Spaces:
Paused
Paused
import os | |
from contextlib import closing | |
from pathlib import Path | |
import numpy as np | |
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError | |
import gradio as gr | |
from modules import images as imgutil | |
from modules.generation_parameters_copypaste import create_override_settings_dict, parse_generation_parameters | |
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images | |
from modules.shared import opts, state | |
import modules.shared as shared | |
import modules.processing as processing | |
from modules.ui import plaintext_to_html | |
import modules.scripts | |
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None): | |
output_dir = output_dir.strip() | |
processing.fix_seed(p) | |
images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff"))) | |
is_inpaint_batch = False | |
if inpaint_mask_dir: | |
inpaint_masks = shared.listfiles(inpaint_mask_dir) | |
is_inpaint_batch = bool(inpaint_masks) | |
if is_inpaint_batch: | |
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.") | |
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.") | |
state.job_count = len(images) * p.n_iter | |
# extract "default" params to use in case getting png info fails | |
prompt = p.prompt | |
negative_prompt = p.negative_prompt | |
seed = p.seed | |
cfg_scale = p.cfg_scale | |
sampler_name = p.sampler_name | |
steps = p.steps | |
for i, image in enumerate(images): | |
state.job = f"{i+1} out of {len(images)}" | |
if state.skipped: | |
state.skipped = False | |
if state.interrupted: | |
break | |
try: | |
img = Image.open(image) | |
except UnidentifiedImageError as e: | |
print(e) | |
continue | |
# Use the EXIF orientation of photos taken by smartphones. | |
img = ImageOps.exif_transpose(img) | |
if to_scale: | |
p.width = int(img.width * scale_by) | |
p.height = int(img.height * scale_by) | |
p.init_images = [img] * p.batch_size | |
image_path = Path(image) | |
if is_inpaint_batch: | |
# try to find corresponding mask for an image using simple filename matching | |
if len(inpaint_masks) == 1: | |
mask_image_path = inpaint_masks[0] | |
else: | |
# try to find corresponding mask for an image using simple filename matching | |
mask_image_dir = Path(inpaint_mask_dir) | |
masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*")) | |
if len(masks_found) == 0: | |
print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.") | |
continue | |
# it should contain only 1 matching mask | |
# otherwise user has many masks with the same name but different extensions | |
mask_image_path = masks_found[0] | |
mask_image = Image.open(mask_image_path) | |
p.image_mask = mask_image | |
if use_png_info: | |
try: | |
info_img = img | |
if png_info_dir: | |
info_img_path = os.path.join(png_info_dir, os.path.basename(image)) | |
info_img = Image.open(info_img_path) | |
geninfo, _ = imgutil.read_info_from_image(info_img) | |
parsed_parameters = parse_generation_parameters(geninfo) | |
parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})} | |
except Exception: | |
parsed_parameters = {} | |
p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "") | |
p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "") | |
p.seed = int(parsed_parameters.get("Seed", seed)) | |
p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale)) | |
p.sampler_name = parsed_parameters.get("Sampler", sampler_name) | |
p.steps = int(parsed_parameters.get("Steps", steps)) | |
proc = modules.scripts.scripts_img2img.run(p, *args) | |
if proc is None: | |
if output_dir: | |
p.outpath_samples = output_dir | |
p.override_settings['save_to_dirs'] = False | |
if p.n_iter > 1 or p.batch_size > 1: | |
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]' | |
else: | |
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}' | |
process_images(p) | |
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_name: str, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args): | |
override_settings = create_override_settings_dict(override_settings_texts) | |
is_batch = mode == 5 | |
if mode == 0: # img2img | |
image = init_img | |
mask = None | |
elif mode == 1: # img2img sketch | |
image = sketch | |
mask = None | |
elif mode == 2: # inpaint | |
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"] | |
mask = processing.create_binary_mask(mask) | |
elif mode == 3: # inpaint sketch | |
image = inpaint_color_sketch | |
orig = inpaint_color_sketch_orig or inpaint_color_sketch | |
pred = np.any(np.array(image) != np.array(orig), axis=-1) | |
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L") | |
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100) | |
blur = ImageFilter.GaussianBlur(mask_blur) | |
image = Image.composite(image.filter(blur), orig, mask.filter(blur)) | |
elif mode == 4: # inpaint upload mask | |
image = init_img_inpaint | |
mask = init_mask_inpaint | |
else: | |
image = None | |
mask = None | |
# Use the EXIF orientation of photos taken by smartphones. | |
if image is not None: | |
image = ImageOps.exif_transpose(image) | |
if selected_scale_tab == 1 and not is_batch: | |
assert image, "Can't scale by because no image is selected" | |
width = int(image.width * scale_by) | |
height = int(image.height * scale_by) | |
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' | |
p = StableDiffusionProcessingImg2Img( | |
sd_model=shared.sd_model, | |
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples, | |
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
styles=prompt_styles, | |
sampler_name=sampler_name, | |
batch_size=batch_size, | |
n_iter=n_iter, | |
steps=steps, | |
cfg_scale=cfg_scale, | |
width=width, | |
height=height, | |
init_images=[image], | |
mask=mask, | |
mask_blur=mask_blur, | |
inpainting_fill=inpainting_fill, | |
resize_mode=resize_mode, | |
denoising_strength=denoising_strength, | |
image_cfg_scale=image_cfg_scale, | |
inpaint_full_res=inpaint_full_res, | |
inpaint_full_res_padding=inpaint_full_res_padding, | |
inpainting_mask_invert=inpainting_mask_invert, | |
override_settings=override_settings, | |
) | |
p.scripts = modules.scripts.scripts_img2img | |
p.script_args = args | |
p.user = request.username | |
if shared.cmd_opts.enable_console_prompts: | |
print(f"\nimg2img: {prompt}", file=shared.progress_print_out) | |
if mask: | |
p.extra_generation_params["Mask blur"] = mask_blur | |
with closing(p): | |
if is_batch: | |
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" | |
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir) | |
processed = Processed(p, [], p.seed, "") | |
else: | |
processed = modules.scripts.scripts_img2img.run(p, *args) | |
if processed is None: | |
processed = process_images(p) | |
shared.total_tqdm.clear() | |
generation_info_js = processed.js() | |
if opts.samples_log_stdout: | |
print(generation_info_js) | |
if opts.do_not_show_images: | |
processed.images = [] | |
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments") | |