QuintW's picture
Upload 1350 files
3f9c56c
raw
history blame
10.6 kB
import copy
import os
import torch
from pathlib import Path
from modules import devices
from scripts.adapter import PlugableAdapter, Adapter, StyleAdapter, Adapter_light
from scripts.controlnet_lllite import PlugableControlLLLite
from scripts.cldm import PlugableControlModel
from scripts.controlmodel_ipadapter import PlugableIPAdapter
from scripts.logging import logger
from scripts.controlnet_diffusers import convert_from_diffuser_state_dict
from scripts.controlnet_lora import controlnet_lora_hijack, force_load_state_dict
controlnet_default_config = {'adm_in_channels': None,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4],
'transformer_depth': [1, 1, 1, 0],
'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1,
'use_linear_in_transformer': False,
'context_dim': 768,
"num_heads": 8,
"global_average_pooling": False}
controlnet_sdxl_config = {'num_classes': 'sequential',
'adm_in_channels': 2816,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [2, 4],
'transformer_depth': [0, 2, 10],
'channel_mult': [1, 2, 4],
'transformer_depth_middle': 10,
'use_linear_in_transformer': True,
'context_dim': 2048,
"num_head_channels": 64,
"global_average_pooling": False}
controlnet_sdxl_mid_config = {'num_classes': 'sequential',
'adm_in_channels': 2816,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [4],
'transformer_depth': [0, 0, 1],
'channel_mult': [1, 2, 4],
'transformer_depth_middle': 1,
'use_linear_in_transformer': True,
'context_dim': 2048,
"num_head_channels": 64,
"global_average_pooling": False}
controlnet_sdxl_small_config = {'num_classes': 'sequential',
'adm_in_channels': 2816,
'in_channels': 4,
'model_channels': 320,
'num_res_blocks': 2,
'attention_resolutions': [],
'transformer_depth': [0, 0, 0],
'channel_mult': [1, 2, 4],
'transformer_depth_middle': 0,
'use_linear_in_transformer': True,
"num_head_channels": 64,
'context_dim': 1,
"global_average_pooling": False}
t2i_adapter_config = {
'channels': [320, 640, 1280, 1280],
'nums_rb': 2,
'ksize': 1,
'sk': True,
'cin': 192,
'use_conv': False
}
t2i_adapter_light_config = {
'channels': [320, 640, 1280, 1280],
'nums_rb': 4,
'cin': 192,
}
t2i_adapter_style_config = {
'width': 1024,
'context_dim': 768,
'num_head': 8,
'n_layes': 3,
'num_token': 8,
}
# Stolen from https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/utils.py
def state_dict_key_replace(state_dict, keys_to_replace):
for x in keys_to_replace:
if x in state_dict:
state_dict[keys_to_replace[x]] = state_dict.pop(x)
return state_dict
# # Stolen from https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/utils.py
def state_dict_prefix_replace(state_dict, replace_prefix):
for rp in replace_prefix:
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
for x in replace:
state_dict[x[1]] = state_dict.pop(x[0])
return state_dict
def build_model_by_guess(state_dict, unet, model_path):
if "lora_controlnet" in state_dict:
del state_dict['lora_controlnet']
config = copy.deepcopy(controlnet_sdxl_config)
logger.info('controlnet_sdxl_config (using lora)')
config['global_average_pooling'] = False
config['hint_channels'] = int(state_dict['input_hint_block.0.weight'].shape[1])
config['use_fp16'] = devices.dtype_unet == torch.float16
with controlnet_lora_hijack():
network = PlugableControlModel(config, state_dict=None)
force_load_state_dict(network.control_model, state_dict)
network.is_control_lora = True
network.to(devices.dtype_unet)
return network
if "controlnet_cond_embedding.conv_in.weight" in state_dict: # diffusers
state_dict = convert_from_diffuser_state_dict(state_dict)
if 'adapter.body.0.resnets.0.block1.weight' in state_dict: # diffusers
prefix_replace = {}
for i in range(4):
for j in range(2):
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
prefix_replace["adapter.body.{}.".format(i)] = "body.{}.".format(i * 2)
prefix_replace["adapter."] = ""
state_dict = state_dict_prefix_replace(state_dict, prefix_replace)
model_has_shuffle_in_filename = 'shuffle' in Path(os.path.abspath(model_path)).stem.lower()
state_dict = {k.replace("control_model.", ""): v for k, v in state_dict.items()}
state_dict = {k.replace("adapter.", ""): v for k, v in state_dict.items()}
if 'input_hint_block.0.weight' in state_dict:
if 'label_emb.0.0.bias' not in state_dict:
config = copy.deepcopy(controlnet_default_config)
logger.info('controlnet_default_config')
config['global_average_pooling'] = model_has_shuffle_in_filename
config['hint_channels'] = int(state_dict['input_hint_block.0.weight'].shape[1])
config['context_dim'] = int(state_dict['input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight'].shape[1])
for key in state_dict.keys():
p = state_dict[key]
if 'proj_in.weight' in key or 'proj_out.weight' in key:
if len(p.shape) == 2:
p = p[..., None, None]
state_dict[key] = p
else:
has_full_layers = 'input_blocks.8.1.transformer_blocks.9.norm3.weight' in state_dict
has_mid_layers = 'input_blocks.8.1.transformer_blocks.0.norm3.weight' in state_dict
if has_full_layers:
config = copy.deepcopy(controlnet_sdxl_config)
logger.info('controlnet_sdxl_config')
elif has_mid_layers:
config = copy.deepcopy(controlnet_sdxl_mid_config)
logger.info('controlnet_sdxl_mid_config')
else:
config = copy.deepcopy(controlnet_sdxl_small_config)
logger.info('controlnet_sdxl_small_config')
config['global_average_pooling'] = False
config['hint_channels'] = int(state_dict['input_hint_block.0.weight'].shape[1])
if 'difference' in state_dict and unet is not None:
unet_state_dict = unet.state_dict()
unet_state_dict_keys = unet_state_dict.keys()
final_state_dict = {}
for key in state_dict.keys():
p = state_dict[key]
if key in unet_state_dict_keys:
p_new = p + unet_state_dict[key].clone().cpu()
else:
p_new = p
final_state_dict[key] = p_new
state_dict = final_state_dict
config['use_fp16'] = devices.dtype_unet == torch.float16
network = PlugableControlModel(config, state_dict)
network.to(devices.dtype_unet)
return network
if 'conv_in.weight' in state_dict:
logger.info('t2i_adapter_config')
cin = int(state_dict['conv_in.weight'].shape[1])
channel = int(state_dict['conv_in.weight'].shape[0])
ksize = int(state_dict['body.0.block2.weight'].shape[2])
down_opts = tuple(filter(lambda item: item.endswith("down_opt.op.weight"), state_dict))
use_conv = len(down_opts) > 0
is_sdxl = cin == 256 or cin == 768
adapter = Adapter(
cin=cin,
channels=[channel, channel*2, channel*4, channel*4],
nums_rb=2,
ksize=ksize,
sk=True,
use_conv=use_conv,
is_sdxl=is_sdxl
).cpu()
adapter.load_state_dict(state_dict, strict=False)
network = PlugableAdapter(adapter)
return network
if 'style_embedding' in state_dict:
config = copy.deepcopy(t2i_adapter_style_config)
logger.info('t2i_adapter_style_config')
adapter = StyleAdapter(**config).cpu()
adapter.load_state_dict(state_dict, strict=False)
network = PlugableAdapter(adapter)
return network
if 'body.0.in_conv.weight' in state_dict:
config = copy.deepcopy(t2i_adapter_light_config)
logger.info('t2i_adapter_light_config')
config['cin'] = int(state_dict['body.0.in_conv.weight'].shape[1])
adapter = Adapter_light(**config).cpu()
adapter.load_state_dict(state_dict, strict=False)
network = PlugableAdapter(adapter)
return network
if 'ip_adapter' in state_dict:
plus = "latents" in state_dict["image_proj"]
if plus:
channel = int(state_dict['image_proj']['proj_in.weight'].shape[1])
else:
channel = int(state_dict['image_proj']['proj.weight'].shape[1])
network = PlugableIPAdapter(state_dict, channel, plus)
network.to('cpu')
return network
if any('lllite' in k for k in state_dict.keys()):
network = PlugableControlLLLite(state_dict)
network.to('cpu')
return network
raise '[ControlNet Error] Cannot recognize the ControlModel!'