|
import os |
|
import cv2 |
|
import time |
|
import glob |
|
import argparse |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
from tqdm import tqdm |
|
from itertools import cycle |
|
from torch.multiprocessing import Pool, Process, set_start_method |
|
|
|
from facexlib.alignment import landmark_98_to_68 |
|
from facexlib.detection import init_detection_model |
|
|
|
from facexlib.utils import load_file_from_url |
|
from src.face3d.util.my_awing_arch import FAN |
|
|
|
def init_alignment_model(model_name, half=False, device='cuda', model_rootpath=None): |
|
if model_name == 'awing_fan': |
|
model = FAN(num_modules=4, num_landmarks=98, device=device) |
|
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/alignment_WFLW_4HG.pth' |
|
else: |
|
raise NotImplementedError(f'{model_name} is not implemented.') |
|
|
|
model_path = load_file_from_url( |
|
url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) |
|
model.load_state_dict(torch.load(model_path, map_location=device)['state_dict'], strict=True) |
|
model.eval() |
|
model = model.to(device) |
|
return model |
|
|
|
|
|
class KeypointExtractor(): |
|
def __init__(self, device='cuda'): |
|
|
|
|
|
try: |
|
import webui |
|
root_path = 'extensions/SadTalker/gfpgan/weights' |
|
|
|
except: |
|
root_path = 'gfpgan/weights' |
|
|
|
self.detector = init_alignment_model('awing_fan',device=device, model_rootpath=root_path) |
|
self.det_net = init_detection_model('retinaface_resnet50', half=False,device=device, model_rootpath=root_path) |
|
|
|
def extract_keypoint(self, images, name=None, info=True): |
|
if isinstance(images, list): |
|
keypoints = [] |
|
if info: |
|
i_range = tqdm(images,desc='landmark Det:') |
|
else: |
|
i_range = images |
|
|
|
for image in i_range: |
|
current_kp = self.extract_keypoint(image) |
|
|
|
if np.mean(current_kp) == -1 and keypoints: |
|
keypoints.append(keypoints[-1]) |
|
else: |
|
keypoints.append(current_kp[None]) |
|
|
|
keypoints = np.concatenate(keypoints, 0) |
|
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1)) |
|
return keypoints |
|
else: |
|
while True: |
|
try: |
|
with torch.no_grad(): |
|
|
|
img = np.array(images) |
|
bboxes = self.det_net.detect_faces(images, 0.97) |
|
|
|
bboxes = bboxes[0] |
|
img = img[int(bboxes[1]):int(bboxes[3]), int(bboxes[0]):int(bboxes[2]), :] |
|
|
|
keypoints = landmark_98_to_68(self.detector.get_landmarks(img)) |
|
|
|
|
|
keypoints[:,0] += int(bboxes[0]) |
|
keypoints[:,1] += int(bboxes[1]) |
|
|
|
break |
|
except RuntimeError as e: |
|
if str(e).startswith('CUDA'): |
|
print("Warning: out of memory, sleep for 1s") |
|
time.sleep(1) |
|
else: |
|
print(e) |
|
break |
|
except TypeError: |
|
print('No face detected in this image') |
|
shape = [68, 2] |
|
keypoints = -1. * np.ones(shape) |
|
break |
|
if name is not None: |
|
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1)) |
|
return keypoints |
|
|
|
def read_video(filename): |
|
frames = [] |
|
cap = cv2.VideoCapture(filename) |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if ret: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
frame = Image.fromarray(frame) |
|
frames.append(frame) |
|
else: |
|
break |
|
cap.release() |
|
return frames |
|
|
|
def run(data): |
|
filename, opt, device = data |
|
os.environ['CUDA_VISIBLE_DEVICES'] = device |
|
kp_extractor = KeypointExtractor() |
|
images = read_video(filename) |
|
name = filename.split('/')[-2:] |
|
os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True) |
|
kp_extractor.extract_keypoint( |
|
images, |
|
name=os.path.join(opt.output_dir, name[-2], name[-1]) |
|
) |
|
|
|
if __name__ == '__main__': |
|
set_start_method('spawn') |
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument('--input_dir', type=str, help='the folder of the input files') |
|
parser.add_argument('--output_dir', type=str, help='the folder of the output files') |
|
parser.add_argument('--device_ids', type=str, default='0,1') |
|
parser.add_argument('--workers', type=int, default=4) |
|
|
|
opt = parser.parse_args() |
|
filenames = list() |
|
VIDEO_EXTENSIONS_LOWERCASE = {'mp4'} |
|
VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE}) |
|
extensions = VIDEO_EXTENSIONS |
|
|
|
for ext in extensions: |
|
os.listdir(f'{opt.input_dir}') |
|
print(f'{opt.input_dir}/*.{ext}') |
|
filenames = sorted(glob.glob(f'{opt.input_dir}/*.{ext}')) |
|
print('Total number of videos:', len(filenames)) |
|
pool = Pool(opt.workers) |
|
args_list = cycle([opt]) |
|
device_ids = opt.device_ids.split(",") |
|
device_ids = cycle(device_ids) |
|
for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))): |
|
None |
|
|