Spaces:
Paused
Paused
Update videoretalking/third_part/GPEN/face_detect/facemodels/retinaface.py
Browse files
videoretalking/third_part/GPEN/face_detect/facemodels/retinaface.py
CHANGED
@@ -1,127 +1,127 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torchvision.models.detection.backbone_utils as backbone_utils
|
4 |
-
import torchvision.models._utils as _utils
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from collections import OrderedDict
|
7 |
-
|
8 |
-
from face_detect.facemodels.net import MobileNetV1 as MobileNetV1
|
9 |
-
from face_detect.facemodels.net import FPN as FPN
|
10 |
-
from face_detect.facemodels.net import SSH as SSH
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
class ClassHead(nn.Module):
|
15 |
-
def __init__(self,inchannels=512,num_anchors=3):
|
16 |
-
super(ClassHead,self).__init__()
|
17 |
-
self.num_anchors = num_anchors
|
18 |
-
self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0)
|
19 |
-
|
20 |
-
def forward(self,x):
|
21 |
-
out = self.conv1x1(x)
|
22 |
-
out = out.permute(0,2,3,1).contiguous()
|
23 |
-
|
24 |
-
return out.view(out.shape[0], -1, 2)
|
25 |
-
|
26 |
-
class BboxHead(nn.Module):
|
27 |
-
def __init__(self,inchannels=512,num_anchors=3):
|
28 |
-
super(BboxHead,self).__init__()
|
29 |
-
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0)
|
30 |
-
|
31 |
-
def forward(self,x):
|
32 |
-
out = self.conv1x1(x)
|
33 |
-
out = out.permute(0,2,3,1).contiguous()
|
34 |
-
|
35 |
-
return out.view(out.shape[0], -1, 4)
|
36 |
-
|
37 |
-
class LandmarkHead(nn.Module):
|
38 |
-
def __init__(self,inchannels=512,num_anchors=3):
|
39 |
-
super(LandmarkHead,self).__init__()
|
40 |
-
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0)
|
41 |
-
|
42 |
-
def forward(self,x):
|
43 |
-
out = self.conv1x1(x)
|
44 |
-
out = out.permute(0,2,3,1).contiguous()
|
45 |
-
|
46 |
-
return out.view(out.shape[0], -1, 10)
|
47 |
-
|
48 |
-
class RetinaFace(nn.Module):
|
49 |
-
def __init__(self, cfg = None, phase = 'train'):
|
50 |
-
"""
|
51 |
-
:param cfg: Network related settings.
|
52 |
-
:param phase: train or test.
|
53 |
-
"""
|
54 |
-
super(RetinaFace,self).__init__()
|
55 |
-
self.phase = phase
|
56 |
-
backbone = None
|
57 |
-
if cfg['name'] == 'mobilenet0.25':
|
58 |
-
backbone = MobileNetV1()
|
59 |
-
if cfg['pretrain']:
|
60 |
-
checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
|
61 |
-
from collections import OrderedDict
|
62 |
-
new_state_dict = OrderedDict()
|
63 |
-
for k, v in checkpoint['state_dict'].items():
|
64 |
-
name = k[7:] # remove module.
|
65 |
-
new_state_dict[name] = v
|
66 |
-
# load params
|
67 |
-
backbone.load_state_dict(new_state_dict)
|
68 |
-
elif cfg['name'] == 'Resnet50':
|
69 |
-
import torchvision.models as models
|
70 |
-
backbone = models.resnet50(pretrained=cfg['pretrain'])
|
71 |
-
|
72 |
-
self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers'])
|
73 |
-
in_channels_stage2 = cfg['in_channel']
|
74 |
-
in_channels_list = [
|
75 |
-
in_channels_stage2 * 2,
|
76 |
-
in_channels_stage2 * 4,
|
77 |
-
in_channels_stage2 * 8,
|
78 |
-
]
|
79 |
-
out_channels = cfg['out_channel']
|
80 |
-
self.fpn = FPN(in_channels_list,out_channels)
|
81 |
-
self.ssh1 = SSH(out_channels, out_channels)
|
82 |
-
self.ssh2 = SSH(out_channels, out_channels)
|
83 |
-
self.ssh3 = SSH(out_channels, out_channels)
|
84 |
-
|
85 |
-
self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
|
86 |
-
self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
|
87 |
-
self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
|
88 |
-
|
89 |
-
def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
90 |
-
classhead = nn.ModuleList()
|
91 |
-
for i in range(fpn_num):
|
92 |
-
classhead.append(ClassHead(inchannels,anchor_num))
|
93 |
-
return classhead
|
94 |
-
|
95 |
-
def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
96 |
-
bboxhead = nn.ModuleList()
|
97 |
-
for i in range(fpn_num):
|
98 |
-
bboxhead.append(BboxHead(inchannels,anchor_num))
|
99 |
-
return bboxhead
|
100 |
-
|
101 |
-
def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
102 |
-
landmarkhead = nn.ModuleList()
|
103 |
-
for i in range(fpn_num):
|
104 |
-
landmarkhead.append(LandmarkHead(inchannels,anchor_num))
|
105 |
-
return landmarkhead
|
106 |
-
|
107 |
-
def forward(self,inputs):
|
108 |
-
out = self.body(inputs)
|
109 |
-
|
110 |
-
# FPN
|
111 |
-
fpn = self.fpn(out)
|
112 |
-
|
113 |
-
# SSH
|
114 |
-
feature1 = self.ssh1(fpn[0])
|
115 |
-
feature2 = self.ssh2(fpn[1])
|
116 |
-
feature3 = self.ssh3(fpn[2])
|
117 |
-
features = [feature1, feature2, feature3]
|
118 |
-
|
119 |
-
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
|
120 |
-
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)],dim=1)
|
121 |
-
ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1)
|
122 |
-
|
123 |
-
if self.phase == 'train':
|
124 |
-
output = (bbox_regressions, classifications, ldm_regressions)
|
125 |
-
else:
|
126 |
-
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
|
127 |
return output
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models.detection.backbone_utils as backbone_utils
|
4 |
+
import torchvision.models._utils as _utils
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from collections import OrderedDict
|
7 |
+
|
8 |
+
from videoretalking.third_part.GPEN.face_detect.facemodels.net import MobileNetV1 as MobileNetV1
|
9 |
+
from videoretalking.third_part.GPEN.face_detect.facemodels.net import FPN as FPN
|
10 |
+
from videoretalking.third_part.GPEN.face_detect.facemodels.net import SSH as SSH
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
class ClassHead(nn.Module):
|
15 |
+
def __init__(self,inchannels=512,num_anchors=3):
|
16 |
+
super(ClassHead,self).__init__()
|
17 |
+
self.num_anchors = num_anchors
|
18 |
+
self.conv1x1 = nn.Conv2d(inchannels,self.num_anchors*2,kernel_size=(1,1),stride=1,padding=0)
|
19 |
+
|
20 |
+
def forward(self,x):
|
21 |
+
out = self.conv1x1(x)
|
22 |
+
out = out.permute(0,2,3,1).contiguous()
|
23 |
+
|
24 |
+
return out.view(out.shape[0], -1, 2)
|
25 |
+
|
26 |
+
class BboxHead(nn.Module):
|
27 |
+
def __init__(self,inchannels=512,num_anchors=3):
|
28 |
+
super(BboxHead,self).__init__()
|
29 |
+
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*4,kernel_size=(1,1),stride=1,padding=0)
|
30 |
+
|
31 |
+
def forward(self,x):
|
32 |
+
out = self.conv1x1(x)
|
33 |
+
out = out.permute(0,2,3,1).contiguous()
|
34 |
+
|
35 |
+
return out.view(out.shape[0], -1, 4)
|
36 |
+
|
37 |
+
class LandmarkHead(nn.Module):
|
38 |
+
def __init__(self,inchannels=512,num_anchors=3):
|
39 |
+
super(LandmarkHead,self).__init__()
|
40 |
+
self.conv1x1 = nn.Conv2d(inchannels,num_anchors*10,kernel_size=(1,1),stride=1,padding=0)
|
41 |
+
|
42 |
+
def forward(self,x):
|
43 |
+
out = self.conv1x1(x)
|
44 |
+
out = out.permute(0,2,3,1).contiguous()
|
45 |
+
|
46 |
+
return out.view(out.shape[0], -1, 10)
|
47 |
+
|
48 |
+
class RetinaFace(nn.Module):
|
49 |
+
def __init__(self, cfg = None, phase = 'train'):
|
50 |
+
"""
|
51 |
+
:param cfg: Network related settings.
|
52 |
+
:param phase: train or test.
|
53 |
+
"""
|
54 |
+
super(RetinaFace,self).__init__()
|
55 |
+
self.phase = phase
|
56 |
+
backbone = None
|
57 |
+
if cfg['name'] == 'mobilenet0.25':
|
58 |
+
backbone = MobileNetV1()
|
59 |
+
if cfg['pretrain']:
|
60 |
+
checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
|
61 |
+
from collections import OrderedDict
|
62 |
+
new_state_dict = OrderedDict()
|
63 |
+
for k, v in checkpoint['state_dict'].items():
|
64 |
+
name = k[7:] # remove module.
|
65 |
+
new_state_dict[name] = v
|
66 |
+
# load params
|
67 |
+
backbone.load_state_dict(new_state_dict)
|
68 |
+
elif cfg['name'] == 'Resnet50':
|
69 |
+
import torchvision.models as models
|
70 |
+
backbone = models.resnet50(pretrained=cfg['pretrain'])
|
71 |
+
|
72 |
+
self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers'])
|
73 |
+
in_channels_stage2 = cfg['in_channel']
|
74 |
+
in_channels_list = [
|
75 |
+
in_channels_stage2 * 2,
|
76 |
+
in_channels_stage2 * 4,
|
77 |
+
in_channels_stage2 * 8,
|
78 |
+
]
|
79 |
+
out_channels = cfg['out_channel']
|
80 |
+
self.fpn = FPN(in_channels_list,out_channels)
|
81 |
+
self.ssh1 = SSH(out_channels, out_channels)
|
82 |
+
self.ssh2 = SSH(out_channels, out_channels)
|
83 |
+
self.ssh3 = SSH(out_channels, out_channels)
|
84 |
+
|
85 |
+
self.ClassHead = self._make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
|
86 |
+
self.BboxHead = self._make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
|
87 |
+
self.LandmarkHead = self._make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
|
88 |
+
|
89 |
+
def _make_class_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
90 |
+
classhead = nn.ModuleList()
|
91 |
+
for i in range(fpn_num):
|
92 |
+
classhead.append(ClassHead(inchannels,anchor_num))
|
93 |
+
return classhead
|
94 |
+
|
95 |
+
def _make_bbox_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
96 |
+
bboxhead = nn.ModuleList()
|
97 |
+
for i in range(fpn_num):
|
98 |
+
bboxhead.append(BboxHead(inchannels,anchor_num))
|
99 |
+
return bboxhead
|
100 |
+
|
101 |
+
def _make_landmark_head(self,fpn_num=3,inchannels=64,anchor_num=2):
|
102 |
+
landmarkhead = nn.ModuleList()
|
103 |
+
for i in range(fpn_num):
|
104 |
+
landmarkhead.append(LandmarkHead(inchannels,anchor_num))
|
105 |
+
return landmarkhead
|
106 |
+
|
107 |
+
def forward(self,inputs):
|
108 |
+
out = self.body(inputs)
|
109 |
+
|
110 |
+
# FPN
|
111 |
+
fpn = self.fpn(out)
|
112 |
+
|
113 |
+
# SSH
|
114 |
+
feature1 = self.ssh1(fpn[0])
|
115 |
+
feature2 = self.ssh2(fpn[1])
|
116 |
+
feature3 = self.ssh3(fpn[2])
|
117 |
+
features = [feature1, feature2, feature3]
|
118 |
+
|
119 |
+
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
|
120 |
+
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)],dim=1)
|
121 |
+
ldm_regressions = torch.cat([self.LandmarkHead[i](feature) for i, feature in enumerate(features)], dim=1)
|
122 |
+
|
123 |
+
if self.phase == 'train':
|
124 |
+
output = (bbox_regressions, classifications, ldm_regressions)
|
125 |
+
else:
|
126 |
+
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
|
127 |
return output
|