Spaces:
Paused
Paused
import os | |
import cv2 | |
import time | |
import glob | |
import argparse | |
import scipy | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from itertools import cycle | |
from torch.multiprocessing import Pool, Process, set_start_method | |
""" | |
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) | |
author: lzhbrian (https://lzhbrian.me) | |
date: 2020.1.5 | |
note: code is heavily borrowed from | |
https://github.com/NVlabs/ffhq-dataset | |
http://dlib.net/face_landmark_detection.py.html | |
requirements: | |
apt install cmake | |
conda install Pillow numpy scipy | |
pip install dlib | |
# download face landmark model from: | |
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
""" | |
import numpy as np | |
from PIL import Image | |
import dlib | |
class Croper: | |
def __init__(self, path_of_lm): | |
# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
self.predictor = dlib.shape_predictor(path_of_lm) | |
def get_landmark(self, img_np): | |
"""get landmark with dlib | |
:return: np.array shape=(68, 2) | |
""" | |
detector = dlib.get_frontal_face_detector() | |
dets = detector(img_np, 1) | |
if len(dets) == 0: | |
return None | |
d = dets[0] | |
# Get the landmarks/parts for the face in box d. | |
shape = self.predictor(img_np, d) | |
t = list(shape.parts()) | |
a = [] | |
for tt in t: | |
a.append([tt.x, tt.y]) | |
lm = np.array(a) | |
return lm | |
def align_face(self, img, lm, output_size=1024): | |
""" | |
:param filepath: str | |
:return: PIL Image | |
""" | |
lm_chin = lm[0: 17] # left-right | |
lm_eyebrow_left = lm[17: 22] # left-right | |
lm_eyebrow_right = lm[22: 27] # left-right | |
lm_nose = lm[27: 31] # top-down | |
lm_nostrils = lm[31: 36] # top-down | |
lm_eye_left = lm[36: 42] # left-clockwise | |
lm_eye_right = lm[42: 48] # left-clockwise | |
lm_mouth_outer = lm[48: 60] # left-clockwise | |
lm_mouth_inner = lm[60: 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
x /= np.hypot(*x) | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
qsize = np.hypot(*x) * 2 | |
# Shrink. | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), | |
min(crop[3] + border, img.size[1])) | |
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
quad -= crop[0:2] | |
# Transform. | |
quad = (quad + 0.5).flatten() | |
lx = max(min(quad[0], quad[2]), 0) | |
ly = max(min(quad[1], quad[7]), 0) | |
rx = min(max(quad[4], quad[6]), img.size[0]) | |
ry = min(max(quad[3], quad[5]), img.size[0]) | |
# Save aligned image. | |
return crop, [lx, ly, rx, ry] | |
def crop(self, img_np_list, xsize=512): # first frame for all video | |
idx = 0 | |
while idx < len(img_np_list)//2 : # TODO | |
img_np = img_np_list[idx] | |
lm = self.get_landmark(img_np) | |
if lm is not None: | |
break # can detect face | |
idx += 1 | |
if lm is None: | |
return None | |
crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) | |
clx, cly, crx, cry = crop | |
lx, ly, rx, ry = quad | |
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) | |
for _i in range(len(img_np_list)): | |
_inp = img_np_list[_i] | |
_inp = _inp[cly:cry, clx:crx] | |
_inp = _inp[ly:ry, lx:rx] | |
img_np_list[_i] = _inp | |
return img_np_list, crop, quad | |