
|
92 |
-
class ResnetBlock5x5(nn.Module):
|
93 |
-
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default',
|
94 |
-
dilation=1, in_dim=None, groups=1, second_dilation=None):
|
95 |
-
super(ResnetBlock5x5, self).__init__()
|
96 |
-
self.in_dim = in_dim
|
97 |
-
self.dim = dim
|
98 |
-
if second_dilation is None:
|
99 |
-
second_dilation = dilation
|
100 |
-
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout,
|
101 |
-
conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups,
|
102 |
-
second_dilation=second_dilation)
|
103 |
-
|
104 |
-
if self.in_dim is not None:
|
105 |
-
self.input_conv = nn.Conv2d(in_dim, dim, 1)
|
106 |
-
|
107 |
-
self.out_channnels = dim
|
108 |
-
|
109 |
-
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default',
|
110 |
-
dilation=1, in_dim=None, groups=1, second_dilation=1):
|
111 |
-
conv_layer = get_conv_block_ctor(conv_kind)
|
112 |
-
|
113 |
-
conv_block = []
|
114 |
-
p = 0
|
115 |
-
if padding_type == 'reflect':
|
116 |
-
conv_block += [nn.ReflectionPad2d(dilation * 2)]
|
117 |
-
elif padding_type == 'replicate':
|
118 |
-
conv_block += [nn.ReplicationPad2d(dilation * 2)]
|
119 |
-
elif padding_type == 'zero':
|
120 |
-
p = dilation * 2
|
121 |
-
else:
|
122 |
-
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
|
123 |
-
|
124 |
-
if in_dim is None:
|
125 |
-
in_dim = dim
|
126 |
-
|
127 |
-
conv_block += [conv_layer(in_dim, dim, kernel_size=5, padding=p, dilation=dilation),
|
128 |
-
norm_layer(dim),
|
129 |
-
activation]
|
130 |
-
if use_dropout:
|
131 |
-
conv_block += [nn.Dropout(0.5)]
|
132 |
-
|
133 |
-
p = 0
|
134 |
-
if padding_type == 'reflect':
|
135 |
-
conv_block += [nn.ReflectionPad2d(second_dilation * 2)]
|
136 |
-
elif padding_type == 'replicate':
|
137 |
-
conv_block += [nn.ReplicationPad2d(second_dilation * 2)]
|
138 |
-
elif padding_type == 'zero':
|
139 |
-
p = second_dilation * 2
|
140 |
-
else:
|
141 |
-
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
|
142 |
-
conv_block += [conv_layer(dim, dim, kernel_size=5, padding=p, dilation=second_dilation, groups=groups),
|
143 |
-
norm_layer(dim)]
|
144 |
-
|
145 |
-
return nn.Sequential(*conv_block)
|
146 |
-
|
147 |
-
def forward(self, x):
|
148 |
-
x_before = x
|
149 |
-
if self.in_dim is not None:
|
150 |
-
x = self.input_conv(x)
|
151 |
-
out = x + self.conv_block(x_before)
|
152 |
-
return out
|
153 |
-
|
154 |
-
|
155 |
-
class MultidilatedResnetBlock(nn.Module):
|
156 |
-
def __init__(self, dim, padding_type, conv_layer, norm_layer, activation=nn.ReLU(True), use_dropout=False):
|
157 |
-
super().__init__()
|
158 |
-
self.conv_block = self.build_conv_block(dim, padding_type, conv_layer, norm_layer, activation, use_dropout)
|
159 |
-
|
160 |
-
def build_conv_block(self, dim, padding_type, conv_layer, norm_layer, activation, use_dropout, dilation=1):
|
161 |
-
conv_block = []
|
162 |
-
conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type),
|
163 |
-
norm_layer(dim),
|
164 |
-
activation]
|
165 |
-
if use_dropout:
|
166 |
-
conv_block += [nn.Dropout(0.5)]
|
167 |
-
|
168 |
-
conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type),
|
169 |
-
norm_layer(dim)]
|
170 |
-
|
171 |
-
return nn.Sequential(*conv_block)
|
172 |
-
|
173 |
-
def forward(self, x):
|
174 |
-
out = x + self.conv_block(x)
|
175 |
-
return out
|
176 |
-
|
177 |
-
|
178 |
-
class MultiDilatedGlobalGenerator(nn.Module):
|
179 |
-
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3,
|
180 |
-
n_blocks=3, norm_layer=nn.BatchNorm2d,
|
181 |
-
padding_type='reflect', conv_kind='default',
|
182 |
-
deconv_kind='convtranspose', activation=nn.ReLU(True),
|
183 |
-
up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True),
|
184 |
-
add_out_act=True, max_features=1024, multidilation_kwargs={},
|
185 |
-
ffc_positions=None, ffc_kwargs={}):
|
186 |
-
assert (n_blocks >= 0)
|
187 |
-
super().__init__()
|
188 |
-
|
189 |
-
conv_layer = get_conv_block_ctor(conv_kind)
|
190 |
-
resnet_conv_layer = functools.partial(get_conv_block_ctor('multidilated'), **multidilation_kwargs)
|
191 |
-
norm_layer = get_norm_layer(norm_layer)
|
192 |
-
if affine is not None:
|
193 |
-
norm_layer = partial(norm_layer, affine=affine)
|
194 |
-
up_norm_layer = get_norm_layer(up_norm_layer)
|
195 |
-
if affine is not None:
|
196 |
-
up_norm_layer = partial(up_norm_layer, affine=affine)
|
197 |
-
|
198 |
-
model = [nn.ReflectionPad2d(3),
|
199 |
-
conv_layer(input_nc, ngf, kernel_size=7, padding=0),
|
200 |
-
norm_layer(ngf),
|
201 |
-
activation]
|
202 |
-
|
203 |
-
identity = Identity()
|
204 |
-
### downsample
|
205 |
-
for i in range(n_downsampling):
|
206 |
-
mult = 2 ** i
|
207 |
-
|
208 |
-
model += [conv_layer(min(max_features, ngf * mult),
|
209 |
-
min(max_features, ngf * mult * 2),
|
210 |
-
kernel_size=3, stride=2, padding=1),
|
211 |
-
norm_layer(min(max_features, ngf * mult * 2)),
|
212 |
-
activation]
|
213 |
-
|
214 |
-
mult = 2 ** n_downsampling
|
215 |
-
feats_num_bottleneck = min(max_features, ngf * mult)
|
216 |
-
|
217 |
-
### resnet blocks
|
218 |
-
for i in range(n_blocks):
|
219 |
-
if ffc_positions is not None and i in ffc_positions:
|
220 |
-
model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU,
|
221 |
-
inline=True, **ffc_kwargs)]
|
222 |
-
model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type,
|
223 |
-
conv_layer=resnet_conv_layer, activation=activation,
|
224 |
-
norm_layer=norm_layer)]
|
225 |
-
|
226 |
-
### upsample
|
227 |
-
for i in range(n_downsampling):
|
228 |
-
mult = 2 ** (n_downsampling - i)
|
229 |
-
model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features)
|
230 |
-
model += [nn.ReflectionPad2d(3),
|
231 |
-
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
|
232 |
-
if add_out_act:
|
233 |
-
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
|
234 |
-
self.model = nn.Sequential(*model)
|
235 |
-
|
236 |
-
def forward(self, input):
|
237 |
-
return self.model(input)
|
238 |
-
|
239 |
-
class ConfigGlobalGenerator(nn.Module):
|
240 |
-
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3,
|
241 |
-
n_blocks=3, norm_layer=nn.BatchNorm2d,
|
242 |
-
padding_type='reflect', conv_kind='default',
|
243 |
-
deconv_kind='convtranspose', activation=nn.ReLU(True),
|
244 |
-
up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True),
|
245 |
-
add_out_act=True, max_features=1024,
|
246 |
-
manual_block_spec=[],
|
247 |
-
resnet_block_kind='multidilatedresnetblock',
|
248 |
-
resnet_conv_kind='multidilated',
|
249 |
-
resnet_dilation=1,
|
250 |
-
multidilation_kwargs={}):
|
251 |
-
assert (n_blocks >= 0)
|
252 |
-
super().__init__()
|
253 |
-
|
254 |
-
conv_layer = get_conv_block_ctor(conv_kind)
|
255 |
-
resnet_conv_layer = functools.partial(get_conv_block_ctor(resnet_conv_kind), **multidilation_kwargs)
|
256 |
-
norm_layer = get_norm_layer(norm_layer)
|
257 |
-
if affine is not None:
|
258 |
-
norm_layer = partial(norm_layer, affine=affine)
|
259 |
-
up_norm_layer = get_norm_layer(up_norm_layer)
|
260 |
-
if affine is not None:
|
261 |
-
up_norm_layer = partial(up_norm_layer, affine=affine)
|
262 |
-
|
263 |
-
model = [nn.ReflectionPad2d(3),
|
264 |
-
conv_layer(input_nc, ngf, kernel_size=7, padding=0),
|
265 |
-
norm_layer(ngf),
|
266 |
-
activation]
|
267 |
-
|
268 |
-
identity = Identity()
|
269 |
-
|
270 |
-
### downsample
|
271 |
-
for i in range(n_downsampling):
|
272 |
-
mult = 2 ** i
|
273 |
-
model += [conv_layer(min(max_features, ngf * mult),
|
274 |
-
min(max_features, ngf * mult * 2),
|
275 |
-
kernel_size=3, stride=2, padding=1),
|
276 |
-
norm_layer(min(max_features, ngf * mult * 2)),
|
277 |
-
activation]
|
278 |
-
|
279 |
-
mult = 2 ** n_downsampling
|
280 |
-
feats_num_bottleneck = min(max_features, ngf * mult)
|
281 |
-
|
282 |
-
if len(manual_block_spec) == 0:
|
283 |
-
manual_block_spec = [
|
284 |
-
DotDict(lambda : None, {
|
285 |
-
'n_blocks': n_blocks,
|
286 |
-
'use_default': True})
|
287 |
-
]
|
288 |
-
|
289 |
-
### resnet blocks
|
290 |
-
for block_spec in manual_block_spec:
|
291 |
-
def make_and_add_blocks(model, block_spec):
|
292 |
-
block_spec = DotDict(lambda : None, block_spec)
|
293 |
-
if not block_spec.use_default:
|
294 |
-
resnet_conv_layer = functools.partial(get_conv_block_ctor(block_spec.resnet_conv_kind), **block_spec.multidilation_kwargs)
|
295 |
-
resnet_conv_kind = block_spec.resnet_conv_kind
|
296 |
-
resnet_block_kind = block_spec.resnet_block_kind
|
297 |
-
if block_spec.resnet_dilation is not None:
|
298 |
-
resnet_dilation = block_spec.resnet_dilation
|
299 |
-
for i in range(block_spec.n_blocks):
|
300 |
-
if resnet_block_kind == "multidilatedresnetblock":
|
301 |
-
model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type,
|
302 |
-
conv_layer=resnet_conv_layer, activation=activation,
|
303 |
-
norm_layer=norm_layer)]
|
304 |
-
if resnet_block_kind == "resnetblock":
|
305 |
-
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
|
306 |
-
conv_kind=resnet_conv_kind)]
|
307 |
-
if resnet_block_kind == "resnetblock5x5":
|
308 |
-
model += [ResnetBlock5x5(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
|
309 |
-
conv_kind=resnet_conv_kind)]
|
310 |
-
if resnet_block_kind == "resnetblockdwdil":
|
311 |
-
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
|
312 |
-
conv_kind=resnet_conv_kind, dilation=resnet_dilation, second_dilation=resnet_dilation)]
|
313 |
-
make_and_add_blocks(model, block_spec)
|
314 |
-
|
315 |
-
### upsample
|
316 |
-
for i in range(n_downsampling):
|
317 |
-
mult = 2 ** (n_downsampling - i)
|
318 |
-
model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features)
|
319 |
-
model += [nn.ReflectionPad2d(3),
|
320 |
-
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
|
321 |
-
if add_out_act:
|
322 |
-
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
|
323 |
-
self.model = nn.Sequential(*model)
|
324 |
-
|
325 |
-
def forward(self, input):
|
326 |
-
return self.model(input)
|
327 |
-
|
328 |
-
|
329 |
-
def make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs):
|
330 |
-
blocks = []
|
331 |
-
for i in range(dilated_blocks_n):
|
332 |
-
if dilation_block_kind == 'simple':
|
333 |
-
blocks.append(ResnetBlock(**dilated_block_kwargs, dilation=2 ** (i + 1)))
|
334 |
-
elif dilation_block_kind == 'multi':
|
335 |
-
blocks.append(MultidilatedResnetBlock(**dilated_block_kwargs))
|
336 |
-
else:
|
337 |
-
raise ValueError(f'dilation_block_kind could not be "{dilation_block_kind}"')
|
338 |
-
return blocks
|
339 |
-
|
340 |
-
|
341 |
-
class GlobalGenerator(nn.Module):
|
342 |
-
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
|
343 |
-
padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
|
344 |
-
up_norm_layer=nn.BatchNorm2d, affine=None,
|
345 |
-
up_activation=nn.ReLU(True), dilated_blocks_n=0, dilated_blocks_n_start=0,
|
346 |
-
dilated_blocks_n_middle=0,
|
347 |
-
add_out_act=True,
|
348 |
-
max_features=1024, is_resblock_depthwise=False,
|
349 |
-
ffc_positions=None, ffc_kwargs={}, dilation=1, second_dilation=None,
|
350 |
-
dilation_block_kind='simple', multidilation_kwargs={}):
|
351 |
-
assert (n_blocks >= 0)
|
352 |
-
super().__init__()
|
353 |
-
|
354 |
-
conv_layer = get_conv_block_ctor(conv_kind)
|
355 |
-
norm_layer = get_norm_layer(norm_layer)
|
356 |
-
if affine is not None:
|
357 |
-
norm_layer = partial(norm_layer, affine=affine)
|
358 |
-
up_norm_layer = get_norm_layer(up_norm_layer)
|
359 |
-
if affine is not None:
|
360 |
-
up_norm_layer = partial(up_norm_layer, affine=affine)
|
361 |
-
|
362 |
-
if ffc_positions is not None:
|
363 |
-
ffc_positions = collections.Counter(ffc_positions)
|
364 |
-
|
365 |
-
model = [nn.ReflectionPad2d(3),
|
366 |
-
conv_layer(input_nc, ngf, kernel_size=7, padding=0),
|
367 |
-
norm_layer(ngf),
|
368 |
-
activation]
|
369 |
-
|
370 |
-
identity = Identity()
|
371 |
-
### downsample
|
372 |
-
for i in range(n_downsampling):
|
373 |
-
mult = 2 ** i
|
374 |
-
|
375 |
-
model += [conv_layer(min(max_features, ngf * mult),
|
376 |
-
min(max_features, ngf * mult * 2),
|
377 |
-
kernel_size=3, stride=2, padding=1),
|
378 |
-
norm_layer(min(max_features, ngf * mult * 2)),
|
379 |
-
activation]
|
380 |
-
|
381 |
-
mult = 2 ** n_downsampling
|
382 |
-
feats_num_bottleneck = min(max_features, ngf * mult)
|
383 |
-
|
384 |
-
dilated_block_kwargs = dict(dim=feats_num_bottleneck, padding_type=padding_type,
|
385 |
-
activation=activation, norm_layer=norm_layer)
|
386 |
-
if dilation_block_kind == 'simple':
|
387 |
-
dilated_block_kwargs['conv_kind'] = conv_kind
|
388 |
-
elif dilation_block_kind == 'multi':
|
389 |
-
dilated_block_kwargs['conv_layer'] = functools.partial(
|
390 |
-
get_conv_block_ctor('multidilated'), **multidilation_kwargs)
|
391 |
-
|
392 |
-
# dilated blocks at the start of the bottleneck sausage
|
393 |
-
if dilated_blocks_n_start is not None and dilated_blocks_n_start > 0:
|
394 |
-
model += make_dil_blocks(dilated_blocks_n_start, dilation_block_kind, dilated_block_kwargs)
|
395 |
-
|
396 |
-
# resnet blocks
|
397 |
-
for i in range(n_blocks):
|
398 |
-
# dilated blocks at the middle of the bottleneck sausage
|
399 |
-
if i == n_blocks // 2 and dilated_blocks_n_middle is not None and dilated_blocks_n_middle > 0:
|
400 |
-
model += make_dil_blocks(dilated_blocks_n_middle, dilation_block_kind, dilated_block_kwargs)
|
401 |
-
|
402 |
-
if ffc_positions is not None and i in ffc_positions:
|
403 |
-
for _ in range(ffc_positions[i]): # same position can occur more than once
|
404 |
-
model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU,
|
405 |
-
inline=True, **ffc_kwargs)]
|
406 |
-
|
407 |
-
if is_resblock_depthwise:
|
408 |
-
resblock_groups = feats_num_bottleneck
|
409 |
-
else:
|
410 |
-
resblock_groups = 1
|
411 |
-
|
412 |
-
model += [ResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation=activation,
|
413 |
-
norm_layer=norm_layer, conv_kind=conv_kind, groups=resblock_groups,
|
414 |
-
dilation=dilation, second_dilation=second_dilation)]
|
415 |
-
|
416 |
-
|
417 |
-
# dilated blocks at the end of the bottleneck sausage
|
418 |
-
if dilated_blocks_n is not None and dilated_blocks_n > 0:
|
419 |
-
model += make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs)
|
420 |
-
|
421 |
-
# upsample
|
422 |
-
for i in range(n_downsampling):
|
423 |
-
mult = 2 ** (n_downsampling - i)
|
424 |
-
model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
|
425 |
-
min(max_features, int(ngf * mult / 2)),
|
426 |
-
kernel_size=3, stride=2, padding=1, output_padding=1),
|
427 |
-
up_norm_layer(min(max_features, int(ngf * mult / 2))),
|
428 |
-
up_activation]
|
429 |
-
model += [nn.ReflectionPad2d(3),
|
430 |
-
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
|
431 |
-
if add_out_act:
|
432 |
-
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
|
433 |
-
self.model = nn.Sequential(*model)
|
434 |
-
|
435 |
-
def forward(self, input):
|
436 |
-
return self.model(input)
|
437 |
-
|
438 |
-
|
439 |
-
class GlobalGeneratorGated(GlobalGenerator):
|
440 |
-
def __init__(self, *args, **kwargs):
|
441 |
-
real_kwargs=dict(
|
442 |
-
conv_kind='gated_bn_relu',
|
443 |
-
activation=nn.Identity(),
|
444 |
-
norm_layer=nn.Identity
|
445 |
-
)
|
446 |
-
real_kwargs.update(kwargs)
|
447 |
-
super().__init__(*args, **real_kwargs)
|
448 |
-
|
449 |
-
|
450 |
-
class GlobalGeneratorFromSuperChannels(nn.Module):
|
451 |
-
def __init__(self, input_nc, output_nc, n_downsampling, n_blocks, super_channels, norm_layer="bn", padding_type='reflect', add_out_act=True):
|
452 |
-
super().__init__()
|
453 |
-
self.n_downsampling = n_downsampling
|
454 |
-
norm_layer = get_norm_layer(norm_layer)
|
455 |
-
if type(norm_layer) == functools.partial:
|
456 |
-
use_bias = (norm_layer.func == nn.InstanceNorm2d)
|
457 |
-
else:
|
458 |
-
use_bias = (norm_layer == nn.InstanceNorm2d)
|
459 |
-
|
460 |
-
channels = self.convert_super_channels(super_channels)
|
461 |
-
self.channels = channels
|
462 |
-
|
463 |
-
model = [nn.ReflectionPad2d(3),
|
464 |
-
nn.Conv2d(input_nc, channels[0], kernel_size=7, padding=0, bias=use_bias),
|
465 |
-
norm_layer(channels[0]),
|
466 |
-
nn.ReLU(True)]
|
467 |
-
|
468 |
-
for i in range(n_downsampling): # add downsampling layers
|
469 |
-
mult = 2 ** i
|
470 |
-
model += [nn.Conv2d(channels[0+i], channels[1+i], kernel_size=3, stride=2, padding=1, bias=use_bias),
|
471 |
-
norm_layer(channels[1+i]),
|
472 |
-
nn.ReLU(True)]
|
473 |
-
|
474 |
-
mult = 2 ** n_downsampling
|
475 |
-
|
476 |
-
n_blocks1 = n_blocks // 3
|
477 |
-
n_blocks2 = n_blocks1
|
478 |
-
n_blocks3 = n_blocks - n_blocks1 - n_blocks2
|
479 |
-
|
480 |
-
for i in range(n_blocks1):
|
481 |
-
c = n_downsampling
|
482 |
-
dim = channels[c]
|
483 |
-
model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer)]
|
484 |
-
|
485 |
-
for i in range(n_blocks2):
|
486 |
-
c = n_downsampling+1
|
487 |
-
dim = channels[c]
|
488 |
-
kwargs = {}
|
489 |
-
if i == 0:
|
490 |
-
kwargs = {"in_dim": channels[c-1]}
|
491 |
-
model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)]
|
492 |
-
|
493 |
-
for i in range(n_blocks3):
|
494 |
-
c = n_downsampling+2
|
495 |
-
dim = channels[c]
|
496 |
-
kwargs = {}
|
497 |
-
if i == 0:
|
498 |
-
kwargs = {"in_dim": channels[c-1]}
|
499 |
-
model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)]
|
500 |
-
|
501 |
-
for i in range(n_downsampling): # add upsampling layers
|
502 |
-
mult = 2 ** (n_downsampling - i)
|
503 |
-
model += [nn.ConvTranspose2d(channels[n_downsampling+3+i],
|
504 |
-
channels[n_downsampling+3+i+1],
|
505 |
-
kernel_size=3, stride=2,
|
506 |
-
padding=1, output_padding=1,
|
507 |
-
bias=use_bias),
|
508 |
-
norm_layer(channels[n_downsampling+3+i+1]),
|
509 |
-
nn.ReLU(True)]
|
510 |
-
model += [nn.ReflectionPad2d(3)]
|
511 |
-
model += [nn.Conv2d(channels[2*n_downsampling+3], output_nc, kernel_size=7, padding=0)]
|
512 |
-
|
513 |
-
if add_out_act:
|
514 |
-
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
|
515 |
-
self.model = nn.Sequential(*model)
|
516 |
-
|
517 |
-
def convert_super_channels(self, super_channels):
|
518 |
-
n_downsampling = self.n_downsampling
|
519 |
-
result = []
|
520 |
-
cnt = 0
|
521 |
-
|
522 |
-
if n_downsampling == 2:
|
523 |
-
N1 = 10
|
524 |
-
elif n_downsampling == 3:
|
525 |
-
N1 = 13
|
526 |
-
else:
|
527 |
-
raise NotImplementedError
|
528 |
-
|
529 |
-
for i in range(0, N1):
|
530 |
-
if i in [1,4,7,10]:
|
531 |
-
channel = super_channels[cnt] * (2 ** cnt)
|
532 |
-
config = {'channel': channel}
|
533 |
-
result.append(channel)
|
534 |
-
logging.info(f"Downsample channels {result[-1]}")
|
535 |
-
cnt += 1
|
536 |
-
|
537 |
-
for i in range(3):
|
538 |
-
for counter, j in enumerate(range(N1 + i * 3, N1 + 3 + i * 3)):
|
539 |
-
if len(super_channels) == 6:
|
540 |
-
channel = super_channels[3] * 4
|
541 |
-
else:
|
542 |
-
channel = super_channels[i + 3] * 4
|
543 |
-
config = {'channel': channel}
|
544 |
-
if counter == 0:
|
545 |
-
result.append(channel)
|
546 |
-
logging.info(f"Bottleneck channels {result[-1]}")
|
547 |
-
cnt = 2
|
548 |
-
|
549 |
-
for i in range(N1+9, N1+21):
|
550 |
-
if i in [22, 25,28]:
|
551 |
-
cnt -= 1
|
552 |
-
if len(super_channels) == 6:
|
553 |
-
channel = super_channels[5 - cnt] * (2 ** cnt)
|
554 |
-
else:
|
555 |
-
channel = super_channels[7 - cnt] * (2 ** cnt)
|
556 |
-
result.append(int(channel))
|
557 |
-
logging.info(f"Upsample channels {result[-1]}")
|
558 |
-
return result
|
559 |
-
|
560 |
-
def forward(self, input):
|
561 |
-
return self.model(input)
|
562 |
-
|
563 |
-
|
564 |
-
# Defines the PatchGAN discriminator with the specified arguments.
|
565 |
-
class NLayerDiscriminator(BaseDiscriminator):
|
566 |
-
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,):
|
567 |
-
super().__init__()
|
568 |
-
self.n_layers = n_layers
|
569 |
-
|
570 |
-
kw = 4
|
571 |
-
padw = int(np.ceil((kw-1.0)/2))
|
572 |
-
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
|
573 |
-
nn.LeakyReLU(0.2, True)]]
|
574 |
-
|
575 |
-
nf = ndf
|
576 |
-
for n in range(1, n_layers):
|
577 |
-
nf_prev = nf
|
578 |
-
nf = min(nf * 2, 512)
|
579 |
-
|
580 |
-
cur_model = []
|
581 |
-
cur_model += [
|
582 |
-
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
|
583 |
-
norm_layer(nf),
|
584 |
-
nn.LeakyReLU(0.2, True)
|
585 |
-
]
|
586 |
-
sequence.append(cur_model)
|
587 |
-
|
588 |
-
nf_prev = nf
|
589 |
-
nf = min(nf * 2, 512)
|
590 |
-
|
591 |
-
cur_model = []
|
592 |
-
cur_model += [
|
593 |
-
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
|
594 |
-
norm_layer(nf),
|
595 |
-
nn.LeakyReLU(0.2, True)
|
596 |
-
]
|
597 |
-
sequence.append(cur_model)
|
598 |
-
|
599 |
-
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
|
600 |
-
|
601 |
-
for n in range(len(sequence)):
|
602 |
-
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
|
603 |
-
|
604 |
-
def get_all_activations(self, x):
|
605 |
-
res = [x]
|
606 |
-
for n in range(self.n_layers + 2):
|
607 |
-
model = getattr(self, 'model' + str(n))
|
608 |
-
res.append(model(res[-1]))
|
609 |
-
return res[1:]
|
610 |
-
|
611 |
-
def forward(self, x):
|
612 |
-
act = self.get_all_activations(x)
|
613 |
-
return act[-1], act[:-1]
|
614 |
-
|
615 |
-
|
616 |
-
class MultidilatedNLayerDiscriminator(BaseDiscriminator):
|
617 |
-
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, multidilation_kwargs={}):
|
618 |
-
super().__init__()
|
619 |
-
self.n_layers = n_layers
|
620 |
-
|
621 |
-
kw = 4
|
622 |
-
padw = int(np.ceil((kw-1.0)/2))
|
623 |
-
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
|
624 |
-
nn.LeakyReLU(0.2, True)]]
|
625 |
-
|
626 |
-
nf = ndf
|
627 |
-
for n in range(1, n_layers):
|
628 |
-
nf_prev = nf
|
629 |
-
nf = min(nf * 2, 512)
|
630 |
-
|
631 |
-
cur_model = []
|
632 |
-
cur_model += [
|
633 |
-
MultidilatedConv(nf_prev, nf, kernel_size=kw, stride=2, padding=[2, 3], **multidilation_kwargs),
|
634 |
-
norm_layer(nf),
|
635 |
-
nn.LeakyReLU(0.2, True)
|
636 |
-
]
|
637 |
-
sequence.append(cur_model)
|
638 |
-
|
639 |
-
nf_prev = nf
|
640 |
-
nf = min(nf * 2, 512)
|
641 |
-
|
642 |
-
cur_model = []
|
643 |
-
cur_model += [
|
644 |
-
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
|
645 |
-
norm_layer(nf),
|
646 |
-
nn.LeakyReLU(0.2, True)
|
647 |
-
]
|
648 |
-
sequence.append(cur_model)
|
649 |
-
|
650 |
-
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
|
651 |
-
|
652 |
-
for n in range(len(sequence)):
|
653 |
-
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
|
654 |
-
|
655 |
-
def get_all_activations(self, x):
|
656 |
-
res = [x]
|
657 |
-
for n in range(self.n_layers + 2):
|
658 |
-
model = getattr(self, 'model' + str(n))
|
659 |
-
res.append(model(res[-1]))
|
660 |
-
return res[1:]
|
661 |
-
|
662 |
-
def forward(self, x):
|
663 |
-
act = self.get_all_activations(x)
|
664 |
-
return act[-1], act[:-1]
|
665 |
-
|
666 |
-
|
667 |
-
class NLayerDiscriminatorAsGen(NLayerDiscriminator):
|
668 |
-
def forward(self, x):
|
669 |
-
return super().forward(x)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/spatial_transform.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from kornia.geometry.transform import rotate
|
5 |
-
|
6 |
-
|
7 |
-
class LearnableSpatialTransformWrapper(nn.Module):
|
8 |
-
def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True):
|
9 |
-
super().__init__()
|
10 |
-
self.impl = impl
|
11 |
-
self.angle = torch.rand(1) * angle_init_range
|
12 |
-
if train_angle:
|
13 |
-
self.angle = nn.Parameter(self.angle, requires_grad=True)
|
14 |
-
self.pad_coef = pad_coef
|
15 |
-
|
16 |
-
def forward(self, x):
|
17 |
-
if torch.is_tensor(x):
|
18 |
-
return self.inverse_transform(self.impl(self.transform(x)), x)
|
19 |
-
elif isinstance(x, tuple):
|
20 |
-
x_trans = tuple(self.transform(elem) for elem in x)
|
21 |
-
y_trans = self.impl(x_trans)
|
22 |
-
return tuple(self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x))
|
23 |
-
else:
|
24 |
-
raise ValueError(f'Unexpected input type {type(x)}')
|
25 |
-
|
26 |
-
def transform(self, x):
|
27 |
-
height, width = x.shape[2:]
|
28 |
-
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
|
29 |
-
x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode='reflect')
|
30 |
-
x_padded_rotated = rotate(x_padded, angle=self.angle.to(x_padded))
|
31 |
-
return x_padded_rotated
|
32 |
-
|
33 |
-
def inverse_transform(self, y_padded_rotated, orig_x):
|
34 |
-
height, width = orig_x.shape[2:]
|
35 |
-
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
|
36 |
-
|
37 |
-
y_padded = rotate(y_padded_rotated, angle=-self.angle.to(y_padded_rotated))
|
38 |
-
y_height, y_width = y_padded.shape[2:]
|
39 |
-
y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w]
|
40 |
-
return y
|
41 |
-
|
42 |
-
|
43 |
-
if __name__ == '__main__':
|
44 |
-
layer = LearnableSpatialTransformWrapper(nn.Identity())
|
45 |
-
x = torch.arange(2* 3 * 15 * 15).view(2, 3, 15, 15).float()
|
46 |
-
y = layer(x)
|
47 |
-
assert x.shape == y.shape
|
48 |
-
assert torch.allclose(x[:, :, 1:, 1:][:, :, :-1, :-1], y[:, :, 1:, 1:][:, :, :-1, :-1])
|
49 |
-
print('all ok')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extensions/sd-webui-controlnet/annotator/lama/saicinpainting/training/modules/squeeze_excitation.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
|
3 |
-
|
4 |
-
class SELayer(nn.Module):
|
5 |
-
def __init__(self, channel, reduction=16):
|
6 |
-
super(SELayer, self).__init__()
|
7 |
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
8 |
-
self.fc = nn.Sequential(
|
9 |
-
nn.Linear(channel, channel // reduction, bias=False),
|
10 |
-
nn.ReLU(inplace=True),
|
11 |
-
nn.Linear(channel // reduction, channel, bias=False),
|
12 |
-
nn.Sigmoid()
|
13 |
-
)
|
14 |
-
|
15 |
-
def forward(self, x):
|
16 |
-
b, c, _, _ = x.size()
|
17 |
-
y = self.avg_pool(x).view(b, c)
|
18 |
-
y = self.fc(y).view(b, c, 1, 1)
|
19 |
-
res = x * y.expand_as(x)
|
20 |
-
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|