|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
class Conv2d(nn.Module):
|
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act = True, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.conv_block = nn.Sequential(
|
|
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
|
nn.BatchNorm2d(cout)
|
|
)
|
|
self.act = nn.ReLU()
|
|
self.residual = residual
|
|
self.use_act = use_act
|
|
|
|
def forward(self, x):
|
|
out = self.conv_block(x)
|
|
if self.residual:
|
|
out += x
|
|
|
|
if self.use_act:
|
|
return self.act(out)
|
|
else:
|
|
return out
|
|
|
|
class SimpleWrapperV2(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.audio_encoder = nn.Sequential(
|
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
|
|
)
|
|
|
|
|
|
|
|
'''
|
|
wav2lip_state_dict = torch.load('/apdcephfs_cq2/share_1290939/wenxuazhang/checkpoints/wav2lip.pth')['state_dict']
|
|
state_dict = self.audio_encoder.state_dict()
|
|
|
|
for k,v in wav2lip_state_dict.items():
|
|
if 'audio_encoder' in k:
|
|
print('init:', k)
|
|
state_dict[k.replace('module.audio_encoder.', '')] = v
|
|
self.audio_encoder.load_state_dict(state_dict)
|
|
'''
|
|
|
|
self.mapping1 = nn.Linear(512+64+1, 64)
|
|
|
|
|
|
nn.init.constant_(self.mapping1.bias, 0.)
|
|
|
|
def forward(self, x, ref, ratio):
|
|
x = self.audio_encoder(x).view(x.size(0), -1)
|
|
ref_reshape = ref.reshape(x.size(0), -1)
|
|
ratio = ratio.reshape(x.size(0), -1)
|
|
|
|
y = self.mapping1(torch.cat([x, ref_reshape, ratio], dim=1))
|
|
out = y.reshape(ref.shape[0], ref.shape[1], -1)
|
|
return out
|
|
|