Spaces:
Sleeping
Sleeping
Delete src
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- src/audio2exp_models/__pycache__/audio2exp.cpython-38.pyc +0 -0
- src/audio2exp_models/__pycache__/networks.cpython-38.pyc +0 -0
- src/audio2exp_models/audio2exp.py +0 -41
- src/audio2exp_models/networks.py +0 -74
- src/audio2pose_models/__pycache__/audio2pose.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/audio_encoder.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/cvae.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/discriminator.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/networks.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/res_unet.cpython-38.pyc +0 -0
- src/audio2pose_models/audio2pose.py +0 -94
- src/audio2pose_models/audio_encoder.py +0 -64
- src/audio2pose_models/cvae.py +0 -149
- src/audio2pose_models/discriminator.py +0 -76
- src/audio2pose_models/networks.py +0 -140
- src/audio2pose_models/res_unet.py +0 -65
- src/config/auido2exp.yaml +0 -58
- src/config/auido2pose.yaml +0 -49
- src/config/facerender.yaml +0 -45
- src/config/facerender_still.yaml +0 -45
- src/face3d/__pycache__/extract_kp_videos.cpython-38.pyc +0 -0
- src/face3d/__pycache__/extract_kp_videos.cpython-39.pyc +0 -0
- src/face3d/data/__init__.py +0 -116
- src/face3d/data/base_dataset.py +0 -125
- src/face3d/data/flist_dataset.py +0 -125
- src/face3d/data/image_folder.py +0 -66
- src/face3d/data/template_dataset.py +0 -75
- src/face3d/extract_kp_videos.py +0 -108
- src/face3d/extract_kp_videos_safe.py +0 -138
- src/face3d/models/__init__.py +0 -67
- src/face3d/models/__pycache__/__init__.cpython-38.pyc +0 -0
- src/face3d/models/__pycache__/__init__.cpython-39.pyc +0 -0
- src/face3d/models/__pycache__/base_model.cpython-38.pyc +0 -0
- src/face3d/models/__pycache__/base_model.cpython-39.pyc +0 -0
- src/face3d/models/__pycache__/networks.cpython-38.pyc +0 -0
- src/face3d/models/__pycache__/networks.cpython-39.pyc +0 -0
- src/face3d/models/arcface_torch/README.md +0 -164
- src/face3d/models/arcface_torch/backbones/__init__.py +0 -25
- src/face3d/models/arcface_torch/backbones/__pycache__/__init__.cpython-38.pyc +0 -0
- src/face3d/models/arcface_torch/backbones/__pycache__/__init__.cpython-39.pyc +0 -0
- src/face3d/models/arcface_torch/backbones/__pycache__/iresnet.cpython-38.pyc +0 -0
- src/face3d/models/arcface_torch/backbones/__pycache__/iresnet.cpython-39.pyc +0 -0
- src/face3d/models/arcface_torch/backbones/__pycache__/mobilefacenet.cpython-38.pyc +0 -0
- src/face3d/models/arcface_torch/backbones/__pycache__/mobilefacenet.cpython-39.pyc +0 -0
- src/face3d/models/arcface_torch/backbones/iresnet.py +0 -187
- src/face3d/models/arcface_torch/backbones/iresnet2060.py +0 -176
- src/face3d/models/arcface_torch/backbones/mobilefacenet.py +0 -130
- src/face3d/models/arcface_torch/configs/3millions.py +0 -23
- src/face3d/models/arcface_torch/configs/3millions_pfc.py +0 -23
- src/face3d/models/arcface_torch/configs/__init__.py +0 -0
src/audio2exp_models/__pycache__/audio2exp.cpython-38.pyc
DELETED
Binary file (1.25 kB)
|
|
src/audio2exp_models/__pycache__/networks.cpython-38.pyc
DELETED
Binary file (2.1 kB)
|
|
src/audio2exp_models/audio2exp.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
from tqdm import tqdm
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
|
5 |
-
|
6 |
-
class Audio2Exp(nn.Module):
|
7 |
-
def __init__(self, netG, cfg, device, prepare_training_loss=False):
|
8 |
-
super(Audio2Exp, self).__init__()
|
9 |
-
self.cfg = cfg
|
10 |
-
self.device = device
|
11 |
-
self.netG = netG.to(device)
|
12 |
-
|
13 |
-
def test(self, batch):
|
14 |
-
|
15 |
-
mel_input = batch['indiv_mels'] # bs T 1 80 16
|
16 |
-
bs = mel_input.shape[0]
|
17 |
-
T = mel_input.shape[1]
|
18 |
-
|
19 |
-
exp_coeff_pred = []
|
20 |
-
|
21 |
-
for i in tqdm(range(0, T, 10),'audio2exp:'): # every 10 frames
|
22 |
-
|
23 |
-
current_mel_input = mel_input[:,i:i+10]
|
24 |
-
|
25 |
-
#ref = batch['ref'][:, :, :64].repeat((1,current_mel_input.shape[1],1)) #bs T 64
|
26 |
-
ref = batch['ref'][:, :, :64][:, i:i+10]
|
27 |
-
ratio = batch['ratio_gt'][:, i:i+10] #bs T
|
28 |
-
|
29 |
-
audiox = current_mel_input.view(-1, 1, 80, 16) # bs*T 1 80 16
|
30 |
-
|
31 |
-
curr_exp_coeff_pred = self.netG(audiox, ref, ratio) # bs T 64
|
32 |
-
|
33 |
-
exp_coeff_pred += [curr_exp_coeff_pred]
|
34 |
-
|
35 |
-
# BS x T x 64
|
36 |
-
results_dict = {
|
37 |
-
'exp_coeff_pred': torch.cat(exp_coeff_pred, axis=1)
|
38 |
-
}
|
39 |
-
return results_dict
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/audio2exp_models/networks.py
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from torch import nn
|
4 |
-
|
5 |
-
class Conv2d(nn.Module):
|
6 |
-
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act = True, *args, **kwargs):
|
7 |
-
super().__init__(*args, **kwargs)
|
8 |
-
self.conv_block = nn.Sequential(
|
9 |
-
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
10 |
-
nn.BatchNorm2d(cout)
|
11 |
-
)
|
12 |
-
self.act = nn.ReLU()
|
13 |
-
self.residual = residual
|
14 |
-
self.use_act = use_act
|
15 |
-
|
16 |
-
def forward(self, x):
|
17 |
-
out = self.conv_block(x)
|
18 |
-
if self.residual:
|
19 |
-
out += x
|
20 |
-
|
21 |
-
if self.use_act:
|
22 |
-
return self.act(out)
|
23 |
-
else:
|
24 |
-
return out
|
25 |
-
|
26 |
-
class SimpleWrapperV2(nn.Module):
|
27 |
-
def __init__(self) -> None:
|
28 |
-
super().__init__()
|
29 |
-
self.audio_encoder = nn.Sequential(
|
30 |
-
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
31 |
-
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
32 |
-
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
33 |
-
|
34 |
-
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
35 |
-
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
36 |
-
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
37 |
-
|
38 |
-
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
39 |
-
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
40 |
-
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
41 |
-
|
42 |
-
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
43 |
-
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
44 |
-
|
45 |
-
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
46 |
-
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
|
47 |
-
)
|
48 |
-
|
49 |
-
#### load the pre-trained audio_encoder
|
50 |
-
#self.audio_encoder = self.audio_encoder.to(device)
|
51 |
-
'''
|
52 |
-
wav2lip_state_dict = torch.load('/apdcephfs_cq2/share_1290939/wenxuazhang/checkpoints/wav2lip.pth')['state_dict']
|
53 |
-
state_dict = self.audio_encoder.state_dict()
|
54 |
-
|
55 |
-
for k,v in wav2lip_state_dict.items():
|
56 |
-
if 'audio_encoder' in k:
|
57 |
-
print('init:', k)
|
58 |
-
state_dict[k.replace('module.audio_encoder.', '')] = v
|
59 |
-
self.audio_encoder.load_state_dict(state_dict)
|
60 |
-
'''
|
61 |
-
|
62 |
-
self.mapping1 = nn.Linear(512+64+1, 64)
|
63 |
-
#self.mapping2 = nn.Linear(30, 64)
|
64 |
-
#nn.init.constant_(self.mapping1.weight, 0.)
|
65 |
-
nn.init.constant_(self.mapping1.bias, 0.)
|
66 |
-
|
67 |
-
def forward(self, x, ref, ratio):
|
68 |
-
x = self.audio_encoder(x).view(x.size(0), -1)
|
69 |
-
ref_reshape = ref.reshape(x.size(0), -1)
|
70 |
-
ratio = ratio.reshape(x.size(0), -1)
|
71 |
-
|
72 |
-
y = self.mapping1(torch.cat([x, ref_reshape, ratio], dim=1))
|
73 |
-
out = y.reshape(ref.shape[0], ref.shape[1], -1) #+ ref # resudial
|
74 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/audio2pose_models/__pycache__/audio2pose.cpython-38.pyc
DELETED
Binary file (2.82 kB)
|
|
src/audio2pose_models/__pycache__/audio_encoder.cpython-38.pyc
DELETED
Binary file (2.38 kB)
|
|
src/audio2pose_models/__pycache__/cvae.cpython-38.pyc
DELETED
Binary file (4.65 kB)
|
|
src/audio2pose_models/__pycache__/discriminator.cpython-38.pyc
DELETED
Binary file (2.42 kB)
|
|
src/audio2pose_models/__pycache__/networks.cpython-38.pyc
DELETED
Binary file (4.7 kB)
|
|
src/audio2pose_models/__pycache__/res_unet.cpython-38.pyc
DELETED
Binary file (1.88 kB)
|
|
src/audio2pose_models/audio2pose.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from src.audio2pose_models.cvae import CVAE
|
4 |
-
from src.audio2pose_models.discriminator import PoseSequenceDiscriminator
|
5 |
-
from src.audio2pose_models.audio_encoder import AudioEncoder
|
6 |
-
|
7 |
-
class Audio2Pose(nn.Module):
|
8 |
-
def __init__(self, cfg, wav2lip_checkpoint, device='cuda'):
|
9 |
-
super().__init__()
|
10 |
-
self.cfg = cfg
|
11 |
-
self.seq_len = cfg.MODEL.CVAE.SEQ_LEN
|
12 |
-
self.latent_dim = cfg.MODEL.CVAE.LATENT_SIZE
|
13 |
-
self.device = device
|
14 |
-
|
15 |
-
self.audio_encoder = AudioEncoder(wav2lip_checkpoint, device)
|
16 |
-
self.audio_encoder.eval()
|
17 |
-
for param in self.audio_encoder.parameters():
|
18 |
-
param.requires_grad = False
|
19 |
-
|
20 |
-
self.netG = CVAE(cfg)
|
21 |
-
self.netD_motion = PoseSequenceDiscriminator(cfg)
|
22 |
-
|
23 |
-
|
24 |
-
def forward(self, x):
|
25 |
-
|
26 |
-
batch = {}
|
27 |
-
coeff_gt = x['gt'].cuda().squeeze(0) #bs frame_len+1 73
|
28 |
-
batch['pose_motion_gt'] = coeff_gt[:, 1:, -9:-3] - coeff_gt[:, :1, -9:-3] #bs frame_len 6
|
29 |
-
batch['ref'] = coeff_gt[:, 0, -9:-3] #bs 6
|
30 |
-
batch['class'] = x['class'].squeeze(0).cuda() # bs
|
31 |
-
indiv_mels= x['indiv_mels'].cuda().squeeze(0) # bs seq_len+1 80 16
|
32 |
-
|
33 |
-
# forward
|
34 |
-
audio_emb_list = []
|
35 |
-
audio_emb = self.audio_encoder(indiv_mels[:, 1:, :, :].unsqueeze(2)) #bs seq_len 512
|
36 |
-
batch['audio_emb'] = audio_emb
|
37 |
-
batch = self.netG(batch)
|
38 |
-
|
39 |
-
pose_motion_pred = batch['pose_motion_pred'] # bs frame_len 6
|
40 |
-
pose_gt = coeff_gt[:, 1:, -9:-3].clone() # bs frame_len 6
|
41 |
-
pose_pred = coeff_gt[:, :1, -9:-3] + pose_motion_pred # bs frame_len 6
|
42 |
-
|
43 |
-
batch['pose_pred'] = pose_pred
|
44 |
-
batch['pose_gt'] = pose_gt
|
45 |
-
|
46 |
-
return batch
|
47 |
-
|
48 |
-
def test(self, x):
|
49 |
-
|
50 |
-
batch = {}
|
51 |
-
ref = x['ref'] #bs 1 70
|
52 |
-
batch['ref'] = x['ref'][:,0,-6:]
|
53 |
-
batch['class'] = x['class']
|
54 |
-
bs = ref.shape[0]
|
55 |
-
|
56 |
-
indiv_mels= x['indiv_mels'] # bs T 1 80 16
|
57 |
-
indiv_mels_use = indiv_mels[:, 1:] # we regard the ref as the first frame
|
58 |
-
num_frames = x['num_frames']
|
59 |
-
num_frames = int(num_frames) - 1
|
60 |
-
|
61 |
-
#
|
62 |
-
div = num_frames//self.seq_len
|
63 |
-
re = num_frames%self.seq_len
|
64 |
-
audio_emb_list = []
|
65 |
-
pose_motion_pred_list = [torch.zeros(batch['ref'].unsqueeze(1).shape, dtype=batch['ref'].dtype,
|
66 |
-
device=batch['ref'].device)]
|
67 |
-
|
68 |
-
for i in range(div):
|
69 |
-
z = torch.randn(bs, self.latent_dim).to(ref.device)
|
70 |
-
batch['z'] = z
|
71 |
-
audio_emb = self.audio_encoder(indiv_mels_use[:, i*self.seq_len:(i+1)*self.seq_len,:,:,:]) #bs seq_len 512
|
72 |
-
batch['audio_emb'] = audio_emb
|
73 |
-
batch = self.netG.test(batch)
|
74 |
-
pose_motion_pred_list.append(batch['pose_motion_pred']) #list of bs seq_len 6
|
75 |
-
|
76 |
-
if re != 0:
|
77 |
-
z = torch.randn(bs, self.latent_dim).to(ref.device)
|
78 |
-
batch['z'] = z
|
79 |
-
audio_emb = self.audio_encoder(indiv_mels_use[:, -1*self.seq_len:,:,:,:]) #bs seq_len 512
|
80 |
-
if audio_emb.shape[1] != self.seq_len:
|
81 |
-
pad_dim = self.seq_len-audio_emb.shape[1]
|
82 |
-
pad_audio_emb = audio_emb[:, :1].repeat(1, pad_dim, 1)
|
83 |
-
audio_emb = torch.cat([pad_audio_emb, audio_emb], 1)
|
84 |
-
batch['audio_emb'] = audio_emb
|
85 |
-
batch = self.netG.test(batch)
|
86 |
-
pose_motion_pred_list.append(batch['pose_motion_pred'][:,-1*re:,:])
|
87 |
-
|
88 |
-
pose_motion_pred = torch.cat(pose_motion_pred_list, dim = 1)
|
89 |
-
batch['pose_motion_pred'] = pose_motion_pred
|
90 |
-
|
91 |
-
pose_pred = ref[:, :1, -6:] + pose_motion_pred # bs T 6
|
92 |
-
|
93 |
-
batch['pose_pred'] = pose_pred
|
94 |
-
return batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/audio2pose_models/audio_encoder.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
|
5 |
-
class Conv2d(nn.Module):
|
6 |
-
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
7 |
-
super().__init__(*args, **kwargs)
|
8 |
-
self.conv_block = nn.Sequential(
|
9 |
-
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
10 |
-
nn.BatchNorm2d(cout)
|
11 |
-
)
|
12 |
-
self.act = nn.ReLU()
|
13 |
-
self.residual = residual
|
14 |
-
|
15 |
-
def forward(self, x):
|
16 |
-
out = self.conv_block(x)
|
17 |
-
if self.residual:
|
18 |
-
out += x
|
19 |
-
return self.act(out)
|
20 |
-
|
21 |
-
class AudioEncoder(nn.Module):
|
22 |
-
def __init__(self, wav2lip_checkpoint, device):
|
23 |
-
super(AudioEncoder, self).__init__()
|
24 |
-
|
25 |
-
self.audio_encoder = nn.Sequential(
|
26 |
-
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
27 |
-
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
28 |
-
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
29 |
-
|
30 |
-
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
31 |
-
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
32 |
-
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
33 |
-
|
34 |
-
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
35 |
-
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
36 |
-
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
37 |
-
|
38 |
-
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
39 |
-
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
40 |
-
|
41 |
-
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
42 |
-
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
43 |
-
|
44 |
-
#### load the pre-trained audio_encoder
|
45 |
-
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
|
46 |
-
state_dict = self.audio_encoder.state_dict()
|
47 |
-
|
48 |
-
for k,v in wav2lip_state_dict.items():
|
49 |
-
if 'audio_encoder' in k:
|
50 |
-
state_dict[k.replace('module.audio_encoder.', '')] = v
|
51 |
-
self.audio_encoder.load_state_dict(state_dict)
|
52 |
-
|
53 |
-
|
54 |
-
def forward(self, audio_sequences):
|
55 |
-
# audio_sequences = (B, T, 1, 80, 16)
|
56 |
-
B = audio_sequences.size(0)
|
57 |
-
|
58 |
-
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
59 |
-
|
60 |
-
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
|
61 |
-
dim = audio_embedding.shape[1]
|
62 |
-
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
|
63 |
-
|
64 |
-
return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/audio2pose_models/cvae.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from torch import nn
|
4 |
-
from src.audio2pose_models.res_unet import ResUnet
|
5 |
-
|
6 |
-
def class2onehot(idx, class_num):
|
7 |
-
|
8 |
-
assert torch.max(idx).item() < class_num
|
9 |
-
onehot = torch.zeros(idx.size(0), class_num).to(idx.device)
|
10 |
-
onehot.scatter_(1, idx, 1)
|
11 |
-
return onehot
|
12 |
-
|
13 |
-
class CVAE(nn.Module):
|
14 |
-
def __init__(self, cfg):
|
15 |
-
super().__init__()
|
16 |
-
encoder_layer_sizes = cfg.MODEL.CVAE.ENCODER_LAYER_SIZES
|
17 |
-
decoder_layer_sizes = cfg.MODEL.CVAE.DECODER_LAYER_SIZES
|
18 |
-
latent_size = cfg.MODEL.CVAE.LATENT_SIZE
|
19 |
-
num_classes = cfg.DATASET.NUM_CLASSES
|
20 |
-
audio_emb_in_size = cfg.MODEL.CVAE.AUDIO_EMB_IN_SIZE
|
21 |
-
audio_emb_out_size = cfg.MODEL.CVAE.AUDIO_EMB_OUT_SIZE
|
22 |
-
seq_len = cfg.MODEL.CVAE.SEQ_LEN
|
23 |
-
|
24 |
-
self.latent_size = latent_size
|
25 |
-
|
26 |
-
self.encoder = ENCODER(encoder_layer_sizes, latent_size, num_classes,
|
27 |
-
audio_emb_in_size, audio_emb_out_size, seq_len)
|
28 |
-
self.decoder = DECODER(decoder_layer_sizes, latent_size, num_classes,
|
29 |
-
audio_emb_in_size, audio_emb_out_size, seq_len)
|
30 |
-
def reparameterize(self, mu, logvar):
|
31 |
-
std = torch.exp(0.5 * logvar)
|
32 |
-
eps = torch.randn_like(std)
|
33 |
-
return mu + eps * std
|
34 |
-
|
35 |
-
def forward(self, batch):
|
36 |
-
batch = self.encoder(batch)
|
37 |
-
mu = batch['mu']
|
38 |
-
logvar = batch['logvar']
|
39 |
-
z = self.reparameterize(mu, logvar)
|
40 |
-
batch['z'] = z
|
41 |
-
return self.decoder(batch)
|
42 |
-
|
43 |
-
def test(self, batch):
|
44 |
-
'''
|
45 |
-
class_id = batch['class']
|
46 |
-
z = torch.randn([class_id.size(0), self.latent_size]).to(class_id.device)
|
47 |
-
batch['z'] = z
|
48 |
-
'''
|
49 |
-
return self.decoder(batch)
|
50 |
-
|
51 |
-
class ENCODER(nn.Module):
|
52 |
-
def __init__(self, layer_sizes, latent_size, num_classes,
|
53 |
-
audio_emb_in_size, audio_emb_out_size, seq_len):
|
54 |
-
super().__init__()
|
55 |
-
|
56 |
-
self.resunet = ResUnet()
|
57 |
-
self.num_classes = num_classes
|
58 |
-
self.seq_len = seq_len
|
59 |
-
|
60 |
-
self.MLP = nn.Sequential()
|
61 |
-
layer_sizes[0] += latent_size + seq_len*audio_emb_out_size + 6
|
62 |
-
for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
|
63 |
-
self.MLP.add_module(
|
64 |
-
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
|
65 |
-
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
|
66 |
-
|
67 |
-
self.linear_means = nn.Linear(layer_sizes[-1], latent_size)
|
68 |
-
self.linear_logvar = nn.Linear(layer_sizes[-1], latent_size)
|
69 |
-
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
|
70 |
-
|
71 |
-
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
|
72 |
-
|
73 |
-
def forward(self, batch):
|
74 |
-
class_id = batch['class']
|
75 |
-
pose_motion_gt = batch['pose_motion_gt'] #bs seq_len 6
|
76 |
-
ref = batch['ref'] #bs 6
|
77 |
-
bs = pose_motion_gt.shape[0]
|
78 |
-
audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size
|
79 |
-
|
80 |
-
#pose encode
|
81 |
-
pose_emb = self.resunet(pose_motion_gt.unsqueeze(1)) #bs 1 seq_len 6
|
82 |
-
pose_emb = pose_emb.reshape(bs, -1) #bs seq_len*6
|
83 |
-
|
84 |
-
#audio mapping
|
85 |
-
print(audio_in.shape)
|
86 |
-
audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size
|
87 |
-
audio_out = audio_out.reshape(bs, -1)
|
88 |
-
|
89 |
-
class_bias = self.classbias[class_id] #bs latent_size
|
90 |
-
x_in = torch.cat([ref, pose_emb, audio_out, class_bias], dim=-1) #bs seq_len*(audio_emb_out_size+6)+latent_size
|
91 |
-
x_out = self.MLP(x_in)
|
92 |
-
|
93 |
-
mu = self.linear_means(x_out)
|
94 |
-
logvar = self.linear_means(x_out) #bs latent_size
|
95 |
-
|
96 |
-
batch.update({'mu':mu, 'logvar':logvar})
|
97 |
-
return batch
|
98 |
-
|
99 |
-
class DECODER(nn.Module):
|
100 |
-
def __init__(self, layer_sizes, latent_size, num_classes,
|
101 |
-
audio_emb_in_size, audio_emb_out_size, seq_len):
|
102 |
-
super().__init__()
|
103 |
-
|
104 |
-
self.resunet = ResUnet()
|
105 |
-
self.num_classes = num_classes
|
106 |
-
self.seq_len = seq_len
|
107 |
-
|
108 |
-
self.MLP = nn.Sequential()
|
109 |
-
input_size = latent_size + seq_len*audio_emb_out_size + 6
|
110 |
-
for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1], layer_sizes)):
|
111 |
-
self.MLP.add_module(
|
112 |
-
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
|
113 |
-
if i+1 < len(layer_sizes):
|
114 |
-
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
|
115 |
-
else:
|
116 |
-
self.MLP.add_module(name="sigmoid", module=nn.Sigmoid())
|
117 |
-
|
118 |
-
self.pose_linear = nn.Linear(6, 6)
|
119 |
-
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
|
120 |
-
|
121 |
-
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
|
122 |
-
|
123 |
-
def forward(self, batch):
|
124 |
-
|
125 |
-
z = batch['z'] #bs latent_size
|
126 |
-
bs = z.shape[0]
|
127 |
-
class_id = batch['class']
|
128 |
-
ref = batch['ref'] #bs 6
|
129 |
-
audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size
|
130 |
-
#print('audio_in: ', audio_in[:, :, :10])
|
131 |
-
|
132 |
-
audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size
|
133 |
-
#print('audio_out: ', audio_out[:, :, :10])
|
134 |
-
audio_out = audio_out.reshape([bs, -1]) # bs seq_len*audio_emb_out_size
|
135 |
-
class_bias = self.classbias[class_id] #bs latent_size
|
136 |
-
|
137 |
-
z = z + class_bias
|
138 |
-
x_in = torch.cat([ref, z, audio_out], dim=-1)
|
139 |
-
x_out = self.MLP(x_in) # bs layer_sizes[-1]
|
140 |
-
x_out = x_out.reshape((bs, self.seq_len, -1))
|
141 |
-
|
142 |
-
#print('x_out: ', x_out)
|
143 |
-
|
144 |
-
pose_emb = self.resunet(x_out.unsqueeze(1)) #bs 1 seq_len 6
|
145 |
-
|
146 |
-
pose_motion_pred = self.pose_linear(pose_emb.squeeze(1)) #bs seq_len 6
|
147 |
-
|
148 |
-
batch.update({'pose_motion_pred':pose_motion_pred})
|
149 |
-
return batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/audio2pose_models/discriminator.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from torch import nn
|
4 |
-
|
5 |
-
class ConvNormRelu(nn.Module):
|
6 |
-
def __init__(self, conv_type='1d', in_channels=3, out_channels=64, downsample=False,
|
7 |
-
kernel_size=None, stride=None, padding=None, norm='BN', leaky=False):
|
8 |
-
super().__init__()
|
9 |
-
if kernel_size is None:
|
10 |
-
if downsample:
|
11 |
-
kernel_size, stride, padding = 4, 2, 1
|
12 |
-
else:
|
13 |
-
kernel_size, stride, padding = 3, 1, 1
|
14 |
-
|
15 |
-
if conv_type == '2d':
|
16 |
-
self.conv = nn.Conv2d(
|
17 |
-
in_channels,
|
18 |
-
out_channels,
|
19 |
-
kernel_size,
|
20 |
-
stride,
|
21 |
-
padding,
|
22 |
-
bias=False,
|
23 |
-
)
|
24 |
-
if norm == 'BN':
|
25 |
-
self.norm = nn.BatchNorm2d(out_channels)
|
26 |
-
elif norm == 'IN':
|
27 |
-
self.norm = nn.InstanceNorm2d(out_channels)
|
28 |
-
else:
|
29 |
-
raise NotImplementedError
|
30 |
-
elif conv_type == '1d':
|
31 |
-
self.conv = nn.Conv1d(
|
32 |
-
in_channels,
|
33 |
-
out_channels,
|
34 |
-
kernel_size,
|
35 |
-
stride,
|
36 |
-
padding,
|
37 |
-
bias=False,
|
38 |
-
)
|
39 |
-
if norm == 'BN':
|
40 |
-
self.norm = nn.BatchNorm1d(out_channels)
|
41 |
-
elif norm == 'IN':
|
42 |
-
self.norm = nn.InstanceNorm1d(out_channels)
|
43 |
-
else:
|
44 |
-
raise NotImplementedError
|
45 |
-
nn.init.kaiming_normal_(self.conv.weight)
|
46 |
-
|
47 |
-
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=False) if leaky else nn.ReLU(inplace=True)
|
48 |
-
|
49 |
-
def forward(self, x):
|
50 |
-
x = self.conv(x)
|
51 |
-
if isinstance(self.norm, nn.InstanceNorm1d):
|
52 |
-
x = self.norm(x.permute((0, 2, 1))).permute((0, 2, 1)) # normalize on [C]
|
53 |
-
else:
|
54 |
-
x = self.norm(x)
|
55 |
-
x = self.act(x)
|
56 |
-
return x
|
57 |
-
|
58 |
-
|
59 |
-
class PoseSequenceDiscriminator(nn.Module):
|
60 |
-
def __init__(self, cfg):
|
61 |
-
super().__init__()
|
62 |
-
self.cfg = cfg
|
63 |
-
leaky = self.cfg.MODEL.DISCRIMINATOR.LEAKY_RELU
|
64 |
-
|
65 |
-
self.seq = nn.Sequential(
|
66 |
-
ConvNormRelu('1d', cfg.MODEL.DISCRIMINATOR.INPUT_CHANNELS, 256, downsample=True, leaky=leaky), # B, 256, 64
|
67 |
-
ConvNormRelu('1d', 256, 512, downsample=True, leaky=leaky), # B, 512, 32
|
68 |
-
ConvNormRelu('1d', 512, 1024, kernel_size=3, stride=1, padding=1, leaky=leaky), # B, 1024, 16
|
69 |
-
nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=1, bias=True) # B, 1, 16
|
70 |
-
)
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
x = x.reshape(x.size(0), x.size(1), -1).transpose(1, 2)
|
74 |
-
x = self.seq(x)
|
75 |
-
x = x.squeeze(1)
|
76 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/audio2pose_models/networks.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
import torch
|
3 |
-
|
4 |
-
|
5 |
-
class ResidualConv(nn.Module):
|
6 |
-
def __init__(self, input_dim, output_dim, stride, padding):
|
7 |
-
super(ResidualConv, self).__init__()
|
8 |
-
|
9 |
-
self.conv_block = nn.Sequential(
|
10 |
-
nn.BatchNorm2d(input_dim),
|
11 |
-
nn.ReLU(),
|
12 |
-
nn.Conv2d(
|
13 |
-
input_dim, output_dim, kernel_size=3, stride=stride, padding=padding
|
14 |
-
),
|
15 |
-
nn.BatchNorm2d(output_dim),
|
16 |
-
nn.ReLU(),
|
17 |
-
nn.Conv2d(output_dim, output_dim, kernel_size=3, padding=1),
|
18 |
-
)
|
19 |
-
self.conv_skip = nn.Sequential(
|
20 |
-
nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=stride, padding=1),
|
21 |
-
nn.BatchNorm2d(output_dim),
|
22 |
-
)
|
23 |
-
|
24 |
-
def forward(self, x):
|
25 |
-
|
26 |
-
return self.conv_block(x) + self.conv_skip(x)
|
27 |
-
|
28 |
-
|
29 |
-
class Upsample(nn.Module):
|
30 |
-
def __init__(self, input_dim, output_dim, kernel, stride):
|
31 |
-
super(Upsample, self).__init__()
|
32 |
-
|
33 |
-
self.upsample = nn.ConvTranspose2d(
|
34 |
-
input_dim, output_dim, kernel_size=kernel, stride=stride
|
35 |
-
)
|
36 |
-
|
37 |
-
def forward(self, x):
|
38 |
-
return self.upsample(x)
|
39 |
-
|
40 |
-
|
41 |
-
class Squeeze_Excite_Block(nn.Module):
|
42 |
-
def __init__(self, channel, reduction=16):
|
43 |
-
super(Squeeze_Excite_Block, self).__init__()
|
44 |
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
45 |
-
self.fc = nn.Sequential(
|
46 |
-
nn.Linear(channel, channel // reduction, bias=False),
|
47 |
-
nn.ReLU(inplace=True),
|
48 |
-
nn.Linear(channel // reduction, channel, bias=False),
|
49 |
-
nn.Sigmoid(),
|
50 |
-
)
|
51 |
-
|
52 |
-
def forward(self, x):
|
53 |
-
b, c, _, _ = x.size()
|
54 |
-
y = self.avg_pool(x).view(b, c)
|
55 |
-
y = self.fc(y).view(b, c, 1, 1)
|
56 |
-
return x * y.expand_as(x)
|
57 |
-
|
58 |
-
|
59 |
-
class ASPP(nn.Module):
|
60 |
-
def __init__(self, in_dims, out_dims, rate=[6, 12, 18]):
|
61 |
-
super(ASPP, self).__init__()
|
62 |
-
|
63 |
-
self.aspp_block1 = nn.Sequential(
|
64 |
-
nn.Conv2d(
|
65 |
-
in_dims, out_dims, 3, stride=1, padding=rate[0], dilation=rate[0]
|
66 |
-
),
|
67 |
-
nn.ReLU(inplace=True),
|
68 |
-
nn.BatchNorm2d(out_dims),
|
69 |
-
)
|
70 |
-
self.aspp_block2 = nn.Sequential(
|
71 |
-
nn.Conv2d(
|
72 |
-
in_dims, out_dims, 3, stride=1, padding=rate[1], dilation=rate[1]
|
73 |
-
),
|
74 |
-
nn.ReLU(inplace=True),
|
75 |
-
nn.BatchNorm2d(out_dims),
|
76 |
-
)
|
77 |
-
self.aspp_block3 = nn.Sequential(
|
78 |
-
nn.Conv2d(
|
79 |
-
in_dims, out_dims, 3, stride=1, padding=rate[2], dilation=rate[2]
|
80 |
-
),
|
81 |
-
nn.ReLU(inplace=True),
|
82 |
-
nn.BatchNorm2d(out_dims),
|
83 |
-
)
|
84 |
-
|
85 |
-
self.output = nn.Conv2d(len(rate) * out_dims, out_dims, 1)
|
86 |
-
self._init_weights()
|
87 |
-
|
88 |
-
def forward(self, x):
|
89 |
-
x1 = self.aspp_block1(x)
|
90 |
-
x2 = self.aspp_block2(x)
|
91 |
-
x3 = self.aspp_block3(x)
|
92 |
-
out = torch.cat([x1, x2, x3], dim=1)
|
93 |
-
return self.output(out)
|
94 |
-
|
95 |
-
def _init_weights(self):
|
96 |
-
for m in self.modules():
|
97 |
-
if isinstance(m, nn.Conv2d):
|
98 |
-
nn.init.kaiming_normal_(m.weight)
|
99 |
-
elif isinstance(m, nn.BatchNorm2d):
|
100 |
-
m.weight.data.fill_(1)
|
101 |
-
m.bias.data.zero_()
|
102 |
-
|
103 |
-
|
104 |
-
class Upsample_(nn.Module):
|
105 |
-
def __init__(self, scale=2):
|
106 |
-
super(Upsample_, self).__init__()
|
107 |
-
|
108 |
-
self.upsample = nn.Upsample(mode="bilinear", scale_factor=scale)
|
109 |
-
|
110 |
-
def forward(self, x):
|
111 |
-
return self.upsample(x)
|
112 |
-
|
113 |
-
|
114 |
-
class AttentionBlock(nn.Module):
|
115 |
-
def __init__(self, input_encoder, input_decoder, output_dim):
|
116 |
-
super(AttentionBlock, self).__init__()
|
117 |
-
|
118 |
-
self.conv_encoder = nn.Sequential(
|
119 |
-
nn.BatchNorm2d(input_encoder),
|
120 |
-
nn.ReLU(),
|
121 |
-
nn.Conv2d(input_encoder, output_dim, 3, padding=1),
|
122 |
-
nn.MaxPool2d(2, 2),
|
123 |
-
)
|
124 |
-
|
125 |
-
self.conv_decoder = nn.Sequential(
|
126 |
-
nn.BatchNorm2d(input_decoder),
|
127 |
-
nn.ReLU(),
|
128 |
-
nn.Conv2d(input_decoder, output_dim, 3, padding=1),
|
129 |
-
)
|
130 |
-
|
131 |
-
self.conv_attn = nn.Sequential(
|
132 |
-
nn.BatchNorm2d(output_dim),
|
133 |
-
nn.ReLU(),
|
134 |
-
nn.Conv2d(output_dim, 1, 1),
|
135 |
-
)
|
136 |
-
|
137 |
-
def forward(self, x1, x2):
|
138 |
-
out = self.conv_encoder(x1) + self.conv_decoder(x2)
|
139 |
-
out = self.conv_attn(out)
|
140 |
-
return out * x2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/audio2pose_models/res_unet.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from src.audio2pose_models.networks import ResidualConv, Upsample
|
4 |
-
|
5 |
-
|
6 |
-
class ResUnet(nn.Module):
|
7 |
-
def __init__(self, channel=1, filters=[32, 64, 128, 256]):
|
8 |
-
super(ResUnet, self).__init__()
|
9 |
-
|
10 |
-
self.input_layer = nn.Sequential(
|
11 |
-
nn.Conv2d(channel, filters[0], kernel_size=3, padding=1),
|
12 |
-
nn.BatchNorm2d(filters[0]),
|
13 |
-
nn.ReLU(),
|
14 |
-
nn.Conv2d(filters[0], filters[0], kernel_size=3, padding=1),
|
15 |
-
)
|
16 |
-
self.input_skip = nn.Sequential(
|
17 |
-
nn.Conv2d(channel, filters[0], kernel_size=3, padding=1)
|
18 |
-
)
|
19 |
-
|
20 |
-
self.residual_conv_1 = ResidualConv(filters[0], filters[1], stride=(2,1), padding=1)
|
21 |
-
self.residual_conv_2 = ResidualConv(filters[1], filters[2], stride=(2,1), padding=1)
|
22 |
-
|
23 |
-
self.bridge = ResidualConv(filters[2], filters[3], stride=(2,1), padding=1)
|
24 |
-
|
25 |
-
self.upsample_1 = Upsample(filters[3], filters[3], kernel=(2,1), stride=(2,1))
|
26 |
-
self.up_residual_conv1 = ResidualConv(filters[3] + filters[2], filters[2], stride=1, padding=1)
|
27 |
-
|
28 |
-
self.upsample_2 = Upsample(filters[2], filters[2], kernel=(2,1), stride=(2,1))
|
29 |
-
self.up_residual_conv2 = ResidualConv(filters[2] + filters[1], filters[1], stride=1, padding=1)
|
30 |
-
|
31 |
-
self.upsample_3 = Upsample(filters[1], filters[1], kernel=(2,1), stride=(2,1))
|
32 |
-
self.up_residual_conv3 = ResidualConv(filters[1] + filters[0], filters[0], stride=1, padding=1)
|
33 |
-
|
34 |
-
self.output_layer = nn.Sequential(
|
35 |
-
nn.Conv2d(filters[0], 1, 1, 1),
|
36 |
-
nn.Sigmoid(),
|
37 |
-
)
|
38 |
-
|
39 |
-
def forward(self, x):
|
40 |
-
# Encode
|
41 |
-
x1 = self.input_layer(x) + self.input_skip(x)
|
42 |
-
x2 = self.residual_conv_1(x1)
|
43 |
-
x3 = self.residual_conv_2(x2)
|
44 |
-
# Bridge
|
45 |
-
x4 = self.bridge(x3)
|
46 |
-
|
47 |
-
# Decode
|
48 |
-
x4 = self.upsample_1(x4)
|
49 |
-
x5 = torch.cat([x4, x3], dim=1)
|
50 |
-
|
51 |
-
x6 = self.up_residual_conv1(x5)
|
52 |
-
|
53 |
-
x6 = self.upsample_2(x6)
|
54 |
-
x7 = torch.cat([x6, x2], dim=1)
|
55 |
-
|
56 |
-
x8 = self.up_residual_conv2(x7)
|
57 |
-
|
58 |
-
x8 = self.upsample_3(x8)
|
59 |
-
x9 = torch.cat([x8, x1], dim=1)
|
60 |
-
|
61 |
-
x10 = self.up_residual_conv3(x9)
|
62 |
-
|
63 |
-
output = self.output_layer(x10)
|
64 |
-
|
65 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/config/auido2exp.yaml
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
DATASET:
|
2 |
-
TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/train.txt
|
3 |
-
EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/val.txt
|
4 |
-
TRAIN_BATCH_SIZE: 32
|
5 |
-
EVAL_BATCH_SIZE: 32
|
6 |
-
EXP: True
|
7 |
-
EXP_DIM: 64
|
8 |
-
FRAME_LEN: 32
|
9 |
-
COEFF_LEN: 73
|
10 |
-
NUM_CLASSES: 46
|
11 |
-
AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav
|
12 |
-
COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav2lip_3dmm
|
13 |
-
LMDB_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb
|
14 |
-
DEBUG: True
|
15 |
-
NUM_REPEATS: 2
|
16 |
-
T: 40
|
17 |
-
|
18 |
-
|
19 |
-
MODEL:
|
20 |
-
FRAMEWORK: V2
|
21 |
-
AUDIOENCODER:
|
22 |
-
LEAKY_RELU: True
|
23 |
-
NORM: 'IN'
|
24 |
-
DISCRIMINATOR:
|
25 |
-
LEAKY_RELU: False
|
26 |
-
INPUT_CHANNELS: 6
|
27 |
-
CVAE:
|
28 |
-
AUDIO_EMB_IN_SIZE: 512
|
29 |
-
AUDIO_EMB_OUT_SIZE: 128
|
30 |
-
SEQ_LEN: 32
|
31 |
-
LATENT_SIZE: 256
|
32 |
-
ENCODER_LAYER_SIZES: [192, 1024]
|
33 |
-
DECODER_LAYER_SIZES: [1024, 192]
|
34 |
-
|
35 |
-
|
36 |
-
TRAIN:
|
37 |
-
MAX_EPOCH: 300
|
38 |
-
GENERATOR:
|
39 |
-
LR: 2.0e-5
|
40 |
-
DISCRIMINATOR:
|
41 |
-
LR: 1.0e-5
|
42 |
-
LOSS:
|
43 |
-
W_FEAT: 0
|
44 |
-
W_COEFF_EXP: 2
|
45 |
-
W_LM: 1.0e-2
|
46 |
-
W_LM_MOUTH: 0
|
47 |
-
W_REG: 0
|
48 |
-
W_SYNC: 0
|
49 |
-
W_COLOR: 0
|
50 |
-
W_EXPRESSION: 0
|
51 |
-
W_LIPREADING: 0.01
|
52 |
-
W_LIPREADING_VV: 0
|
53 |
-
W_EYE_BLINK: 4
|
54 |
-
|
55 |
-
TAG:
|
56 |
-
NAME: small_dataset
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/config/auido2pose.yaml
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
DATASET:
|
2 |
-
TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/train_33.txt
|
3 |
-
EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/val.txt
|
4 |
-
TRAIN_BATCH_SIZE: 64
|
5 |
-
EVAL_BATCH_SIZE: 1
|
6 |
-
EXP: True
|
7 |
-
EXP_DIM: 64
|
8 |
-
FRAME_LEN: 32
|
9 |
-
COEFF_LEN: 73
|
10 |
-
NUM_CLASSES: 46
|
11 |
-
AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav
|
12 |
-
COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb
|
13 |
-
DEBUG: True
|
14 |
-
|
15 |
-
|
16 |
-
MODEL:
|
17 |
-
AUDIOENCODER:
|
18 |
-
LEAKY_RELU: True
|
19 |
-
NORM: 'IN'
|
20 |
-
DISCRIMINATOR:
|
21 |
-
LEAKY_RELU: False
|
22 |
-
INPUT_CHANNELS: 6
|
23 |
-
CVAE:
|
24 |
-
AUDIO_EMB_IN_SIZE: 512
|
25 |
-
AUDIO_EMB_OUT_SIZE: 6
|
26 |
-
SEQ_LEN: 32
|
27 |
-
LATENT_SIZE: 64
|
28 |
-
ENCODER_LAYER_SIZES: [192, 128]
|
29 |
-
DECODER_LAYER_SIZES: [128, 192]
|
30 |
-
|
31 |
-
|
32 |
-
TRAIN:
|
33 |
-
MAX_EPOCH: 150
|
34 |
-
GENERATOR:
|
35 |
-
LR: 1.0e-4
|
36 |
-
DISCRIMINATOR:
|
37 |
-
LR: 1.0e-4
|
38 |
-
LOSS:
|
39 |
-
LAMBDA_REG: 1
|
40 |
-
LAMBDA_LANDMARKS: 0
|
41 |
-
LAMBDA_VERTICES: 0
|
42 |
-
LAMBDA_GAN_MOTION: 0.7
|
43 |
-
LAMBDA_GAN_COEFF: 0
|
44 |
-
LAMBDA_KL: 1
|
45 |
-
|
46 |
-
TAG:
|
47 |
-
NAME: cvae_UNET_useAudio_usewav2lipAudioEncoder
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/config/facerender.yaml
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
model_params:
|
2 |
-
common_params:
|
3 |
-
num_kp: 15
|
4 |
-
image_channel: 3
|
5 |
-
feature_channel: 32
|
6 |
-
estimate_jacobian: False # True
|
7 |
-
kp_detector_params:
|
8 |
-
temperature: 0.1
|
9 |
-
block_expansion: 32
|
10 |
-
max_features: 1024
|
11 |
-
scale_factor: 0.25 # 0.25
|
12 |
-
num_blocks: 5
|
13 |
-
reshape_channel: 16384 # 16384 = 1024 * 16
|
14 |
-
reshape_depth: 16
|
15 |
-
he_estimator_params:
|
16 |
-
block_expansion: 64
|
17 |
-
max_features: 2048
|
18 |
-
num_bins: 66
|
19 |
-
generator_params:
|
20 |
-
block_expansion: 64
|
21 |
-
max_features: 512
|
22 |
-
num_down_blocks: 2
|
23 |
-
reshape_channel: 32
|
24 |
-
reshape_depth: 16 # 512 = 32 * 16
|
25 |
-
num_resblocks: 6
|
26 |
-
estimate_occlusion_map: True
|
27 |
-
dense_motion_params:
|
28 |
-
block_expansion: 32
|
29 |
-
max_features: 1024
|
30 |
-
num_blocks: 5
|
31 |
-
reshape_depth: 16
|
32 |
-
compress: 4
|
33 |
-
discriminator_params:
|
34 |
-
scales: [1]
|
35 |
-
block_expansion: 32
|
36 |
-
max_features: 512
|
37 |
-
num_blocks: 4
|
38 |
-
sn: True
|
39 |
-
mapping_params:
|
40 |
-
coeff_nc: 70
|
41 |
-
descriptor_nc: 1024
|
42 |
-
layer: 3
|
43 |
-
num_kp: 15
|
44 |
-
num_bins: 66
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/config/facerender_still.yaml
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
model_params:
|
2 |
-
common_params:
|
3 |
-
num_kp: 15
|
4 |
-
image_channel: 3
|
5 |
-
feature_channel: 32
|
6 |
-
estimate_jacobian: False # True
|
7 |
-
kp_detector_params:
|
8 |
-
temperature: 0.1
|
9 |
-
block_expansion: 32
|
10 |
-
max_features: 1024
|
11 |
-
scale_factor: 0.25 # 0.25
|
12 |
-
num_blocks: 5
|
13 |
-
reshape_channel: 16384 # 16384 = 1024 * 16
|
14 |
-
reshape_depth: 16
|
15 |
-
he_estimator_params:
|
16 |
-
block_expansion: 64
|
17 |
-
max_features: 2048
|
18 |
-
num_bins: 66
|
19 |
-
generator_params:
|
20 |
-
block_expansion: 64
|
21 |
-
max_features: 512
|
22 |
-
num_down_blocks: 2
|
23 |
-
reshape_channel: 32
|
24 |
-
reshape_depth: 16 # 512 = 32 * 16
|
25 |
-
num_resblocks: 6
|
26 |
-
estimate_occlusion_map: True
|
27 |
-
dense_motion_params:
|
28 |
-
block_expansion: 32
|
29 |
-
max_features: 1024
|
30 |
-
num_blocks: 5
|
31 |
-
reshape_depth: 16
|
32 |
-
compress: 4
|
33 |
-
discriminator_params:
|
34 |
-
scales: [1]
|
35 |
-
block_expansion: 32
|
36 |
-
max_features: 512
|
37 |
-
num_blocks: 4
|
38 |
-
sn: True
|
39 |
-
mapping_params:
|
40 |
-
coeff_nc: 73
|
41 |
-
descriptor_nc: 1024
|
42 |
-
layer: 3
|
43 |
-
num_kp: 15
|
44 |
-
num_bins: 66
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/__pycache__/extract_kp_videos.cpython-38.pyc
DELETED
Binary file (3.55 kB)
|
|
src/face3d/__pycache__/extract_kp_videos.cpython-39.pyc
DELETED
Binary file (3.55 kB)
|
|
src/face3d/data/__init__.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
"""This package includes all the modules related to data loading and preprocessing
|
2 |
-
|
3 |
-
To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset.
|
4 |
-
You need to implement four functions:
|
5 |
-
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
|
6 |
-
-- <__len__>: return the size of dataset.
|
7 |
-
-- <__getitem__>: get a data point from data loader.
|
8 |
-
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
|
9 |
-
|
10 |
-
Now you can use the dataset class by specifying flag '--dataset_mode dummy'.
|
11 |
-
See our template dataset class 'template_dataset.py' for more details.
|
12 |
-
"""
|
13 |
-
import numpy as np
|
14 |
-
import importlib
|
15 |
-
import torch.utils.data
|
16 |
-
from face3d.data.base_dataset import BaseDataset
|
17 |
-
|
18 |
-
|
19 |
-
def find_dataset_using_name(dataset_name):
|
20 |
-
"""Import the module "data/[dataset_name]_dataset.py".
|
21 |
-
|
22 |
-
In the file, the class called DatasetNameDataset() will
|
23 |
-
be instantiated. It has to be a subclass of BaseDataset,
|
24 |
-
and it is case-insensitive.
|
25 |
-
"""
|
26 |
-
dataset_filename = "data." + dataset_name + "_dataset"
|
27 |
-
datasetlib = importlib.import_module(dataset_filename)
|
28 |
-
|
29 |
-
dataset = None
|
30 |
-
target_dataset_name = dataset_name.replace('_', '') + 'dataset'
|
31 |
-
for name, cls in datasetlib.__dict__.items():
|
32 |
-
if name.lower() == target_dataset_name.lower() \
|
33 |
-
and issubclass(cls, BaseDataset):
|
34 |
-
dataset = cls
|
35 |
-
|
36 |
-
if dataset is None:
|
37 |
-
raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name))
|
38 |
-
|
39 |
-
return dataset
|
40 |
-
|
41 |
-
|
42 |
-
def get_option_setter(dataset_name):
|
43 |
-
"""Return the static method <modify_commandline_options> of the dataset class."""
|
44 |
-
dataset_class = find_dataset_using_name(dataset_name)
|
45 |
-
return dataset_class.modify_commandline_options
|
46 |
-
|
47 |
-
|
48 |
-
def create_dataset(opt, rank=0):
|
49 |
-
"""Create a dataset given the option.
|
50 |
-
|
51 |
-
This function wraps the class CustomDatasetDataLoader.
|
52 |
-
This is the main interface between this package and 'train.py'/'test.py'
|
53 |
-
|
54 |
-
Example:
|
55 |
-
>>> from data import create_dataset
|
56 |
-
>>> dataset = create_dataset(opt)
|
57 |
-
"""
|
58 |
-
data_loader = CustomDatasetDataLoader(opt, rank=rank)
|
59 |
-
dataset = data_loader.load_data()
|
60 |
-
return dataset
|
61 |
-
|
62 |
-
class CustomDatasetDataLoader():
|
63 |
-
"""Wrapper class of Dataset class that performs multi-threaded data loading"""
|
64 |
-
|
65 |
-
def __init__(self, opt, rank=0):
|
66 |
-
"""Initialize this class
|
67 |
-
|
68 |
-
Step 1: create a dataset instance given the name [dataset_mode]
|
69 |
-
Step 2: create a multi-threaded data loader.
|
70 |
-
"""
|
71 |
-
self.opt = opt
|
72 |
-
dataset_class = find_dataset_using_name(opt.dataset_mode)
|
73 |
-
self.dataset = dataset_class(opt)
|
74 |
-
self.sampler = None
|
75 |
-
print("rank %d %s dataset [%s] was created" % (rank, self.dataset.name, type(self.dataset).__name__))
|
76 |
-
if opt.use_ddp and opt.isTrain:
|
77 |
-
world_size = opt.world_size
|
78 |
-
self.sampler = torch.utils.data.distributed.DistributedSampler(
|
79 |
-
self.dataset,
|
80 |
-
num_replicas=world_size,
|
81 |
-
rank=rank,
|
82 |
-
shuffle=not opt.serial_batches
|
83 |
-
)
|
84 |
-
self.dataloader = torch.utils.data.DataLoader(
|
85 |
-
self.dataset,
|
86 |
-
sampler=self.sampler,
|
87 |
-
num_workers=int(opt.num_threads / world_size),
|
88 |
-
batch_size=int(opt.batch_size / world_size),
|
89 |
-
drop_last=True)
|
90 |
-
else:
|
91 |
-
self.dataloader = torch.utils.data.DataLoader(
|
92 |
-
self.dataset,
|
93 |
-
batch_size=opt.batch_size,
|
94 |
-
shuffle=(not opt.serial_batches) and opt.isTrain,
|
95 |
-
num_workers=int(opt.num_threads),
|
96 |
-
drop_last=True
|
97 |
-
)
|
98 |
-
|
99 |
-
def set_epoch(self, epoch):
|
100 |
-
self.dataset.current_epoch = epoch
|
101 |
-
if self.sampler is not None:
|
102 |
-
self.sampler.set_epoch(epoch)
|
103 |
-
|
104 |
-
def load_data(self):
|
105 |
-
return self
|
106 |
-
|
107 |
-
def __len__(self):
|
108 |
-
"""Return the number of data in the dataset"""
|
109 |
-
return min(len(self.dataset), self.opt.max_dataset_size)
|
110 |
-
|
111 |
-
def __iter__(self):
|
112 |
-
"""Return a batch of data"""
|
113 |
-
for i, data in enumerate(self.dataloader):
|
114 |
-
if i * self.opt.batch_size >= self.opt.max_dataset_size:
|
115 |
-
break
|
116 |
-
yield data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/data/base_dataset.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets.
|
2 |
-
|
3 |
-
It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses.
|
4 |
-
"""
|
5 |
-
import random
|
6 |
-
import numpy as np
|
7 |
-
import torch.utils.data as data
|
8 |
-
from PIL import Image
|
9 |
-
import torchvision.transforms as transforms
|
10 |
-
from abc import ABC, abstractmethod
|
11 |
-
|
12 |
-
|
13 |
-
class BaseDataset(data.Dataset, ABC):
|
14 |
-
"""This class is an abstract base class (ABC) for datasets.
|
15 |
-
|
16 |
-
To create a subclass, you need to implement the following four functions:
|
17 |
-
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
|
18 |
-
-- <__len__>: return the size of dataset.
|
19 |
-
-- <__getitem__>: get a data point.
|
20 |
-
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
|
21 |
-
"""
|
22 |
-
|
23 |
-
def __init__(self, opt):
|
24 |
-
"""Initialize the class; save the options in the class
|
25 |
-
|
26 |
-
Parameters:
|
27 |
-
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
|
28 |
-
"""
|
29 |
-
self.opt = opt
|
30 |
-
# self.root = opt.dataroot
|
31 |
-
self.current_epoch = 0
|
32 |
-
|
33 |
-
@staticmethod
|
34 |
-
def modify_commandline_options(parser, is_train):
|
35 |
-
"""Add new dataset-specific options, and rewrite default values for existing options.
|
36 |
-
|
37 |
-
Parameters:
|
38 |
-
parser -- original option parser
|
39 |
-
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
the modified parser.
|
43 |
-
"""
|
44 |
-
return parser
|
45 |
-
|
46 |
-
@abstractmethod
|
47 |
-
def __len__(self):
|
48 |
-
"""Return the total number of images in the dataset."""
|
49 |
-
return 0
|
50 |
-
|
51 |
-
@abstractmethod
|
52 |
-
def __getitem__(self, index):
|
53 |
-
"""Return a data point and its metadata information.
|
54 |
-
|
55 |
-
Parameters:
|
56 |
-
index - - a random integer for data indexing
|
57 |
-
|
58 |
-
Returns:
|
59 |
-
a dictionary of data with their names. It ususally contains the data itself and its metadata information.
|
60 |
-
"""
|
61 |
-
pass
|
62 |
-
|
63 |
-
|
64 |
-
def get_transform(grayscale=False):
|
65 |
-
transform_list = []
|
66 |
-
if grayscale:
|
67 |
-
transform_list.append(transforms.Grayscale(1))
|
68 |
-
transform_list += [transforms.ToTensor()]
|
69 |
-
return transforms.Compose(transform_list)
|
70 |
-
|
71 |
-
def get_affine_mat(opt, size):
|
72 |
-
shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False
|
73 |
-
w, h = size
|
74 |
-
|
75 |
-
if 'shift' in opt.preprocess:
|
76 |
-
shift_pixs = int(opt.shift_pixs)
|
77 |
-
shift_x = random.randint(-shift_pixs, shift_pixs)
|
78 |
-
shift_y = random.randint(-shift_pixs, shift_pixs)
|
79 |
-
if 'scale' in opt.preprocess:
|
80 |
-
scale = 1 + opt.scale_delta * (2 * random.random() - 1)
|
81 |
-
if 'rot' in opt.preprocess:
|
82 |
-
rot_angle = opt.rot_angle * (2 * random.random() - 1)
|
83 |
-
rot_rad = -rot_angle * np.pi/180
|
84 |
-
if 'flip' in opt.preprocess:
|
85 |
-
flip = random.random() > 0.5
|
86 |
-
|
87 |
-
shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3])
|
88 |
-
flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3])
|
89 |
-
shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3])
|
90 |
-
rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3])
|
91 |
-
scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3])
|
92 |
-
shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3])
|
93 |
-
|
94 |
-
affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin
|
95 |
-
affine_inv = np.linalg.inv(affine)
|
96 |
-
return affine, affine_inv, flip
|
97 |
-
|
98 |
-
def apply_img_affine(img, affine_inv, method=Image.BICUBIC):
|
99 |
-
return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC)
|
100 |
-
|
101 |
-
def apply_lm_affine(landmark, affine, flip, size):
|
102 |
-
_, h = size
|
103 |
-
lm = landmark.copy()
|
104 |
-
lm[:, 1] = h - 1 - lm[:, 1]
|
105 |
-
lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1)
|
106 |
-
lm = lm @ np.transpose(affine)
|
107 |
-
lm[:, :2] = lm[:, :2] / lm[:, 2:]
|
108 |
-
lm = lm[:, :2]
|
109 |
-
lm[:, 1] = h - 1 - lm[:, 1]
|
110 |
-
if flip:
|
111 |
-
lm_ = lm.copy()
|
112 |
-
lm_[:17] = lm[16::-1]
|
113 |
-
lm_[17:22] = lm[26:21:-1]
|
114 |
-
lm_[22:27] = lm[21:16:-1]
|
115 |
-
lm_[31:36] = lm[35:30:-1]
|
116 |
-
lm_[36:40] = lm[45:41:-1]
|
117 |
-
lm_[40:42] = lm[47:45:-1]
|
118 |
-
lm_[42:46] = lm[39:35:-1]
|
119 |
-
lm_[46:48] = lm[41:39:-1]
|
120 |
-
lm_[48:55] = lm[54:47:-1]
|
121 |
-
lm_[55:60] = lm[59:54:-1]
|
122 |
-
lm_[60:65] = lm[64:59:-1]
|
123 |
-
lm_[65:68] = lm[67:64:-1]
|
124 |
-
lm = lm_
|
125 |
-
return lm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/data/flist_dataset.py
DELETED
@@ -1,125 +0,0 @@
|
|
1 |
-
"""This script defines the custom dataset for Deep3DFaceRecon_pytorch
|
2 |
-
"""
|
3 |
-
|
4 |
-
import os.path
|
5 |
-
from data.base_dataset import BaseDataset, get_transform, get_affine_mat, apply_img_affine, apply_lm_affine
|
6 |
-
from data.image_folder import make_dataset
|
7 |
-
from PIL import Image
|
8 |
-
import random
|
9 |
-
import util.util as util
|
10 |
-
import numpy as np
|
11 |
-
import json
|
12 |
-
import torch
|
13 |
-
from scipy.io import loadmat, savemat
|
14 |
-
import pickle
|
15 |
-
from util.preprocess import align_img, estimate_norm
|
16 |
-
from util.load_mats import load_lm3d
|
17 |
-
|
18 |
-
|
19 |
-
def default_flist_reader(flist):
|
20 |
-
"""
|
21 |
-
flist format: impath label\nimpath label\n ...(same to caffe's filelist)
|
22 |
-
"""
|
23 |
-
imlist = []
|
24 |
-
with open(flist, 'r') as rf:
|
25 |
-
for line in rf.readlines():
|
26 |
-
impath = line.strip()
|
27 |
-
imlist.append(impath)
|
28 |
-
|
29 |
-
return imlist
|
30 |
-
|
31 |
-
def jason_flist_reader(flist):
|
32 |
-
with open(flist, 'r') as fp:
|
33 |
-
info = json.load(fp)
|
34 |
-
return info
|
35 |
-
|
36 |
-
def parse_label(label):
|
37 |
-
return torch.tensor(np.array(label).astype(np.float32))
|
38 |
-
|
39 |
-
|
40 |
-
class FlistDataset(BaseDataset):
|
41 |
-
"""
|
42 |
-
It requires one directories to host training images '/path/to/data/train'
|
43 |
-
You can train the model with the dataset flag '--dataroot /path/to/data'.
|
44 |
-
"""
|
45 |
-
|
46 |
-
def __init__(self, opt):
|
47 |
-
"""Initialize this dataset class.
|
48 |
-
|
49 |
-
Parameters:
|
50 |
-
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
51 |
-
"""
|
52 |
-
BaseDataset.__init__(self, opt)
|
53 |
-
|
54 |
-
self.lm3d_std = load_lm3d(opt.bfm_folder)
|
55 |
-
|
56 |
-
msk_names = default_flist_reader(opt.flist)
|
57 |
-
self.msk_paths = [os.path.join(opt.data_root, i) for i in msk_names]
|
58 |
-
|
59 |
-
self.size = len(self.msk_paths)
|
60 |
-
self.opt = opt
|
61 |
-
|
62 |
-
self.name = 'train' if opt.isTrain else 'val'
|
63 |
-
if '_' in opt.flist:
|
64 |
-
self.name += '_' + opt.flist.split(os.sep)[-1].split('_')[0]
|
65 |
-
|
66 |
-
|
67 |
-
def __getitem__(self, index):
|
68 |
-
"""Return a data point and its metadata information.
|
69 |
-
|
70 |
-
Parameters:
|
71 |
-
index (int) -- a random integer for data indexing
|
72 |
-
|
73 |
-
Returns a dictionary that contains A, B, A_paths and B_paths
|
74 |
-
img (tensor) -- an image in the input domain
|
75 |
-
msk (tensor) -- its corresponding attention mask
|
76 |
-
lm (tensor) -- its corresponding 3d landmarks
|
77 |
-
im_paths (str) -- image paths
|
78 |
-
aug_flag (bool) -- a flag used to tell whether its raw or augmented
|
79 |
-
"""
|
80 |
-
msk_path = self.msk_paths[index % self.size] # make sure index is within then range
|
81 |
-
img_path = msk_path.replace('mask/', '')
|
82 |
-
lm_path = '.'.join(msk_path.replace('mask', 'landmarks').split('.')[:-1]) + '.txt'
|
83 |
-
|
84 |
-
raw_img = Image.open(img_path).convert('RGB')
|
85 |
-
raw_msk = Image.open(msk_path).convert('RGB')
|
86 |
-
raw_lm = np.loadtxt(lm_path).astype(np.float32)
|
87 |
-
|
88 |
-
_, img, lm, msk = align_img(raw_img, raw_lm, self.lm3d_std, raw_msk)
|
89 |
-
|
90 |
-
aug_flag = self.opt.use_aug and self.opt.isTrain
|
91 |
-
if aug_flag:
|
92 |
-
img, lm, msk = self._augmentation(img, lm, self.opt, msk)
|
93 |
-
|
94 |
-
_, H = img.size
|
95 |
-
M = estimate_norm(lm, H)
|
96 |
-
transform = get_transform()
|
97 |
-
img_tensor = transform(img)
|
98 |
-
msk_tensor = transform(msk)[:1, ...]
|
99 |
-
lm_tensor = parse_label(lm)
|
100 |
-
M_tensor = parse_label(M)
|
101 |
-
|
102 |
-
|
103 |
-
return {'imgs': img_tensor,
|
104 |
-
'lms': lm_tensor,
|
105 |
-
'msks': msk_tensor,
|
106 |
-
'M': M_tensor,
|
107 |
-
'im_paths': img_path,
|
108 |
-
'aug_flag': aug_flag,
|
109 |
-
'dataset': self.name}
|
110 |
-
|
111 |
-
def _augmentation(self, img, lm, opt, msk=None):
|
112 |
-
affine, affine_inv, flip = get_affine_mat(opt, img.size)
|
113 |
-
img = apply_img_affine(img, affine_inv)
|
114 |
-
lm = apply_lm_affine(lm, affine, flip, img.size)
|
115 |
-
if msk is not None:
|
116 |
-
msk = apply_img_affine(msk, affine_inv, method=Image.BILINEAR)
|
117 |
-
return img, lm, msk
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
def __len__(self):
|
123 |
-
"""Return the total number of images in the dataset.
|
124 |
-
"""
|
125 |
-
return self.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/data/image_folder.py
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
"""A modified image folder class
|
2 |
-
|
3 |
-
We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py)
|
4 |
-
so that this class can load images from both current directory and its subdirectories.
|
5 |
-
"""
|
6 |
-
import numpy as np
|
7 |
-
import torch.utils.data as data
|
8 |
-
|
9 |
-
from PIL import Image
|
10 |
-
import os
|
11 |
-
import os.path
|
12 |
-
|
13 |
-
IMG_EXTENSIONS = [
|
14 |
-
'.jpg', '.JPG', '.jpeg', '.JPEG',
|
15 |
-
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
|
16 |
-
'.tif', '.TIF', '.tiff', '.TIFF',
|
17 |
-
]
|
18 |
-
|
19 |
-
|
20 |
-
def is_image_file(filename):
|
21 |
-
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
22 |
-
|
23 |
-
|
24 |
-
def make_dataset(dir, max_dataset_size=float("inf")):
|
25 |
-
images = []
|
26 |
-
assert os.path.isdir(dir) or os.path.islink(dir), '%s is not a valid directory' % dir
|
27 |
-
|
28 |
-
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
|
29 |
-
for fname in fnames:
|
30 |
-
if is_image_file(fname):
|
31 |
-
path = os.path.join(root, fname)
|
32 |
-
images.append(path)
|
33 |
-
return images[:min(max_dataset_size, len(images))]
|
34 |
-
|
35 |
-
|
36 |
-
def default_loader(path):
|
37 |
-
return Image.open(path).convert('RGB')
|
38 |
-
|
39 |
-
|
40 |
-
class ImageFolder(data.Dataset):
|
41 |
-
|
42 |
-
def __init__(self, root, transform=None, return_paths=False,
|
43 |
-
loader=default_loader):
|
44 |
-
imgs = make_dataset(root)
|
45 |
-
if len(imgs) == 0:
|
46 |
-
raise(RuntimeError("Found 0 images in: " + root + "\n"
|
47 |
-
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
|
48 |
-
|
49 |
-
self.root = root
|
50 |
-
self.imgs = imgs
|
51 |
-
self.transform = transform
|
52 |
-
self.return_paths = return_paths
|
53 |
-
self.loader = loader
|
54 |
-
|
55 |
-
def __getitem__(self, index):
|
56 |
-
path = self.imgs[index]
|
57 |
-
img = self.loader(path)
|
58 |
-
if self.transform is not None:
|
59 |
-
img = self.transform(img)
|
60 |
-
if self.return_paths:
|
61 |
-
return img, path
|
62 |
-
else:
|
63 |
-
return img
|
64 |
-
|
65 |
-
def __len__(self):
|
66 |
-
return len(self.imgs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/data/template_dataset.py
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
"""Dataset class template
|
2 |
-
|
3 |
-
This module provides a template for users to implement custom datasets.
|
4 |
-
You can specify '--dataset_mode template' to use this dataset.
|
5 |
-
The class name should be consistent with both the filename and its dataset_mode option.
|
6 |
-
The filename should be <dataset_mode>_dataset.py
|
7 |
-
The class name should be <Dataset_mode>Dataset.py
|
8 |
-
You need to implement the following functions:
|
9 |
-
-- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options.
|
10 |
-
-- <__init__>: Initialize this dataset class.
|
11 |
-
-- <__getitem__>: Return a data point and its metadata information.
|
12 |
-
-- <__len__>: Return the number of images.
|
13 |
-
"""
|
14 |
-
from data.base_dataset import BaseDataset, get_transform
|
15 |
-
# from data.image_folder import make_dataset
|
16 |
-
# from PIL import Image
|
17 |
-
|
18 |
-
|
19 |
-
class TemplateDataset(BaseDataset):
|
20 |
-
"""A template dataset class for you to implement custom datasets."""
|
21 |
-
@staticmethod
|
22 |
-
def modify_commandline_options(parser, is_train):
|
23 |
-
"""Add new dataset-specific options, and rewrite default values for existing options.
|
24 |
-
|
25 |
-
Parameters:
|
26 |
-
parser -- original option parser
|
27 |
-
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
the modified parser.
|
31 |
-
"""
|
32 |
-
parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option')
|
33 |
-
parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values
|
34 |
-
return parser
|
35 |
-
|
36 |
-
def __init__(self, opt):
|
37 |
-
"""Initialize this dataset class.
|
38 |
-
|
39 |
-
Parameters:
|
40 |
-
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
41 |
-
|
42 |
-
A few things can be done here.
|
43 |
-
- save the options (have been done in BaseDataset)
|
44 |
-
- get image paths and meta information of the dataset.
|
45 |
-
- define the image transformation.
|
46 |
-
"""
|
47 |
-
# save the option and dataset root
|
48 |
-
BaseDataset.__init__(self, opt)
|
49 |
-
# get the image paths of your dataset;
|
50 |
-
self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root
|
51 |
-
# define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function
|
52 |
-
self.transform = get_transform(opt)
|
53 |
-
|
54 |
-
def __getitem__(self, index):
|
55 |
-
"""Return a data point and its metadata information.
|
56 |
-
|
57 |
-
Parameters:
|
58 |
-
index -- a random integer for data indexing
|
59 |
-
|
60 |
-
Returns:
|
61 |
-
a dictionary of data with their names. It usually contains the data itself and its metadata information.
|
62 |
-
|
63 |
-
Step 1: get a random image path: e.g., path = self.image_paths[index]
|
64 |
-
Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB').
|
65 |
-
Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image)
|
66 |
-
Step 4: return a data point as a dictionary.
|
67 |
-
"""
|
68 |
-
path = 'temp' # needs to be a string
|
69 |
-
data_A = None # needs to be a tensor
|
70 |
-
data_B = None # needs to be a tensor
|
71 |
-
return {'data_A': data_A, 'data_B': data_B, 'path': path}
|
72 |
-
|
73 |
-
def __len__(self):
|
74 |
-
"""Return the total number of images."""
|
75 |
-
return len(self.image_paths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/extract_kp_videos.py
DELETED
@@ -1,108 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import time
|
4 |
-
import glob
|
5 |
-
import argparse
|
6 |
-
import face_alignment
|
7 |
-
import numpy as np
|
8 |
-
from PIL import Image
|
9 |
-
from tqdm import tqdm
|
10 |
-
from itertools import cycle
|
11 |
-
|
12 |
-
from torch.multiprocessing import Pool, Process, set_start_method
|
13 |
-
|
14 |
-
class KeypointExtractor():
|
15 |
-
def __init__(self, device):
|
16 |
-
self.detector = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D,
|
17 |
-
device=device)
|
18 |
-
|
19 |
-
def extract_keypoint(self, images, name=None, info=True):
|
20 |
-
if isinstance(images, list):
|
21 |
-
keypoints = []
|
22 |
-
if info:
|
23 |
-
i_range = tqdm(images,desc='landmark Det:')
|
24 |
-
else:
|
25 |
-
i_range = images
|
26 |
-
|
27 |
-
for image in i_range:
|
28 |
-
current_kp = self.extract_keypoint(image)
|
29 |
-
if np.mean(current_kp) == -1 and keypoints:
|
30 |
-
keypoints.append(keypoints[-1])
|
31 |
-
else:
|
32 |
-
keypoints.append(current_kp[None])
|
33 |
-
|
34 |
-
keypoints = np.concatenate(keypoints, 0)
|
35 |
-
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
|
36 |
-
return keypoints
|
37 |
-
else:
|
38 |
-
while True:
|
39 |
-
try:
|
40 |
-
keypoints = self.detector.get_landmarks_from_image(np.array(images))[0]
|
41 |
-
break
|
42 |
-
except RuntimeError as e:
|
43 |
-
if str(e).startswith('CUDA'):
|
44 |
-
print("Warning: out of memory, sleep for 1s")
|
45 |
-
time.sleep(1)
|
46 |
-
else:
|
47 |
-
print(e)
|
48 |
-
break
|
49 |
-
except TypeError:
|
50 |
-
print('No face detected in this image')
|
51 |
-
shape = [68, 2]
|
52 |
-
keypoints = -1. * np.ones(shape)
|
53 |
-
break
|
54 |
-
if name is not None:
|
55 |
-
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
|
56 |
-
return keypoints
|
57 |
-
|
58 |
-
def read_video(filename):
|
59 |
-
frames = []
|
60 |
-
cap = cv2.VideoCapture(filename)
|
61 |
-
while cap.isOpened():
|
62 |
-
ret, frame = cap.read()
|
63 |
-
if ret:
|
64 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
65 |
-
frame = Image.fromarray(frame)
|
66 |
-
frames.append(frame)
|
67 |
-
else:
|
68 |
-
break
|
69 |
-
cap.release()
|
70 |
-
return frames
|
71 |
-
|
72 |
-
def run(data):
|
73 |
-
filename, opt, device = data
|
74 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = device
|
75 |
-
kp_extractor = KeypointExtractor()
|
76 |
-
images = read_video(filename)
|
77 |
-
name = filename.split('/')[-2:]
|
78 |
-
os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True)
|
79 |
-
kp_extractor.extract_keypoint(
|
80 |
-
images,
|
81 |
-
name=os.path.join(opt.output_dir, name[-2], name[-1])
|
82 |
-
)
|
83 |
-
|
84 |
-
if __name__ == '__main__':
|
85 |
-
set_start_method('spawn')
|
86 |
-
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
87 |
-
parser.add_argument('--input_dir', type=str, help='the folder of the input files')
|
88 |
-
parser.add_argument('--output_dir', type=str, help='the folder of the output files')
|
89 |
-
parser.add_argument('--device_ids', type=str, default='0,1')
|
90 |
-
parser.add_argument('--workers', type=int, default=4)
|
91 |
-
|
92 |
-
opt = parser.parse_args()
|
93 |
-
filenames = list()
|
94 |
-
VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
|
95 |
-
VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
|
96 |
-
extensions = VIDEO_EXTENSIONS
|
97 |
-
|
98 |
-
for ext in extensions:
|
99 |
-
os.listdir(f'{opt.input_dir}')
|
100 |
-
print(f'{opt.input_dir}/*.{ext}')
|
101 |
-
filenames = sorted(glob.glob(f'{opt.input_dir}/*.{ext}'))
|
102 |
-
print('Total number of videos:', len(filenames))
|
103 |
-
pool = Pool(opt.workers)
|
104 |
-
args_list = cycle([opt])
|
105 |
-
device_ids = opt.device_ids.split(",")
|
106 |
-
device_ids = cycle(device_ids)
|
107 |
-
for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))):
|
108 |
-
None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/extract_kp_videos_safe.py
DELETED
@@ -1,138 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import time
|
4 |
-
import glob
|
5 |
-
import argparse
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
-
import torch
|
9 |
-
from tqdm import tqdm
|
10 |
-
from itertools import cycle
|
11 |
-
from facexlib.alignment import init_alignment_model, landmark_98_to_68
|
12 |
-
from facexlib.detection import init_detection_model
|
13 |
-
from torch.multiprocessing import Pool, Process, set_start_method
|
14 |
-
|
15 |
-
|
16 |
-
class KeypointExtractor():
|
17 |
-
def __init__(self, device='cuda'):
|
18 |
-
|
19 |
-
### gfpgan/weights
|
20 |
-
try:
|
21 |
-
import webui # in webui
|
22 |
-
root_path = 'extensions/SadTalker/gfpgan/weights'
|
23 |
-
|
24 |
-
except:
|
25 |
-
root_path = 'gfpgan/weights'
|
26 |
-
|
27 |
-
self.detector = init_alignment_model('awing_fan',device=device, model_rootpath=root_path)
|
28 |
-
self.det_net = init_detection_model('retinaface_resnet50', half=False,device=device, model_rootpath=root_path)
|
29 |
-
|
30 |
-
def extract_keypoint(self, images, name=None, info=True):
|
31 |
-
if isinstance(images, list):
|
32 |
-
keypoints = []
|
33 |
-
if info:
|
34 |
-
i_range = tqdm(images,desc='landmark Det:')
|
35 |
-
else:
|
36 |
-
i_range = images
|
37 |
-
|
38 |
-
for image in i_range:
|
39 |
-
current_kp = self.extract_keypoint(image)
|
40 |
-
# current_kp = self.detector.get_landmarks(np.array(image))
|
41 |
-
if np.mean(current_kp) == -1 and keypoints:
|
42 |
-
keypoints.append(keypoints[-1])
|
43 |
-
else:
|
44 |
-
keypoints.append(current_kp[None])
|
45 |
-
|
46 |
-
keypoints = np.concatenate(keypoints, 0)
|
47 |
-
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
|
48 |
-
return keypoints
|
49 |
-
else:
|
50 |
-
while True:
|
51 |
-
try:
|
52 |
-
with torch.no_grad():
|
53 |
-
# face detection -> face alignment.
|
54 |
-
img = np.array(images)
|
55 |
-
bboxes = self.det_net.detect_faces(images, 0.97)
|
56 |
-
|
57 |
-
bboxes = bboxes[0]
|
58 |
-
|
59 |
-
# bboxes[0] -= 100
|
60 |
-
# bboxes[1] -= 100
|
61 |
-
# bboxes[2] += 100
|
62 |
-
# bboxes[3] += 100
|
63 |
-
img = img[int(bboxes[1]):int(bboxes[3]), int(bboxes[0]):int(bboxes[2]), :]
|
64 |
-
|
65 |
-
keypoints = landmark_98_to_68(self.detector.get_landmarks(img)) # [0]
|
66 |
-
|
67 |
-
#### keypoints to the original location
|
68 |
-
keypoints[:,0] += int(bboxes[0])
|
69 |
-
keypoints[:,1] += int(bboxes[1])
|
70 |
-
|
71 |
-
break
|
72 |
-
except RuntimeError as e:
|
73 |
-
if str(e).startswith('CUDA'):
|
74 |
-
print("Warning: out of memory, sleep for 1s")
|
75 |
-
time.sleep(1)
|
76 |
-
else:
|
77 |
-
print(e)
|
78 |
-
break
|
79 |
-
except TypeError:
|
80 |
-
print('No face detected in this image')
|
81 |
-
shape = [68, 2]
|
82 |
-
keypoints = -1. * np.ones(shape)
|
83 |
-
break
|
84 |
-
if name is not None:
|
85 |
-
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
|
86 |
-
return keypoints
|
87 |
-
|
88 |
-
def read_video(filename):
|
89 |
-
frames = []
|
90 |
-
cap = cv2.VideoCapture(filename)
|
91 |
-
while cap.isOpened():
|
92 |
-
ret, frame = cap.read()
|
93 |
-
if ret:
|
94 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
95 |
-
frame = Image.fromarray(frame)
|
96 |
-
frames.append(frame)
|
97 |
-
else:
|
98 |
-
break
|
99 |
-
cap.release()
|
100 |
-
return frames
|
101 |
-
|
102 |
-
def run(data):
|
103 |
-
filename, opt, device = data
|
104 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = device
|
105 |
-
kp_extractor = KeypointExtractor()
|
106 |
-
images = read_video(filename)
|
107 |
-
name = filename.split('/')[-2:]
|
108 |
-
os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True)
|
109 |
-
kp_extractor.extract_keypoint(
|
110 |
-
images,
|
111 |
-
name=os.path.join(opt.output_dir, name[-2], name[-1])
|
112 |
-
)
|
113 |
-
|
114 |
-
if __name__ == '__main__':
|
115 |
-
set_start_method('spawn')
|
116 |
-
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
117 |
-
parser.add_argument('--input_dir', type=str, help='the folder of the input files')
|
118 |
-
parser.add_argument('--output_dir', type=str, help='the folder of the output files')
|
119 |
-
parser.add_argument('--device_ids', type=str, default='0,1')
|
120 |
-
parser.add_argument('--workers', type=int, default=4)
|
121 |
-
|
122 |
-
opt = parser.parse_args()
|
123 |
-
filenames = list()
|
124 |
-
VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
|
125 |
-
VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
|
126 |
-
extensions = VIDEO_EXTENSIONS
|
127 |
-
|
128 |
-
for ext in extensions:
|
129 |
-
os.listdir(f'{opt.input_dir}')
|
130 |
-
print(f'{opt.input_dir}/*.{ext}')
|
131 |
-
filenames = sorted(glob.glob(f'{opt.input_dir}/*.{ext}'))
|
132 |
-
print('Total number of videos:', len(filenames))
|
133 |
-
pool = Pool(opt.workers)
|
134 |
-
args_list = cycle([opt])
|
135 |
-
device_ids = opt.device_ids.split(",")
|
136 |
-
device_ids = cycle(device_ids)
|
137 |
-
for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))):
|
138 |
-
None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/__init__.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
"""This package contains modules related to objective functions, optimizations, and network architectures.
|
2 |
-
|
3 |
-
To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
|
4 |
-
You need to implement the following five functions:
|
5 |
-
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
|
6 |
-
-- <set_input>: unpack data from dataset and apply preprocessing.
|
7 |
-
-- <forward>: produce intermediate results.
|
8 |
-
-- <optimize_parameters>: calculate loss, gradients, and update network weights.
|
9 |
-
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
|
10 |
-
|
11 |
-
In the function <__init__>, you need to define four lists:
|
12 |
-
-- self.loss_names (str list): specify the training losses that you want to plot and save.
|
13 |
-
-- self.model_names (str list): define networks used in our training.
|
14 |
-
-- self.visual_names (str list): specify the images that you want to display and save.
|
15 |
-
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
|
16 |
-
|
17 |
-
Now you can use the model class by specifying flag '--model dummy'.
|
18 |
-
See our template model class 'template_model.py' for more details.
|
19 |
-
"""
|
20 |
-
|
21 |
-
import importlib
|
22 |
-
from src.face3d.models.base_model import BaseModel
|
23 |
-
|
24 |
-
|
25 |
-
def find_model_using_name(model_name):
|
26 |
-
"""Import the module "models/[model_name]_model.py".
|
27 |
-
|
28 |
-
In the file, the class called DatasetNameModel() will
|
29 |
-
be instantiated. It has to be a subclass of BaseModel,
|
30 |
-
and it is case-insensitive.
|
31 |
-
"""
|
32 |
-
model_filename = "face3d.models." + model_name + "_model"
|
33 |
-
modellib = importlib.import_module(model_filename)
|
34 |
-
model = None
|
35 |
-
target_model_name = model_name.replace('_', '') + 'model'
|
36 |
-
for name, cls in modellib.__dict__.items():
|
37 |
-
if name.lower() == target_model_name.lower() \
|
38 |
-
and issubclass(cls, BaseModel):
|
39 |
-
model = cls
|
40 |
-
|
41 |
-
if model is None:
|
42 |
-
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
|
43 |
-
exit(0)
|
44 |
-
|
45 |
-
return model
|
46 |
-
|
47 |
-
|
48 |
-
def get_option_setter(model_name):
|
49 |
-
"""Return the static method <modify_commandline_options> of the model class."""
|
50 |
-
model_class = find_model_using_name(model_name)
|
51 |
-
return model_class.modify_commandline_options
|
52 |
-
|
53 |
-
|
54 |
-
def create_model(opt):
|
55 |
-
"""Create a model given the option.
|
56 |
-
|
57 |
-
This function warps the class CustomDatasetDataLoader.
|
58 |
-
This is the main interface between this package and 'train.py'/'test.py'
|
59 |
-
|
60 |
-
Example:
|
61 |
-
>>> from models import create_model
|
62 |
-
>>> model = create_model(opt)
|
63 |
-
"""
|
64 |
-
model = find_model_using_name(opt.model)
|
65 |
-
instance = model(opt)
|
66 |
-
print("model [%s] was created" % type(instance).__name__)
|
67 |
-
return instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (3.23 kB)
|
|
src/face3d/models/__pycache__/__init__.cpython-39.pyc
DELETED
Binary file (3.23 kB)
|
|
src/face3d/models/__pycache__/base_model.cpython-38.pyc
DELETED
Binary file (12.4 kB)
|
|
src/face3d/models/__pycache__/base_model.cpython-39.pyc
DELETED
Binary file (12.4 kB)
|
|
src/face3d/models/__pycache__/networks.cpython-38.pyc
DELETED
Binary file (17.1 kB)
|
|
src/face3d/models/__pycache__/networks.cpython-39.pyc
DELETED
Binary file (17.1 kB)
|
|
src/face3d/models/arcface_torch/README.md
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
# Distributed Arcface Training in Pytorch
|
2 |
-
|
3 |
-
This is a deep learning library that makes face recognition efficient, and effective, which can train tens of millions
|
4 |
-
identity on a single server.
|
5 |
-
|
6 |
-
## Requirements
|
7 |
-
|
8 |
-
- Install [pytorch](http://pytorch.org) (torch>=1.6.0), our doc for [install.md](docs/install.md).
|
9 |
-
- `pip install -r requirements.txt`.
|
10 |
-
- Download the dataset
|
11 |
-
from [https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_](https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_)
|
12 |
-
.
|
13 |
-
|
14 |
-
## How to Training
|
15 |
-
|
16 |
-
To train a model, run `train.py` with the path to the configs:
|
17 |
-
|
18 |
-
### 1. Single node, 8 GPUs:
|
19 |
-
|
20 |
-
```shell
|
21 |
-
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r50
|
22 |
-
```
|
23 |
-
|
24 |
-
### 2. Multiple nodes, each node 8 GPUs:
|
25 |
-
|
26 |
-
Node 0:
|
27 |
-
|
28 |
-
```shell
|
29 |
-
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50
|
30 |
-
```
|
31 |
-
|
32 |
-
Node 1:
|
33 |
-
|
34 |
-
```shell
|
35 |
-
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50
|
36 |
-
```
|
37 |
-
|
38 |
-
### 3.Training resnet2060 with 8 GPUs:
|
39 |
-
|
40 |
-
```shell
|
41 |
-
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r2060.py
|
42 |
-
```
|
43 |
-
|
44 |
-
## Model Zoo
|
45 |
-
|
46 |
-
- The models are available for non-commercial research purposes only.
|
47 |
-
- All models can be found in here.
|
48 |
-
- [Baidu Yun Pan](https://pan.baidu.com/s/1CL-l4zWqsI1oDuEEYVhj-g): e8pw
|
49 |
-
- [onedrive](https://1drv.ms/u/s!AswpsDO2toNKq0lWY69vN58GR6mw?e=p9Ov5d)
|
50 |
-
|
51 |
-
### Performance on [**ICCV2021-MFR**](http://iccv21-mfr.com/)
|
52 |
-
|
53 |
-
ICCV2021-MFR testset consists of non-celebrities so we can ensure that it has very few overlap with public available face
|
54 |
-
recognition training set, such as MS1M and CASIA as they mostly collected from online celebrities.
|
55 |
-
As the result, we can evaluate the FAIR performance for different algorithms.
|
56 |
-
|
57 |
-
For **ICCV2021-MFR-ALL** set, TAR is measured on all-to-all 1:1 protocal, with FAR less than 0.000001(e-6). The
|
58 |
-
globalised multi-racial testset contains 242,143 identities and 1,624,305 images.
|
59 |
-
|
60 |
-
For **ICCV2021-MFR-MASK** set, TAR is measured on mask-to-nonmask 1:1 protocal, with FAR less than 0.0001(e-4).
|
61 |
-
Mask testset contains 6,964 identities, 6,964 masked images and 13,928 non-masked images.
|
62 |
-
There are totally 13,928 positive pairs and 96,983,824 negative pairs.
|
63 |
-
|
64 |
-
| Datasets | backbone | Training throughout | Size / MB | **ICCV2021-MFR-MASK** | **ICCV2021-MFR-ALL** |
|
65 |
-
| :---: | :--- | :--- | :--- |:--- |:--- |
|
66 |
-
| MS1MV3 | r18 | - | 91 | **47.85** | **68.33** |
|
67 |
-
| Glint360k | r18 | 8536 | 91 | **53.32** | **72.07** |
|
68 |
-
| MS1MV3 | r34 | - | 130 | **58.72** | **77.36** |
|
69 |
-
| Glint360k | r34 | 6344 | 130 | **65.10** | **83.02** |
|
70 |
-
| MS1MV3 | r50 | 5500 | 166 | **63.85** | **80.53** |
|
71 |
-
| Glint360k | r50 | 5136 | 166 | **70.23** | **87.08** |
|
72 |
-
| MS1MV3 | r100 | - | 248 | **69.09** | **84.31** |
|
73 |
-
| Glint360k | r100 | 3332 | 248 | **75.57** | **90.66** |
|
74 |
-
| MS1MV3 | mobilefacenet | 12185 | 7.8 | **41.52** | **65.26** |
|
75 |
-
| Glint360k | mobilefacenet | 11197 | 7.8 | **44.52** | **66.48** |
|
76 |
-
|
77 |
-
### Performance on IJB-C and Verification Datasets
|
78 |
-
|
79 |
-
| Datasets | backbone | IJBC(1e-05) | IJBC(1e-04) | agedb30 | cfp_fp | lfw | log |
|
80 |
-
| :---: | :--- | :--- | :--- | :--- |:--- |:--- |:--- |
|
81 |
-
| MS1MV3 | r18 | 92.07 | 94.66 | 97.77 | 97.73 | 99.77 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r18_fp16/training.log)|
|
82 |
-
| MS1MV3 | r34 | 94.10 | 95.90 | 98.10 | 98.67 | 99.80 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r34_fp16/training.log)|
|
83 |
-
| MS1MV3 | r50 | 94.79 | 96.46 | 98.35 | 98.96 | 99.83 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r50_fp16/training.log)|
|
84 |
-
| MS1MV3 | r100 | 95.31 | 96.81 | 98.48 | 99.06 | 99.85 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r100_fp16/training.log)|
|
85 |
-
| MS1MV3 | **r2060**| 95.34 | 97.11 | 98.67 | 99.24 | 99.87 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r2060_fp16/training.log)|
|
86 |
-
| Glint360k |r18-0.1 | 93.16 | 95.33 | 97.72 | 97.73 | 99.77 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r18_fp16_0.1/training.log)|
|
87 |
-
| Glint360k |r34-0.1 | 95.16 | 96.56 | 98.33 | 98.78 | 99.82 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r34_fp16_0.1/training.log)|
|
88 |
-
| Glint360k |r50-0.1 | 95.61 | 96.97 | 98.38 | 99.20 | 99.83 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r50_fp16_0.1/training.log)|
|
89 |
-
| Glint360k |r100-0.1 | 95.88 | 97.32 | 98.48 | 99.29 | 99.82 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r100_fp16_0.1/training.log)|
|
90 |
-
|
91 |
-
[comment]: <> (More details see [model.md](docs/modelzoo.md) in docs.)
|
92 |
-
|
93 |
-
|
94 |
-
## [Speed Benchmark](docs/speed_benchmark.md)
|
95 |
-
|
96 |
-
**Arcface Torch** can train large-scale face recognition training set efficiently and quickly. When the number of
|
97 |
-
classes in training sets is greater than 300K and the training is sufficient, partial fc sampling strategy will get same
|
98 |
-
accuracy with several times faster training performance and smaller GPU memory.
|
99 |
-
Partial FC is a sparse variant of the model parallel architecture for large sacle face recognition. Partial FC use a
|
100 |
-
sparse softmax, where each batch dynamicly sample a subset of class centers for training. In each iteration, only a
|
101 |
-
sparse part of the parameters will be updated, which can reduce a lot of GPU memory and calculations. With Partial FC,
|
102 |
-
we can scale trainset of 29 millions identities, the largest to date. Partial FC also supports multi-machine distributed
|
103 |
-
training and mixed precision training.
|
104 |
-
|
105 |
-
![Image text](https://github.com/anxiangsir/insightface_arcface_log/blob/master/partial_fc_v2.png)
|
106 |
-
|
107 |
-
More details see
|
108 |
-
[speed_benchmark.md](docs/speed_benchmark.md) in docs.
|
109 |
-
|
110 |
-
### 1. Training speed of different parallel methods (samples / second), Tesla V100 32GB * 8. (Larger is better)
|
111 |
-
|
112 |
-
`-` means training failed because of gpu memory limitations.
|
113 |
-
|
114 |
-
| Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 |
|
115 |
-
| :--- | :--- | :--- | :--- |
|
116 |
-
|125000 | 4681 | 4824 | 5004 |
|
117 |
-
|1400000 | **1672** | 3043 | 4738 |
|
118 |
-
|5500000 | **-** | **1389** | 3975 |
|
119 |
-
|8000000 | **-** | **-** | 3565 |
|
120 |
-
|16000000 | **-** | **-** | 2679 |
|
121 |
-
|29000000 | **-** | **-** | **1855** |
|
122 |
-
|
123 |
-
### 2. GPU memory cost of different parallel methods (MB per GPU), Tesla V100 32GB * 8. (Smaller is better)
|
124 |
-
|
125 |
-
| Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 |
|
126 |
-
| :--- | :--- | :--- | :--- |
|
127 |
-
|125000 | 7358 | 5306 | 4868 |
|
128 |
-
|1400000 | 32252 | 11178 | 6056 |
|
129 |
-
|5500000 | **-** | 32188 | 9854 |
|
130 |
-
|8000000 | **-** | **-** | 12310 |
|
131 |
-
|16000000 | **-** | **-** | 19950 |
|
132 |
-
|29000000 | **-** | **-** | 32324 |
|
133 |
-
|
134 |
-
## Evaluation ICCV2021-MFR and IJB-C
|
135 |
-
|
136 |
-
More details see [eval.md](docs/eval.md) in docs.
|
137 |
-
|
138 |
-
## Test
|
139 |
-
|
140 |
-
We tested many versions of PyTorch. Please create an issue if you are having trouble.
|
141 |
-
|
142 |
-
- [x] torch 1.6.0
|
143 |
-
- [x] torch 1.7.1
|
144 |
-
- [x] torch 1.8.0
|
145 |
-
- [x] torch 1.9.0
|
146 |
-
|
147 |
-
## Citation
|
148 |
-
|
149 |
-
```
|
150 |
-
@inproceedings{deng2019arcface,
|
151 |
-
title={Arcface: Additive angular margin loss for deep face recognition},
|
152 |
-
author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos},
|
153 |
-
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
|
154 |
-
pages={4690--4699},
|
155 |
-
year={2019}
|
156 |
-
}
|
157 |
-
@inproceedings{an2020partical_fc,
|
158 |
-
title={Partial FC: Training 10 Million Identities on a Single Machine},
|
159 |
-
author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
|
160 |
-
Zhang, Debing and Fu Ying},
|
161 |
-
booktitle={Arxiv 2010.05222},
|
162 |
-
year={2020}
|
163 |
-
}
|
164 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/arcface_torch/backbones/__init__.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
from .iresnet import iresnet18, iresnet34, iresnet50, iresnet100, iresnet200
|
2 |
-
from .mobilefacenet import get_mbf
|
3 |
-
|
4 |
-
|
5 |
-
def get_model(name, **kwargs):
|
6 |
-
# resnet
|
7 |
-
if name == "r18":
|
8 |
-
return iresnet18(False, **kwargs)
|
9 |
-
elif name == "r34":
|
10 |
-
return iresnet34(False, **kwargs)
|
11 |
-
elif name == "r50":
|
12 |
-
return iresnet50(False, **kwargs)
|
13 |
-
elif name == "r100":
|
14 |
-
return iresnet100(False, **kwargs)
|
15 |
-
elif name == "r200":
|
16 |
-
return iresnet200(False, **kwargs)
|
17 |
-
elif name == "r2060":
|
18 |
-
from .iresnet2060 import iresnet2060
|
19 |
-
return iresnet2060(False, **kwargs)
|
20 |
-
elif name == "mbf":
|
21 |
-
fp16 = kwargs.get("fp16", False)
|
22 |
-
num_features = kwargs.get("num_features", 512)
|
23 |
-
return get_mbf(fp16=fp16, num_features=num_features)
|
24 |
-
else:
|
25 |
-
raise ValueError()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/arcface_torch/backbones/__pycache__/__init__.cpython-38.pyc
DELETED
Binary file (823 Bytes)
|
|
src/face3d/models/arcface_torch/backbones/__pycache__/__init__.cpython-39.pyc
DELETED
Binary file (847 Bytes)
|
|
src/face3d/models/arcface_torch/backbones/__pycache__/iresnet.cpython-38.pyc
DELETED
Binary file (5.39 kB)
|
|
src/face3d/models/arcface_torch/backbones/__pycache__/iresnet.cpython-39.pyc
DELETED
Binary file (5.47 kB)
|
|
src/face3d/models/arcface_torch/backbones/__pycache__/mobilefacenet.cpython-38.pyc
DELETED
Binary file (5.45 kB)
|
|
src/face3d/models/arcface_torch/backbones/__pycache__/mobilefacenet.cpython-39.pyc
DELETED
Binary file (5.47 kB)
|
|
src/face3d/models/arcface_torch/backbones/iresnet.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
|
4 |
-
__all__ = ['iresnet18', 'iresnet34', 'iresnet50', 'iresnet100', 'iresnet200']
|
5 |
-
|
6 |
-
|
7 |
-
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
8 |
-
"""3x3 convolution with padding"""
|
9 |
-
return nn.Conv2d(in_planes,
|
10 |
-
out_planes,
|
11 |
-
kernel_size=3,
|
12 |
-
stride=stride,
|
13 |
-
padding=dilation,
|
14 |
-
groups=groups,
|
15 |
-
bias=False,
|
16 |
-
dilation=dilation)
|
17 |
-
|
18 |
-
|
19 |
-
def conv1x1(in_planes, out_planes, stride=1):
|
20 |
-
"""1x1 convolution"""
|
21 |
-
return nn.Conv2d(in_planes,
|
22 |
-
out_planes,
|
23 |
-
kernel_size=1,
|
24 |
-
stride=stride,
|
25 |
-
bias=False)
|
26 |
-
|
27 |
-
|
28 |
-
class IBasicBlock(nn.Module):
|
29 |
-
expansion = 1
|
30 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
31 |
-
groups=1, base_width=64, dilation=1):
|
32 |
-
super(IBasicBlock, self).__init__()
|
33 |
-
if groups != 1 or base_width != 64:
|
34 |
-
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
35 |
-
if dilation > 1:
|
36 |
-
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
37 |
-
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,)
|
38 |
-
self.conv1 = conv3x3(inplanes, planes)
|
39 |
-
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,)
|
40 |
-
self.prelu = nn.PReLU(planes)
|
41 |
-
self.conv2 = conv3x3(planes, planes, stride)
|
42 |
-
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,)
|
43 |
-
self.downsample = downsample
|
44 |
-
self.stride = stride
|
45 |
-
|
46 |
-
def forward(self, x):
|
47 |
-
identity = x
|
48 |
-
out = self.bn1(x)
|
49 |
-
out = self.conv1(out)
|
50 |
-
out = self.bn2(out)
|
51 |
-
out = self.prelu(out)
|
52 |
-
out = self.conv2(out)
|
53 |
-
out = self.bn3(out)
|
54 |
-
if self.downsample is not None:
|
55 |
-
identity = self.downsample(x)
|
56 |
-
out += identity
|
57 |
-
return out
|
58 |
-
|
59 |
-
|
60 |
-
class IResNet(nn.Module):
|
61 |
-
fc_scale = 7 * 7
|
62 |
-
def __init__(self,
|
63 |
-
block, layers, dropout=0, num_features=512, zero_init_residual=False,
|
64 |
-
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
|
65 |
-
super(IResNet, self).__init__()
|
66 |
-
self.fp16 = fp16
|
67 |
-
self.inplanes = 64
|
68 |
-
self.dilation = 1
|
69 |
-
if replace_stride_with_dilation is None:
|
70 |
-
replace_stride_with_dilation = [False, False, False]
|
71 |
-
if len(replace_stride_with_dilation) != 3:
|
72 |
-
raise ValueError("replace_stride_with_dilation should be None "
|
73 |
-
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
74 |
-
self.groups = groups
|
75 |
-
self.base_width = width_per_group
|
76 |
-
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
77 |
-
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
|
78 |
-
self.prelu = nn.PReLU(self.inplanes)
|
79 |
-
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
|
80 |
-
self.layer2 = self._make_layer(block,
|
81 |
-
128,
|
82 |
-
layers[1],
|
83 |
-
stride=2,
|
84 |
-
dilate=replace_stride_with_dilation[0])
|
85 |
-
self.layer3 = self._make_layer(block,
|
86 |
-
256,
|
87 |
-
layers[2],
|
88 |
-
stride=2,
|
89 |
-
dilate=replace_stride_with_dilation[1])
|
90 |
-
self.layer4 = self._make_layer(block,
|
91 |
-
512,
|
92 |
-
layers[3],
|
93 |
-
stride=2,
|
94 |
-
dilate=replace_stride_with_dilation[2])
|
95 |
-
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,)
|
96 |
-
self.dropout = nn.Dropout(p=dropout, inplace=True)
|
97 |
-
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
|
98 |
-
self.features = nn.BatchNorm1d(num_features, eps=1e-05)
|
99 |
-
nn.init.constant_(self.features.weight, 1.0)
|
100 |
-
self.features.weight.requires_grad = False
|
101 |
-
|
102 |
-
for m in self.modules():
|
103 |
-
if isinstance(m, nn.Conv2d):
|
104 |
-
nn.init.normal_(m.weight, 0, 0.1)
|
105 |
-
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
106 |
-
nn.init.constant_(m.weight, 1)
|
107 |
-
nn.init.constant_(m.bias, 0)
|
108 |
-
|
109 |
-
if zero_init_residual:
|
110 |
-
for m in self.modules():
|
111 |
-
if isinstance(m, IBasicBlock):
|
112 |
-
nn.init.constant_(m.bn2.weight, 0)
|
113 |
-
|
114 |
-
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
115 |
-
downsample = None
|
116 |
-
previous_dilation = self.dilation
|
117 |
-
if dilate:
|
118 |
-
self.dilation *= stride
|
119 |
-
stride = 1
|
120 |
-
if stride != 1 or self.inplanes != planes * block.expansion:
|
121 |
-
downsample = nn.Sequential(
|
122 |
-
conv1x1(self.inplanes, planes * block.expansion, stride),
|
123 |
-
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
|
124 |
-
)
|
125 |
-
layers = []
|
126 |
-
layers.append(
|
127 |
-
block(self.inplanes, planes, stride, downsample, self.groups,
|
128 |
-
self.base_width, previous_dilation))
|
129 |
-
self.inplanes = planes * block.expansion
|
130 |
-
for _ in range(1, blocks):
|
131 |
-
layers.append(
|
132 |
-
block(self.inplanes,
|
133 |
-
planes,
|
134 |
-
groups=self.groups,
|
135 |
-
base_width=self.base_width,
|
136 |
-
dilation=self.dilation))
|
137 |
-
|
138 |
-
return nn.Sequential(*layers)
|
139 |
-
|
140 |
-
def forward(self, x):
|
141 |
-
with torch.cuda.amp.autocast(self.fp16):
|
142 |
-
x = self.conv1(x)
|
143 |
-
x = self.bn1(x)
|
144 |
-
x = self.prelu(x)
|
145 |
-
x = self.layer1(x)
|
146 |
-
x = self.layer2(x)
|
147 |
-
x = self.layer3(x)
|
148 |
-
x = self.layer4(x)
|
149 |
-
x = self.bn2(x)
|
150 |
-
x = torch.flatten(x, 1)
|
151 |
-
x = self.dropout(x)
|
152 |
-
x = self.fc(x.float() if self.fp16 else x)
|
153 |
-
x = self.features(x)
|
154 |
-
return x
|
155 |
-
|
156 |
-
|
157 |
-
def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
|
158 |
-
model = IResNet(block, layers, **kwargs)
|
159 |
-
if pretrained:
|
160 |
-
raise ValueError()
|
161 |
-
return model
|
162 |
-
|
163 |
-
|
164 |
-
def iresnet18(pretrained=False, progress=True, **kwargs):
|
165 |
-
return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained,
|
166 |
-
progress, **kwargs)
|
167 |
-
|
168 |
-
|
169 |
-
def iresnet34(pretrained=False, progress=True, **kwargs):
|
170 |
-
return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained,
|
171 |
-
progress, **kwargs)
|
172 |
-
|
173 |
-
|
174 |
-
def iresnet50(pretrained=False, progress=True, **kwargs):
|
175 |
-
return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained,
|
176 |
-
progress, **kwargs)
|
177 |
-
|
178 |
-
|
179 |
-
def iresnet100(pretrained=False, progress=True, **kwargs):
|
180 |
-
return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained,
|
181 |
-
progress, **kwargs)
|
182 |
-
|
183 |
-
|
184 |
-
def iresnet200(pretrained=False, progress=True, **kwargs):
|
185 |
-
return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained,
|
186 |
-
progress, **kwargs)
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/arcface_torch/backbones/iresnet2060.py
DELETED
@@ -1,176 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
|
4 |
-
assert torch.__version__ >= "1.8.1"
|
5 |
-
from torch.utils.checkpoint import checkpoint_sequential
|
6 |
-
|
7 |
-
__all__ = ['iresnet2060']
|
8 |
-
|
9 |
-
|
10 |
-
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
11 |
-
"""3x3 convolution with padding"""
|
12 |
-
return nn.Conv2d(in_planes,
|
13 |
-
out_planes,
|
14 |
-
kernel_size=3,
|
15 |
-
stride=stride,
|
16 |
-
padding=dilation,
|
17 |
-
groups=groups,
|
18 |
-
bias=False,
|
19 |
-
dilation=dilation)
|
20 |
-
|
21 |
-
|
22 |
-
def conv1x1(in_planes, out_planes, stride=1):
|
23 |
-
"""1x1 convolution"""
|
24 |
-
return nn.Conv2d(in_planes,
|
25 |
-
out_planes,
|
26 |
-
kernel_size=1,
|
27 |
-
stride=stride,
|
28 |
-
bias=False)
|
29 |
-
|
30 |
-
|
31 |
-
class IBasicBlock(nn.Module):
|
32 |
-
expansion = 1
|
33 |
-
|
34 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
35 |
-
groups=1, base_width=64, dilation=1):
|
36 |
-
super(IBasicBlock, self).__init__()
|
37 |
-
if groups != 1 or base_width != 64:
|
38 |
-
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
39 |
-
if dilation > 1:
|
40 |
-
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
41 |
-
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, )
|
42 |
-
self.conv1 = conv3x3(inplanes, planes)
|
43 |
-
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, )
|
44 |
-
self.prelu = nn.PReLU(planes)
|
45 |
-
self.conv2 = conv3x3(planes, planes, stride)
|
46 |
-
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, )
|
47 |
-
self.downsample = downsample
|
48 |
-
self.stride = stride
|
49 |
-
|
50 |
-
def forward(self, x):
|
51 |
-
identity = x
|
52 |
-
out = self.bn1(x)
|
53 |
-
out = self.conv1(out)
|
54 |
-
out = self.bn2(out)
|
55 |
-
out = self.prelu(out)
|
56 |
-
out = self.conv2(out)
|
57 |
-
out = self.bn3(out)
|
58 |
-
if self.downsample is not None:
|
59 |
-
identity = self.downsample(x)
|
60 |
-
out += identity
|
61 |
-
return out
|
62 |
-
|
63 |
-
|
64 |
-
class IResNet(nn.Module):
|
65 |
-
fc_scale = 7 * 7
|
66 |
-
|
67 |
-
def __init__(self,
|
68 |
-
block, layers, dropout=0, num_features=512, zero_init_residual=False,
|
69 |
-
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
|
70 |
-
super(IResNet, self).__init__()
|
71 |
-
self.fp16 = fp16
|
72 |
-
self.inplanes = 64
|
73 |
-
self.dilation = 1
|
74 |
-
if replace_stride_with_dilation is None:
|
75 |
-
replace_stride_with_dilation = [False, False, False]
|
76 |
-
if len(replace_stride_with_dilation) != 3:
|
77 |
-
raise ValueError("replace_stride_with_dilation should be None "
|
78 |
-
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
79 |
-
self.groups = groups
|
80 |
-
self.base_width = width_per_group
|
81 |
-
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
82 |
-
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
|
83 |
-
self.prelu = nn.PReLU(self.inplanes)
|
84 |
-
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
|
85 |
-
self.layer2 = self._make_layer(block,
|
86 |
-
128,
|
87 |
-
layers[1],
|
88 |
-
stride=2,
|
89 |
-
dilate=replace_stride_with_dilation[0])
|
90 |
-
self.layer3 = self._make_layer(block,
|
91 |
-
256,
|
92 |
-
layers[2],
|
93 |
-
stride=2,
|
94 |
-
dilate=replace_stride_with_dilation[1])
|
95 |
-
self.layer4 = self._make_layer(block,
|
96 |
-
512,
|
97 |
-
layers[3],
|
98 |
-
stride=2,
|
99 |
-
dilate=replace_stride_with_dilation[2])
|
100 |
-
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, )
|
101 |
-
self.dropout = nn.Dropout(p=dropout, inplace=True)
|
102 |
-
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
|
103 |
-
self.features = nn.BatchNorm1d(num_features, eps=1e-05)
|
104 |
-
nn.init.constant_(self.features.weight, 1.0)
|
105 |
-
self.features.weight.requires_grad = False
|
106 |
-
|
107 |
-
for m in self.modules():
|
108 |
-
if isinstance(m, nn.Conv2d):
|
109 |
-
nn.init.normal_(m.weight, 0, 0.1)
|
110 |
-
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
111 |
-
nn.init.constant_(m.weight, 1)
|
112 |
-
nn.init.constant_(m.bias, 0)
|
113 |
-
|
114 |
-
if zero_init_residual:
|
115 |
-
for m in self.modules():
|
116 |
-
if isinstance(m, IBasicBlock):
|
117 |
-
nn.init.constant_(m.bn2.weight, 0)
|
118 |
-
|
119 |
-
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
120 |
-
downsample = None
|
121 |
-
previous_dilation = self.dilation
|
122 |
-
if dilate:
|
123 |
-
self.dilation *= stride
|
124 |
-
stride = 1
|
125 |
-
if stride != 1 or self.inplanes != planes * block.expansion:
|
126 |
-
downsample = nn.Sequential(
|
127 |
-
conv1x1(self.inplanes, planes * block.expansion, stride),
|
128 |
-
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
|
129 |
-
)
|
130 |
-
layers = []
|
131 |
-
layers.append(
|
132 |
-
block(self.inplanes, planes, stride, downsample, self.groups,
|
133 |
-
self.base_width, previous_dilation))
|
134 |
-
self.inplanes = planes * block.expansion
|
135 |
-
for _ in range(1, blocks):
|
136 |
-
layers.append(
|
137 |
-
block(self.inplanes,
|
138 |
-
planes,
|
139 |
-
groups=self.groups,
|
140 |
-
base_width=self.base_width,
|
141 |
-
dilation=self.dilation))
|
142 |
-
|
143 |
-
return nn.Sequential(*layers)
|
144 |
-
|
145 |
-
def checkpoint(self, func, num_seg, x):
|
146 |
-
if self.training:
|
147 |
-
return checkpoint_sequential(func, num_seg, x)
|
148 |
-
else:
|
149 |
-
return func(x)
|
150 |
-
|
151 |
-
def forward(self, x):
|
152 |
-
with torch.cuda.amp.autocast(self.fp16):
|
153 |
-
x = self.conv1(x)
|
154 |
-
x = self.bn1(x)
|
155 |
-
x = self.prelu(x)
|
156 |
-
x = self.layer1(x)
|
157 |
-
x = self.checkpoint(self.layer2, 20, x)
|
158 |
-
x = self.checkpoint(self.layer3, 100, x)
|
159 |
-
x = self.layer4(x)
|
160 |
-
x = self.bn2(x)
|
161 |
-
x = torch.flatten(x, 1)
|
162 |
-
x = self.dropout(x)
|
163 |
-
x = self.fc(x.float() if self.fp16 else x)
|
164 |
-
x = self.features(x)
|
165 |
-
return x
|
166 |
-
|
167 |
-
|
168 |
-
def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
|
169 |
-
model = IResNet(block, layers, **kwargs)
|
170 |
-
if pretrained:
|
171 |
-
raise ValueError()
|
172 |
-
return model
|
173 |
-
|
174 |
-
|
175 |
-
def iresnet2060(pretrained=False, progress=True, **kwargs):
|
176 |
-
return _iresnet('iresnet2060', IBasicBlock, [3, 128, 1024 - 128, 3], pretrained, progress, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/arcface_torch/backbones/mobilefacenet.py
DELETED
@@ -1,130 +0,0 @@
|
|
1 |
-
'''
|
2 |
-
Adapted from https://github.com/cavalleria/cavaface.pytorch/blob/master/backbone/mobilefacenet.py
|
3 |
-
Original author cavalleria
|
4 |
-
'''
|
5 |
-
|
6 |
-
import torch.nn as nn
|
7 |
-
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Sequential, Module
|
8 |
-
import torch
|
9 |
-
|
10 |
-
|
11 |
-
class Flatten(Module):
|
12 |
-
def forward(self, x):
|
13 |
-
return x.view(x.size(0), -1)
|
14 |
-
|
15 |
-
|
16 |
-
class ConvBlock(Module):
|
17 |
-
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
|
18 |
-
super(ConvBlock, self).__init__()
|
19 |
-
self.layers = nn.Sequential(
|
20 |
-
Conv2d(in_c, out_c, kernel, groups=groups, stride=stride, padding=padding, bias=False),
|
21 |
-
BatchNorm2d(num_features=out_c),
|
22 |
-
PReLU(num_parameters=out_c)
|
23 |
-
)
|
24 |
-
|
25 |
-
def forward(self, x):
|
26 |
-
return self.layers(x)
|
27 |
-
|
28 |
-
|
29 |
-
class LinearBlock(Module):
|
30 |
-
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
|
31 |
-
super(LinearBlock, self).__init__()
|
32 |
-
self.layers = nn.Sequential(
|
33 |
-
Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False),
|
34 |
-
BatchNorm2d(num_features=out_c)
|
35 |
-
)
|
36 |
-
|
37 |
-
def forward(self, x):
|
38 |
-
return self.layers(x)
|
39 |
-
|
40 |
-
|
41 |
-
class DepthWise(Module):
|
42 |
-
def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1):
|
43 |
-
super(DepthWise, self).__init__()
|
44 |
-
self.residual = residual
|
45 |
-
self.layers = nn.Sequential(
|
46 |
-
ConvBlock(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)),
|
47 |
-
ConvBlock(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride),
|
48 |
-
LinearBlock(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
|
49 |
-
)
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
short_cut = None
|
53 |
-
if self.residual:
|
54 |
-
short_cut = x
|
55 |
-
x = self.layers(x)
|
56 |
-
if self.residual:
|
57 |
-
output = short_cut + x
|
58 |
-
else:
|
59 |
-
output = x
|
60 |
-
return output
|
61 |
-
|
62 |
-
|
63 |
-
class Residual(Module):
|
64 |
-
def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)):
|
65 |
-
super(Residual, self).__init__()
|
66 |
-
modules = []
|
67 |
-
for _ in range(num_block):
|
68 |
-
modules.append(DepthWise(c, c, True, kernel, stride, padding, groups))
|
69 |
-
self.layers = Sequential(*modules)
|
70 |
-
|
71 |
-
def forward(self, x):
|
72 |
-
return self.layers(x)
|
73 |
-
|
74 |
-
|
75 |
-
class GDC(Module):
|
76 |
-
def __init__(self, embedding_size):
|
77 |
-
super(GDC, self).__init__()
|
78 |
-
self.layers = nn.Sequential(
|
79 |
-
LinearBlock(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)),
|
80 |
-
Flatten(),
|
81 |
-
Linear(512, embedding_size, bias=False),
|
82 |
-
BatchNorm1d(embedding_size))
|
83 |
-
|
84 |
-
def forward(self, x):
|
85 |
-
return self.layers(x)
|
86 |
-
|
87 |
-
|
88 |
-
class MobileFaceNet(Module):
|
89 |
-
def __init__(self, fp16=False, num_features=512):
|
90 |
-
super(MobileFaceNet, self).__init__()
|
91 |
-
scale = 2
|
92 |
-
self.fp16 = fp16
|
93 |
-
self.layers = nn.Sequential(
|
94 |
-
ConvBlock(3, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1)),
|
95 |
-
ConvBlock(64 * scale, 64 * scale, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64),
|
96 |
-
DepthWise(64 * scale, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128),
|
97 |
-
Residual(64 * scale, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
98 |
-
DepthWise(64 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256),
|
99 |
-
Residual(128 * scale, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
100 |
-
DepthWise(128 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512),
|
101 |
-
Residual(128 * scale, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
102 |
-
)
|
103 |
-
self.conv_sep = ConvBlock(128 * scale, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0))
|
104 |
-
self.features = GDC(num_features)
|
105 |
-
self._initialize_weights()
|
106 |
-
|
107 |
-
def _initialize_weights(self):
|
108 |
-
for m in self.modules():
|
109 |
-
if isinstance(m, nn.Conv2d):
|
110 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
111 |
-
if m.bias is not None:
|
112 |
-
m.bias.data.zero_()
|
113 |
-
elif isinstance(m, nn.BatchNorm2d):
|
114 |
-
m.weight.data.fill_(1)
|
115 |
-
m.bias.data.zero_()
|
116 |
-
elif isinstance(m, nn.Linear):
|
117 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
118 |
-
if m.bias is not None:
|
119 |
-
m.bias.data.zero_()
|
120 |
-
|
121 |
-
def forward(self, x):
|
122 |
-
with torch.cuda.amp.autocast(self.fp16):
|
123 |
-
x = self.layers(x)
|
124 |
-
x = self.conv_sep(x.float() if self.fp16 else x)
|
125 |
-
x = self.features(x)
|
126 |
-
return x
|
127 |
-
|
128 |
-
|
129 |
-
def get_mbf(fp16, num_features):
|
130 |
-
return MobileFaceNet(fp16, num_features)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/arcface_torch/configs/3millions.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
from easydict import EasyDict as edict
|
2 |
-
|
3 |
-
# configs for test speed
|
4 |
-
|
5 |
-
config = edict()
|
6 |
-
config.loss = "arcface"
|
7 |
-
config.network = "r50"
|
8 |
-
config.resume = False
|
9 |
-
config.output = None
|
10 |
-
config.embedding_size = 512
|
11 |
-
config.sample_rate = 1.0
|
12 |
-
config.fp16 = True
|
13 |
-
config.momentum = 0.9
|
14 |
-
config.weight_decay = 5e-4
|
15 |
-
config.batch_size = 128
|
16 |
-
config.lr = 0.1 # batch size is 512
|
17 |
-
|
18 |
-
config.rec = "synthetic"
|
19 |
-
config.num_classes = 300 * 10000
|
20 |
-
config.num_epoch = 30
|
21 |
-
config.warmup_epoch = -1
|
22 |
-
config.decay_epoch = [10, 16, 22]
|
23 |
-
config.val_targets = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/arcface_torch/configs/3millions_pfc.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
from easydict import EasyDict as edict
|
2 |
-
|
3 |
-
# configs for test speed
|
4 |
-
|
5 |
-
config = edict()
|
6 |
-
config.loss = "arcface"
|
7 |
-
config.network = "r50"
|
8 |
-
config.resume = False
|
9 |
-
config.output = None
|
10 |
-
config.embedding_size = 512
|
11 |
-
config.sample_rate = 0.1
|
12 |
-
config.fp16 = True
|
13 |
-
config.momentum = 0.9
|
14 |
-
config.weight_decay = 5e-4
|
15 |
-
config.batch_size = 128
|
16 |
-
config.lr = 0.1 # batch size is 512
|
17 |
-
|
18 |
-
config.rec = "synthetic"
|
19 |
-
config.num_classes = 300 * 10000
|
20 |
-
config.num_epoch = 30
|
21 |
-
config.warmup_epoch = -1
|
22 |
-
config.decay_epoch = [10, 16, 22]
|
23 |
-
config.val_targets = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/face3d/models/arcface_torch/configs/__init__.py
DELETED
File without changes
|