Spaces:
Paused
Paused
# Copyright (c) OpenMMLab. All rights reserved. | |
import logging | |
import torch.nn as nn | |
from .utils import constant_init, kaiming_init, normal_init | |
def conv3x3(in_planes, out_planes, dilation=1): | |
"""3x3 convolution with padding.""" | |
return nn.Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
padding=dilation, | |
dilation=dilation) | |
def make_vgg_layer(inplanes, | |
planes, | |
num_blocks, | |
dilation=1, | |
with_bn=False, | |
ceil_mode=False): | |
layers = [] | |
for _ in range(num_blocks): | |
layers.append(conv3x3(inplanes, planes, dilation)) | |
if with_bn: | |
layers.append(nn.BatchNorm2d(planes)) | |
layers.append(nn.ReLU(inplace=True)) | |
inplanes = planes | |
layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode)) | |
return layers | |
class VGG(nn.Module): | |
"""VGG backbone. | |
Args: | |
depth (int): Depth of vgg, from {11, 13, 16, 19}. | |
with_bn (bool): Use BatchNorm or not. | |
num_classes (int): number of classes for classification. | |
num_stages (int): VGG stages, normally 5. | |
dilations (Sequence[int]): Dilation of each stage. | |
out_indices (Sequence[int]): Output from which stages. | |
frozen_stages (int): Stages to be frozen (all param fixed). -1 means | |
not freezing any parameters. | |
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze | |
running stats (mean and var). | |
bn_frozen (bool): Whether to freeze weight and bias of BN layers. | |
""" | |
arch_settings = { | |
11: (1, 1, 2, 2, 2), | |
13: (2, 2, 2, 2, 2), | |
16: (2, 2, 3, 3, 3), | |
19: (2, 2, 4, 4, 4) | |
} | |
def __init__(self, | |
depth, | |
with_bn=False, | |
num_classes=-1, | |
num_stages=5, | |
dilations=(1, 1, 1, 1, 1), | |
out_indices=(0, 1, 2, 3, 4), | |
frozen_stages=-1, | |
bn_eval=True, | |
bn_frozen=False, | |
ceil_mode=False, | |
with_last_pool=True): | |
super(VGG, self).__init__() | |
if depth not in self.arch_settings: | |
raise KeyError(f'invalid depth {depth} for vgg') | |
assert num_stages >= 1 and num_stages <= 5 | |
stage_blocks = self.arch_settings[depth] | |
self.stage_blocks = stage_blocks[:num_stages] | |
assert len(dilations) == num_stages | |
assert max(out_indices) <= num_stages | |
self.num_classes = num_classes | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.bn_eval = bn_eval | |
self.bn_frozen = bn_frozen | |
self.inplanes = 3 | |
start_idx = 0 | |
vgg_layers = [] | |
self.range_sub_modules = [] | |
for i, num_blocks in enumerate(self.stage_blocks): | |
num_modules = num_blocks * (2 + with_bn) + 1 | |
end_idx = start_idx + num_modules | |
dilation = dilations[i] | |
planes = 64 * 2**i if i < 4 else 512 | |
vgg_layer = make_vgg_layer( | |
self.inplanes, | |
planes, | |
num_blocks, | |
dilation=dilation, | |
with_bn=with_bn, | |
ceil_mode=ceil_mode) | |
vgg_layers.extend(vgg_layer) | |
self.inplanes = planes | |
self.range_sub_modules.append([start_idx, end_idx]) | |
start_idx = end_idx | |
if not with_last_pool: | |
vgg_layers.pop(-1) | |
self.range_sub_modules[-1][1] -= 1 | |
self.module_name = 'features' | |
self.add_module(self.module_name, nn.Sequential(*vgg_layers)) | |
if self.num_classes > 0: | |
self.classifier = nn.Sequential( | |
nn.Linear(512 * 7 * 7, 4096), | |
nn.ReLU(True), | |
nn.Dropout(), | |
nn.Linear(4096, 4096), | |
nn.ReLU(True), | |
nn.Dropout(), | |
nn.Linear(4096, num_classes), | |
) | |
def init_weights(self, pretrained=None): | |
if isinstance(pretrained, str): | |
logger = logging.getLogger() | |
from ..runner import load_checkpoint | |
load_checkpoint(self, pretrained, strict=False, logger=logger) | |
elif pretrained is None: | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
kaiming_init(m) | |
elif isinstance(m, nn.BatchNorm2d): | |
constant_init(m, 1) | |
elif isinstance(m, nn.Linear): | |
normal_init(m, std=0.01) | |
else: | |
raise TypeError('pretrained must be a str or None') | |
def forward(self, x): | |
outs = [] | |
vgg_layers = getattr(self, self.module_name) | |
for i in range(len(self.stage_blocks)): | |
for j in range(*self.range_sub_modules[i]): | |
vgg_layer = vgg_layers[j] | |
x = vgg_layer(x) | |
if i in self.out_indices: | |
outs.append(x) | |
if self.num_classes > 0: | |
x = x.view(x.size(0), -1) | |
x = self.classifier(x) | |
outs.append(x) | |
if len(outs) == 1: | |
return outs[0] | |
else: | |
return tuple(outs) | |
def train(self, mode=True): | |
super(VGG, self).train(mode) | |
if self.bn_eval: | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
if self.bn_frozen: | |
for params in m.parameters(): | |
params.requires_grad = False | |
vgg_layers = getattr(self, self.module_name) | |
if mode and self.frozen_stages >= 0: | |
for i in range(self.frozen_stages): | |
for j in range(*self.range_sub_modules[i]): | |
mod = vgg_layers[j] | |
mod.eval() | |
for param in mod.parameters(): | |
param.requires_grad = False | |