Spaces:
Paused
Paused
sd-automatic111
/
extensions
/sd-webui-controlnet
/annotator
/lama
/saicinpainting
/training
/modules
/multiscale.py
from typing import List, Tuple, Union, Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from annotator.lama.saicinpainting.training.modules.base import get_conv_block_ctor, get_activation | |
from annotator.lama.saicinpainting.training.modules.pix2pixhd import ResnetBlock | |
class ResNetHead(nn.Module): | |
def __init__(self, input_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, | |
padding_type='reflect', conv_kind='default', activation=nn.ReLU(True)): | |
assert (n_blocks >= 0) | |
super(ResNetHead, self).__init__() | |
conv_layer = get_conv_block_ctor(conv_kind) | |
model = [nn.ReflectionPad2d(3), | |
conv_layer(input_nc, ngf, kernel_size=7, padding=0), | |
norm_layer(ngf), | |
activation] | |
### downsample | |
for i in range(n_downsampling): | |
mult = 2 ** i | |
model += [conv_layer(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), | |
norm_layer(ngf * mult * 2), | |
activation] | |
mult = 2 ** n_downsampling | |
### resnet blocks | |
for i in range(n_blocks): | |
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, | |
conv_kind=conv_kind)] | |
self.model = nn.Sequential(*model) | |
def forward(self, input): | |
return self.model(input) | |
class ResNetTail(nn.Module): | |
def __init__(self, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, | |
padding_type='reflect', conv_kind='default', activation=nn.ReLU(True), | |
up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0, | |
add_in_proj=None): | |
assert (n_blocks >= 0) | |
super(ResNetTail, self).__init__() | |
mult = 2 ** n_downsampling | |
model = [] | |
if add_in_proj is not None: | |
model.append(nn.Conv2d(add_in_proj, ngf * mult, kernel_size=1)) | |
### resnet blocks | |
for i in range(n_blocks): | |
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, | |
conv_kind=conv_kind)] | |
### upsample | |
for i in range(n_downsampling): | |
mult = 2 ** (n_downsampling - i) | |
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, | |
output_padding=1), | |
up_norm_layer(int(ngf * mult / 2)), | |
up_activation] | |
self.model = nn.Sequential(*model) | |
out_layers = [] | |
for _ in range(out_extra_layers_n): | |
out_layers += [nn.Conv2d(ngf, ngf, kernel_size=1, padding=0), | |
up_norm_layer(ngf), | |
up_activation] | |
out_layers += [nn.ReflectionPad2d(3), | |
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] | |
if add_out_act: | |
out_layers.append(get_activation('tanh' if add_out_act is True else add_out_act)) | |
self.out_proj = nn.Sequential(*out_layers) | |
def forward(self, input, return_last_act=False): | |
features = self.model(input) | |
out = self.out_proj(features) | |
if return_last_act: | |
return out, features | |
else: | |
return out | |
class MultiscaleResNet(nn.Module): | |
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=2, n_blocks_head=2, n_blocks_tail=6, n_scales=3, | |
norm_layer=nn.BatchNorm2d, padding_type='reflect', conv_kind='default', activation=nn.ReLU(True), | |
up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0, | |
out_cumulative=False, return_only_hr=False): | |
super().__init__() | |
self.heads = nn.ModuleList([ResNetHead(input_nc, ngf=ngf, n_downsampling=n_downsampling, | |
n_blocks=n_blocks_head, norm_layer=norm_layer, padding_type=padding_type, | |
conv_kind=conv_kind, activation=activation) | |
for i in range(n_scales)]) | |
tail_in_feats = ngf * (2 ** n_downsampling) + ngf | |
self.tails = nn.ModuleList([ResNetTail(output_nc, | |
ngf=ngf, n_downsampling=n_downsampling, | |
n_blocks=n_blocks_tail, norm_layer=norm_layer, padding_type=padding_type, | |
conv_kind=conv_kind, activation=activation, up_norm_layer=up_norm_layer, | |
up_activation=up_activation, add_out_act=add_out_act, | |
out_extra_layers_n=out_extra_layers_n, | |
add_in_proj=None if (i == n_scales - 1) else tail_in_feats) | |
for i in range(n_scales)]) | |
self.out_cumulative = out_cumulative | |
self.return_only_hr = return_only_hr | |
def num_scales(self): | |
return len(self.heads) | |
def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \ | |
-> Union[torch.Tensor, List[torch.Tensor]]: | |
""" | |
:param ms_inputs: List of inputs of different resolutions from HR to LR | |
:param smallest_scales_num: int or None, number of smallest scales to take at input | |
:return: Depending on return_only_hr: | |
True: Only the most HR output | |
False: List of outputs of different resolutions from HR to LR | |
""" | |
if smallest_scales_num is None: | |
assert len(self.heads) == len(ms_inputs), (len(self.heads), len(ms_inputs), smallest_scales_num) | |
smallest_scales_num = len(self.heads) | |
else: | |
assert smallest_scales_num == len(ms_inputs) <= len(self.heads), (len(self.heads), len(ms_inputs), smallest_scales_num) | |
cur_heads = self.heads[-smallest_scales_num:] | |
ms_features = [cur_head(cur_inp) for cur_head, cur_inp in zip(cur_heads, ms_inputs)] | |
all_outputs = [] | |
prev_tail_features = None | |
for i in range(len(ms_features)): | |
scale_i = -i - 1 | |
cur_tail_input = ms_features[-i - 1] | |
if prev_tail_features is not None: | |
if prev_tail_features.shape != cur_tail_input.shape: | |
prev_tail_features = F.interpolate(prev_tail_features, size=cur_tail_input.shape[2:], | |
mode='bilinear', align_corners=False) | |
cur_tail_input = torch.cat((cur_tail_input, prev_tail_features), dim=1) | |
cur_out, cur_tail_feats = self.tails[scale_i](cur_tail_input, return_last_act=True) | |
prev_tail_features = cur_tail_feats | |
all_outputs.append(cur_out) | |
if self.out_cumulative: | |
all_outputs_cum = [all_outputs[0]] | |
for i in range(1, len(ms_features)): | |
cur_out = all_outputs[i] | |
cur_out_cum = cur_out + F.interpolate(all_outputs_cum[-1], size=cur_out.shape[2:], | |
mode='bilinear', align_corners=False) | |
all_outputs_cum.append(cur_out_cum) | |
all_outputs = all_outputs_cum | |
if self.return_only_hr: | |
return all_outputs[-1] | |
else: | |
return all_outputs[::-1] | |
class MultiscaleDiscriminatorSimple(nn.Module): | |
def __init__(self, ms_impl): | |
super().__init__() | |
self.ms_impl = nn.ModuleList(ms_impl) | |
def num_scales(self): | |
return len(self.ms_impl) | |
def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \ | |
-> List[Tuple[torch.Tensor, List[torch.Tensor]]]: | |
""" | |
:param ms_inputs: List of inputs of different resolutions from HR to LR | |
:param smallest_scales_num: int or None, number of smallest scales to take at input | |
:return: List of pairs (prediction, features) for different resolutions from HR to LR | |
""" | |
if smallest_scales_num is None: | |
assert len(self.ms_impl) == len(ms_inputs), (len(self.ms_impl), len(ms_inputs), smallest_scales_num) | |
smallest_scales_num = len(self.heads) | |
else: | |
assert smallest_scales_num == len(ms_inputs) <= len(self.ms_impl), \ | |
(len(self.ms_impl), len(ms_inputs), smallest_scales_num) | |
return [cur_discr(cur_input) for cur_discr, cur_input in zip(self.ms_impl[-smallest_scales_num:], ms_inputs)] | |
class SingleToMultiScaleInputMixin: | |
def forward(self, x: torch.Tensor) -> List: | |
orig_height, orig_width = x.shape[2:] | |
factors = [2 ** i for i in range(self.num_scales)] | |
ms_inputs = [F.interpolate(x, size=(orig_height // f, orig_width // f), mode='bilinear', align_corners=False) | |
for f in factors] | |
return super().forward(ms_inputs) | |
class GeneratorMultiToSingleOutputMixin: | |
def forward(self, x): | |
return super().forward(x)[0] | |
class DiscriminatorMultiToSingleOutputMixin: | |
def forward(self, x): | |
out_feat_tuples = super().forward(x) | |
return out_feat_tuples[0][0], [f for _, flist in out_feat_tuples for f in flist] | |
class DiscriminatorMultiToSingleOutputStackedMixin: | |
def __init__(self, *args, return_feats_only_levels=None, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.return_feats_only_levels = return_feats_only_levels | |
def forward(self, x): | |
out_feat_tuples = super().forward(x) | |
outs = [out for out, _ in out_feat_tuples] | |
scaled_outs = [outs[0]] + [F.interpolate(cur_out, size=outs[0].shape[-2:], | |
mode='bilinear', align_corners=False) | |
for cur_out in outs[1:]] | |
out = torch.cat(scaled_outs, dim=1) | |
if self.return_feats_only_levels is not None: | |
feat_lists = [out_feat_tuples[i][1] for i in self.return_feats_only_levels] | |
else: | |
feat_lists = [flist for _, flist in out_feat_tuples] | |
feats = [f for flist in feat_lists for f in flist] | |
return out, feats | |
class MultiscaleDiscrSingleInput(SingleToMultiScaleInputMixin, DiscriminatorMultiToSingleOutputStackedMixin, MultiscaleDiscriminatorSimple): | |
pass | |
class MultiscaleResNetSingle(GeneratorMultiToSingleOutputMixin, SingleToMultiScaleInputMixin, MultiscaleResNet): | |
pass | |