|
import numpy as np
|
|
import cv2, os, sys, torch
|
|
from tqdm import tqdm
|
|
from PIL import Image
|
|
|
|
|
|
from src.face3d.util.preprocess import align_img
|
|
from src.face3d.util.load_mats import load_lm3d
|
|
from src.face3d.models import networks
|
|
|
|
try:
|
|
import webui
|
|
from src.face3d.extract_kp_videos_safe import KeypointExtractor
|
|
assert torch.cuda.is_available() == True
|
|
except:
|
|
from src.face3d.extract_kp_videos import KeypointExtractor
|
|
|
|
from scipy.io import loadmat, savemat
|
|
from src.utils.croper import Croper
|
|
|
|
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
def split_coeff(coeffs):
|
|
"""
|
|
Return:
|
|
coeffs_dict -- a dict of torch.tensors
|
|
|
|
Parameters:
|
|
coeffs -- torch.tensor, size (B, 256)
|
|
"""
|
|
id_coeffs = coeffs[:, :80]
|
|
exp_coeffs = coeffs[:, 80: 144]
|
|
tex_coeffs = coeffs[:, 144: 224]
|
|
angles = coeffs[:, 224: 227]
|
|
gammas = coeffs[:, 227: 254]
|
|
translations = coeffs[:, 254:]
|
|
return {
|
|
'id': id_coeffs,
|
|
'exp': exp_coeffs,
|
|
'tex': tex_coeffs,
|
|
'angle': angles,
|
|
'gamma': gammas,
|
|
'trans': translations
|
|
}
|
|
|
|
|
|
class CropAndExtract():
|
|
def __init__(self, path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device):
|
|
|
|
self.croper = Croper(path_of_lm_croper)
|
|
self.kp_extractor = KeypointExtractor(device)
|
|
self.net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
|
|
checkpoint = torch.load(path_of_net_recon_model, map_location=torch.device(device))
|
|
self.net_recon.load_state_dict(checkpoint['net_recon'])
|
|
self.net_recon.eval()
|
|
self.lm3d_std = load_lm3d(dir_of_BFM_fitting)
|
|
self.device = device
|
|
|
|
def generate(self, input_path, save_dir, crop_or_resize='crop', source_image_flag=False):
|
|
|
|
pic_size = 256
|
|
pic_name = os.path.splitext(os.path.split(input_path)[-1])[0]
|
|
|
|
landmarks_path = os.path.join(save_dir, pic_name+'_landmarks.txt')
|
|
coeff_path = os.path.join(save_dir, pic_name+'.mat')
|
|
png_path = os.path.join(save_dir, pic_name+'.png')
|
|
|
|
|
|
if not os.path.isfile(input_path):
|
|
raise ValueError('input_path must be a valid path to video/image file')
|
|
elif input_path.split('.')[-1] in ['jpg', 'png', 'jpeg']:
|
|
|
|
full_frames = [cv2.imread(input_path)]
|
|
fps = 25
|
|
else:
|
|
|
|
video_stream = cv2.VideoCapture(input_path)
|
|
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
|
full_frames = []
|
|
while 1:
|
|
still_reading, frame = video_stream.read()
|
|
if not still_reading:
|
|
video_stream.release()
|
|
break
|
|
full_frames.append(frame)
|
|
if source_image_flag:
|
|
break
|
|
|
|
x_full_frames= [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames]
|
|
|
|
|
|
if crop_or_resize.lower() == 'crop':
|
|
x_full_frames, crop, quad = self.croper.crop(x_full_frames, still=True, xsize=512)
|
|
clx, cly, crx, cry = crop
|
|
lx, ly, rx, ry = quad
|
|
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
|
|
oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx
|
|
crop_info = ((ox2 - ox1, oy2 - oy1), crop, quad)
|
|
elif crop_or_resize.lower() == 'full':
|
|
x_full_frames, crop, quad = self.croper.crop(x_full_frames, still=True, xsize=512)
|
|
clx, cly, crx, cry = crop
|
|
lx, ly, rx, ry = quad
|
|
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
|
|
oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx
|
|
crop_info = ((ox2 - ox1, oy2 - oy1), crop, quad)
|
|
else:
|
|
oy1, oy2, ox1, ox2 = 0, x_full_frames[0].shape[0], 0, x_full_frames[0].shape[1]
|
|
crop_info = ((ox2 - ox1, oy2 - oy1), None, None)
|
|
|
|
frames_pil = [Image.fromarray(cv2.resize(frame,(pic_size, pic_size))) for frame in x_full_frames]
|
|
if len(frames_pil) == 0:
|
|
print('No face is detected in the input file')
|
|
return None, None
|
|
|
|
|
|
for frame in frames_pil:
|
|
cv2.imwrite(png_path, cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
if not os.path.isfile(landmarks_path):
|
|
lm = self.kp_extractor.extract_keypoint(frames_pil, landmarks_path)
|
|
else:
|
|
print(' Using saved landmarks.')
|
|
lm = np.loadtxt(landmarks_path).astype(np.float32)
|
|
lm = lm.reshape([len(x_full_frames), -1, 2])
|
|
|
|
if not os.path.isfile(coeff_path):
|
|
|
|
video_coeffs, full_coeffs = [], []
|
|
for idx in tqdm(range(len(frames_pil)), desc='3DMM Extraction In Video:'):
|
|
frame = frames_pil[idx]
|
|
W,H = frame.size
|
|
lm1 = lm[idx].reshape([-1, 2])
|
|
|
|
if np.mean(lm1) == -1:
|
|
lm1 = (self.lm3d_std[:, :2]+1)/2.
|
|
lm1 = np.concatenate(
|
|
[lm1[:, :1]*W, lm1[:, 1:2]*H], 1
|
|
)
|
|
else:
|
|
lm1[:, -1] = H - 1 - lm1[:, -1]
|
|
|
|
trans_params, im1, lm1, _ = align_img(frame, lm1, self.lm3d_std)
|
|
|
|
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
|
|
im_t = torch.tensor(np.array(im1)/255., dtype=torch.float32).permute(2, 0, 1).to(self.device).unsqueeze(0)
|
|
|
|
with torch.no_grad():
|
|
full_coeff = self.net_recon(im_t)
|
|
coeffs = split_coeff(full_coeff)
|
|
|
|
pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs}
|
|
|
|
pred_coeff = np.concatenate([
|
|
pred_coeff['exp'],
|
|
pred_coeff['angle'],
|
|
pred_coeff['trans'],
|
|
trans_params[2:][None],
|
|
], 1)
|
|
video_coeffs.append(pred_coeff)
|
|
full_coeffs.append(full_coeff.cpu().numpy())
|
|
|
|
semantic_npy = np.array(video_coeffs)[:,0]
|
|
|
|
savemat(coeff_path, {'coeff_3dmm': semantic_npy, 'full_3dmm': np.array(full_coeffs)[0]})
|
|
|
|
return coeff_path, png_path, crop_info
|
|
|