QuintW's picture
Upload 1350 files
3f9c56c
raw
history blame
6.71 kB
import copy
import os
import shutil
import cv2
import gradio as gr
import modules.scripts as scripts
from modules import images
from modules.processing import process_images
from modules.shared import opts
from PIL import Image
import numpy as np
_BASEDIR = "/controlnet-m2m"
_BASEFILE = "animation"
def get_all_frames(video_path):
if video_path is None:
return None
cap = cv2.VideoCapture(video_path)
frame_list = []
if not cap.isOpened():
return
while True:
ret, frame = cap.read()
if ret:
frame_list.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
return frame_list
def get_min_frame_num(video_list):
min_frame_num = -1
for video in video_list:
if video is None:
continue
else:
frame_num = len(video)
print(frame_num)
if min_frame_num < 0:
min_frame_num = frame_num
elif frame_num < min_frame_num:
min_frame_num = frame_num
return min_frame_num
def pil2cv(image):
new_image = np.array(image, dtype=np.uint8)
if new_image.ndim == 2:
pass
elif new_image.shape[2] == 3:
new_image = new_image[:, :, ::-1]
elif new_image.shape[2] == 4:
new_image = new_image[:, :, [2, 1, 0, 3]]
return new_image
def save_gif(path, image_list, name, duration):
tmp_dir = path + "/tmp/"
if os.path.isdir(tmp_dir):
shutil.rmtree(tmp_dir)
os.mkdir(tmp_dir)
for i, image in enumerate(image_list):
images.save_image(image, tmp_dir, f"output_{i}")
os.makedirs(f"{path}{_BASEDIR}", exist_ok=True)
image_list[0].save(f"{path}{_BASEDIR}/{name}.gif", save_all=True, append_images=image_list[1:], optimize=False, duration=duration, loop=0)
class Script(scripts.Script):
def title(self):
return "controlnet m2m"
def show(self, is_img2img):
return True
def ui(self, is_img2img):
# How the script's is displayed in the UI. See https://gradio.app/docs/#components
# for the different UI components you can use and how to create them.
# Most UI components can return a value, such as a boolean for a checkbox.
# The returned values are passed to the run method as parameters.
ctrls_group = ()
max_models = opts.data.get("control_net_unit_count", 3)
with gr.Group():
with gr.Accordion("ControlNet-M2M", open = False):
duration = gr.Slider(label=f"Duration", value=50.0, minimum=10.0, maximum=200.0, step=10, interactive=True, elem_id='controlnet_movie2movie_duration_slider')
with gr.Tabs():
for i in range(max_models):
with gr.Tab(f"ControlNet-{i}"):
with gr.TabItem("Movie Input"):
ctrls_group += (gr.Video(format='mp4', source='upload', elem_id = f"video_{i}"), )
with gr.TabItem("Image Input"):
ctrls_group += (gr.Image(source='upload', brush_radius=20, mirror_webcam=False, type='numpy', tool='sketch', elem_id=f'image_{i}'), )
ctrls_group += (gr.Checkbox(label=f"Save preprocessed", value=False, elem_id = f"save_pre_{i}"),)
ctrls_group += (duration,)
return ctrls_group
def run(self, p, *args):
# This is where the additional processing is implemented. The parameters include
# self, the model object "p" (a StableDiffusionProcessing class, see
# processing.py), and the parameters returned by the ui method.
# Custom functions can be defined here, and additional libraries can be imported
# to be used in processing. The return value should be a Processed object, which is
# what is returned by the process_images method.
contents_num = opts.data.get("control_net_unit_count", 3)
arg_num = 3
item_list = []
video_list = []
for input_set in [tuple(args[:contents_num * arg_num][i:i+3]) for i in range(0, len(args[:contents_num * arg_num]), arg_num)]:
if input_set[0] is not None:
item_list.append([get_all_frames(input_set[0]), "video"])
video_list.append(get_all_frames(input_set[0]))
if input_set[1] is not None:
item_list.append([cv2.cvtColor(pil2cv(input_set[1]["image"]), cv2.COLOR_BGRA2RGB), "image"])
save_pre = list(args[2:contents_num * arg_num:3])
item_num = len(item_list)
video_num = len(video_list)
duration, = args[contents_num * arg_num:]
frame_num = get_min_frame_num(video_list)
if frame_num > 0:
output_image_list = []
pre_output_image_list = []
for i in range(item_num):
pre_output_image_list.append([])
for frame in range(frame_num):
copy_p = copy.copy(p)
copy_p.control_net_input_image = []
for item in item_list:
if item[1] == "video":
copy_p.control_net_input_image.append(item[0][frame])
elif item[1] == "image":
copy_p.control_net_input_image.append(item[0])
else:
continue
proc = process_images(copy_p)
img = proc.images[0]
output_image_list.append(img)
for i in range(len(save_pre)):
if save_pre[i]:
try:
pre_output_image_list[i].append(proc.images[i + 1])
except:
print(f"proc.images[{i} failed")
copy_p.close()
# filename format is seq-seed-animation.gif seq is 5 places left filled with 0
seq = images.get_next_sequence_number(f"{p.outpath_samples}{_BASEDIR}", "")
filename = f"{seq:05}-{proc.seed}-{_BASEFILE}"
save_gif(p.outpath_samples, output_image_list, filename, duration)
proc.images = [f"{p.outpath_samples}{_BASEDIR}/{filename}.gif"]
for i in range(len(save_pre)):
if save_pre[i]:
# control files add -controlX.gif where X is the controlnet number
save_gif(p.outpath_samples, pre_output_image_list[i], f"{filename}-control{i}", duration)
proc.images.append(f"{p.outpath_samples}{_BASEDIR}/{filename}-control{i}.gif")
else:
proc = process_images(p)
return proc