QuintW's picture
Upload 1350 files
3f9c56c
raw
history blame
5.7 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
########################################################################################################################
# Upsample + BatchNorm
class UpSampleBN(nn.Module):
def __init__(self, skip_input, output_features):
super(UpSampleBN, self).__init__()
self._net = nn.Sequential(nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(output_features),
nn.LeakyReLU(),
nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(output_features),
nn.LeakyReLU())
def forward(self, x, concat_with):
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
f = torch.cat([up_x, concat_with], dim=1)
return self._net(f)
# Upsample + GroupNorm + Weight Standardization
class UpSampleGN(nn.Module):
def __init__(self, skip_input, output_features):
super(UpSampleGN, self).__init__()
self._net = nn.Sequential(Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, output_features),
nn.LeakyReLU(),
Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, output_features),
nn.LeakyReLU())
def forward(self, x, concat_with):
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
f = torch.cat([up_x, concat_with], dim=1)
return self._net(f)
# Conv2d with weight standardization
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
def forward(self, x):
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
keepdim=True).mean(dim=3, keepdim=True)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
weight = weight / std.expand_as(weight)
return F.conv2d(x, weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
# normalize
def norm_normalize(norm_out):
min_kappa = 0.01
norm_x, norm_y, norm_z, kappa = torch.split(norm_out, 1, dim=1)
norm = torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10
kappa = F.elu(kappa) + 1.0 + min_kappa
final_out = torch.cat([norm_x / norm, norm_y / norm, norm_z / norm, kappa], dim=1)
return final_out
# uncertainty-guided sampling (only used during training)
@torch.no_grad()
def sample_points(init_normal, gt_norm_mask, sampling_ratio, beta):
device = init_normal.device
B, _, H, W = init_normal.shape
N = int(sampling_ratio * H * W)
beta = beta
# uncertainty map
uncertainty_map = -1 * init_normal[:, 3, :, :] # B, H, W
# gt_invalid_mask (B, H, W)
if gt_norm_mask is not None:
gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
gt_invalid_mask = gt_invalid_mask[:, 0, :, :] < 0.5
uncertainty_map[gt_invalid_mask] = -1e4
# (B, H*W)
_, idx = uncertainty_map.view(B, -1).sort(1, descending=True)
# importance sampling
if int(beta * N) > 0:
importance = idx[:, :int(beta * N)] # B, beta*N
# remaining
remaining = idx[:, int(beta * N):] # B, H*W - beta*N
# coverage
num_coverage = N - int(beta * N)
if num_coverage <= 0:
samples = importance
else:
coverage_list = []
for i in range(B):
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
samples = torch.cat((importance, coverage), dim=1) # B, N
else:
# remaining
remaining = idx[:, :] # B, H*W
# coverage
num_coverage = N
coverage_list = []
for i in range(B):
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
samples = coverage
# point coordinates
rows_int = samples // W # 0 for first row, H-1 for last row
rows_float = rows_int / float(H-1) # 0 to 1.0
rows_float = (rows_float * 2.0) - 1.0 # -1.0 to 1.0
cols_int = samples % W # 0 for first column, W-1 for last column
cols_float = cols_int / float(W-1) # 0 to 1.0
cols_float = (cols_float * 2.0) - 1.0 # -1.0 to 1.0
point_coords = torch.zeros(B, 1, N, 2)
point_coords[:, 0, :, 0] = cols_float # x coord
point_coords[:, 0, :, 1] = rows_float # y coord
point_coords = point_coords.to(device)
return point_coords, rows_int, cols_int