Spaces:
Sleeping
Sleeping
Update videoretalking/models/DNet.py
Browse files- videoretalking/models/DNet.py +118 -118
videoretalking/models/DNet.py
CHANGED
@@ -1,118 +1,118 @@
|
|
1 |
-
# TODO
|
2 |
-
import functools
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
import torch.nn.functional as F
|
8 |
-
|
9 |
-
from utils import flow_util
|
10 |
-
from models.base_blocks import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder
|
11 |
-
|
12 |
-
# DNet
|
13 |
-
class DNet(nn.Module):
|
14 |
-
def __init__(self):
|
15 |
-
super(DNet, self).__init__()
|
16 |
-
self.mapping_net = MappingNet()
|
17 |
-
self.warpping_net = WarpingNet()
|
18 |
-
self.editing_net = EditingNet()
|
19 |
-
|
20 |
-
def forward(self, input_image, driving_source, stage=None):
|
21 |
-
if stage == 'warp':
|
22 |
-
descriptor = self.mapping_net(driving_source)
|
23 |
-
output = self.warpping_net(input_image, descriptor)
|
24 |
-
else:
|
25 |
-
descriptor = self.mapping_net(driving_source)
|
26 |
-
output = self.warpping_net(input_image, descriptor)
|
27 |
-
output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
|
28 |
-
return output
|
29 |
-
|
30 |
-
class MappingNet(nn.Module):
|
31 |
-
def __init__(self, coeff_nc=73, descriptor_nc=256, layer=3):
|
32 |
-
super( MappingNet, self).__init__()
|
33 |
-
|
34 |
-
self.layer = layer
|
35 |
-
nonlinearity = nn.LeakyReLU(0.1)
|
36 |
-
|
37 |
-
self.first = nn.Sequential(
|
38 |
-
torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))
|
39 |
-
|
40 |
-
for i in range(layer):
|
41 |
-
net = nn.Sequential(nonlinearity,
|
42 |
-
torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
|
43 |
-
setattr(self, 'encoder' + str(i), net)
|
44 |
-
|
45 |
-
self.pooling = nn.AdaptiveAvgPool1d(1)
|
46 |
-
self.output_nc = descriptor_nc
|
47 |
-
|
48 |
-
def forward(self, input_3dmm):
|
49 |
-
out = self.first(input_3dmm)
|
50 |
-
for i in range(self.layer):
|
51 |
-
model = getattr(self, 'encoder' + str(i))
|
52 |
-
out = model(out) + out[:,:,3:-3]
|
53 |
-
out = self.pooling(out)
|
54 |
-
return out
|
55 |
-
|
56 |
-
class WarpingNet(nn.Module):
|
57 |
-
def __init__(
|
58 |
-
self,
|
59 |
-
image_nc=3,
|
60 |
-
descriptor_nc=256,
|
61 |
-
base_nc=32,
|
62 |
-
max_nc=256,
|
63 |
-
encoder_layer=5,
|
64 |
-
decoder_layer=3,
|
65 |
-
use_spect=False
|
66 |
-
):
|
67 |
-
super( WarpingNet, self).__init__()
|
68 |
-
|
69 |
-
nonlinearity = nn.LeakyReLU(0.1)
|
70 |
-
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
71 |
-
kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
72 |
-
|
73 |
-
self.descriptor_nc = descriptor_nc
|
74 |
-
self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
|
75 |
-
max_nc, encoder_layer, decoder_layer, **kwargs)
|
76 |
-
|
77 |
-
self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc),
|
78 |
-
nonlinearity,
|
79 |
-
nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))
|
80 |
-
|
81 |
-
self.pool = nn.AdaptiveAvgPool2d(1)
|
82 |
-
|
83 |
-
def forward(self, input_image, descriptor):
|
84 |
-
final_output={}
|
85 |
-
output = self.hourglass(input_image, descriptor)
|
86 |
-
final_output['flow_field'] = self.flow_out(output)
|
87 |
-
|
88 |
-
deformation = flow_util.convert_flow_to_deformation(final_output['flow_field'])
|
89 |
-
final_output['warp_image'] = flow_util.warp_image(input_image, deformation)
|
90 |
-
return final_output
|
91 |
-
|
92 |
-
|
93 |
-
class EditingNet(nn.Module):
|
94 |
-
def __init__(
|
95 |
-
self,
|
96 |
-
image_nc=3,
|
97 |
-
descriptor_nc=256,
|
98 |
-
layer=3,
|
99 |
-
base_nc=64,
|
100 |
-
max_nc=256,
|
101 |
-
num_res_blocks=2,
|
102 |
-
use_spect=False):
|
103 |
-
super(EditingNet, self).__init__()
|
104 |
-
|
105 |
-
nonlinearity = nn.LeakyReLU(0.1)
|
106 |
-
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
107 |
-
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
108 |
-
self.descriptor_nc = descriptor_nc
|
109 |
-
|
110 |
-
# encoder part
|
111 |
-
self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
|
112 |
-
self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
113 |
-
|
114 |
-
def forward(self, input_image, warp_image, descriptor):
|
115 |
-
x = torch.cat([input_image, warp_image], 1)
|
116 |
-
x = self.encoder(x)
|
117 |
-
gen_image = self.decoder(x, descriptor)
|
118 |
-
return gen_image
|
|
|
1 |
+
# TODO
|
2 |
+
import functools
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from videoretalking.utils import flow_util
|
10 |
+
from videoretalking.models.base_blocks import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder
|
11 |
+
|
12 |
+
# DNet
|
13 |
+
class DNet(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super(DNet, self).__init__()
|
16 |
+
self.mapping_net = MappingNet()
|
17 |
+
self.warpping_net = WarpingNet()
|
18 |
+
self.editing_net = EditingNet()
|
19 |
+
|
20 |
+
def forward(self, input_image, driving_source, stage=None):
|
21 |
+
if stage == 'warp':
|
22 |
+
descriptor = self.mapping_net(driving_source)
|
23 |
+
output = self.warpping_net(input_image, descriptor)
|
24 |
+
else:
|
25 |
+
descriptor = self.mapping_net(driving_source)
|
26 |
+
output = self.warpping_net(input_image, descriptor)
|
27 |
+
output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
|
28 |
+
return output
|
29 |
+
|
30 |
+
class MappingNet(nn.Module):
|
31 |
+
def __init__(self, coeff_nc=73, descriptor_nc=256, layer=3):
|
32 |
+
super( MappingNet, self).__init__()
|
33 |
+
|
34 |
+
self.layer = layer
|
35 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
36 |
+
|
37 |
+
self.first = nn.Sequential(
|
38 |
+
torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))
|
39 |
+
|
40 |
+
for i in range(layer):
|
41 |
+
net = nn.Sequential(nonlinearity,
|
42 |
+
torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
|
43 |
+
setattr(self, 'encoder' + str(i), net)
|
44 |
+
|
45 |
+
self.pooling = nn.AdaptiveAvgPool1d(1)
|
46 |
+
self.output_nc = descriptor_nc
|
47 |
+
|
48 |
+
def forward(self, input_3dmm):
|
49 |
+
out = self.first(input_3dmm)
|
50 |
+
for i in range(self.layer):
|
51 |
+
model = getattr(self, 'encoder' + str(i))
|
52 |
+
out = model(out) + out[:,:,3:-3]
|
53 |
+
out = self.pooling(out)
|
54 |
+
return out
|
55 |
+
|
56 |
+
class WarpingNet(nn.Module):
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
image_nc=3,
|
60 |
+
descriptor_nc=256,
|
61 |
+
base_nc=32,
|
62 |
+
max_nc=256,
|
63 |
+
encoder_layer=5,
|
64 |
+
decoder_layer=3,
|
65 |
+
use_spect=False
|
66 |
+
):
|
67 |
+
super( WarpingNet, self).__init__()
|
68 |
+
|
69 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
70 |
+
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
71 |
+
kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
72 |
+
|
73 |
+
self.descriptor_nc = descriptor_nc
|
74 |
+
self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
|
75 |
+
max_nc, encoder_layer, decoder_layer, **kwargs)
|
76 |
+
|
77 |
+
self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc),
|
78 |
+
nonlinearity,
|
79 |
+
nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))
|
80 |
+
|
81 |
+
self.pool = nn.AdaptiveAvgPool2d(1)
|
82 |
+
|
83 |
+
def forward(self, input_image, descriptor):
|
84 |
+
final_output={}
|
85 |
+
output = self.hourglass(input_image, descriptor)
|
86 |
+
final_output['flow_field'] = self.flow_out(output)
|
87 |
+
|
88 |
+
deformation = flow_util.convert_flow_to_deformation(final_output['flow_field'])
|
89 |
+
final_output['warp_image'] = flow_util.warp_image(input_image, deformation)
|
90 |
+
return final_output
|
91 |
+
|
92 |
+
|
93 |
+
class EditingNet(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
image_nc=3,
|
97 |
+
descriptor_nc=256,
|
98 |
+
layer=3,
|
99 |
+
base_nc=64,
|
100 |
+
max_nc=256,
|
101 |
+
num_res_blocks=2,
|
102 |
+
use_spect=False):
|
103 |
+
super(EditingNet, self).__init__()
|
104 |
+
|
105 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
106 |
+
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
107 |
+
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
108 |
+
self.descriptor_nc = descriptor_nc
|
109 |
+
|
110 |
+
# encoder part
|
111 |
+
self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
|
112 |
+
self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
113 |
+
|
114 |
+
def forward(self, input_image, warp_image, descriptor):
|
115 |
+
x = torch.cat([input_image, warp_image], 1)
|
116 |
+
x = self.encoder(x)
|
117 |
+
gen_image = self.decoder(x, descriptor)
|
118 |
+
return gen_image
|