Spaces:
Paused
Paused
import PIL | |
import PIL.Image | |
import dlib | |
import face_alignment | |
import numpy as np | |
import scipy | |
import scipy.ndimage | |
import skimage.io as io | |
import torch | |
from PIL import Image | |
from scipy.ndimage import gaussian_filter1d | |
from tqdm import tqdm | |
# from configs import paths_config | |
def paste_image(inverse_transform, img, orig_image): | |
pasted_image = orig_image.copy().convert('RGBA') | |
projected = img.convert('RGBA').transform(orig_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR) | |
pasted_image.paste(projected, (0, 0), mask=projected) | |
return pasted_image | |
def get_landmark(filepath, predictor, detector=None, fa=None): | |
"""get landmark with dlib | |
:return: np.array shape=(68, 2) | |
""" | |
if fa is not None: | |
image = io.imread(filepath) | |
lms, _, bboxes = fa.get_landmarks(image, return_bboxes=True) | |
if len(lms) == 0: | |
return None | |
return lms[0] | |
if detector is None: | |
detector = dlib.get_frontal_face_detector() | |
if isinstance(filepath, PIL.Image.Image): | |
img = np.array(filepath) | |
else: | |
img = dlib.load_rgb_image(filepath) | |
dets = detector(img) | |
for k, d in enumerate(dets): | |
shape = predictor(img, d) | |
break | |
else: | |
return None | |
t = list(shape.parts()) | |
a = [] | |
for tt in t: | |
a.append([tt.x, tt.y]) | |
lm = np.array(a) | |
return lm | |
def align_face(filepath_or_image, predictor, output_size, detector=None, | |
enable_padding=False, scale=1.0): | |
""" | |
:param filepath: str | |
:return: PIL Image | |
""" | |
c, x, y = compute_transform(filepath_or_image, predictor, detector=detector, | |
scale=scale) | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
img = crop_image(filepath_or_image, output_size, quad, enable_padding=enable_padding) | |
# Return aligned image. | |
return img | |
def crop_image(filepath, output_size, quad, enable_padding=False): | |
x = (quad[3] - quad[1]) / 2 | |
qsize = np.hypot(*x) * 2 | |
# read image | |
if isinstance(filepath, PIL.Image.Image): | |
img = filepath | |
else: | |
img = PIL.Image.open(filepath) | |
transform_size = output_size | |
# Shrink. | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), | |
min(crop[3] + border, img.size[1])) | |
if (crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]): | |
img = img.crop(crop) | |
quad -= crop[0:2] | |
# Pad. | |
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), | |
max(pad[3] - img.size[1] + border, 0)) | |
if enable_padding and max(pad) > border - 4: | |
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
h, w, _ = img.shape | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), | |
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) | |
blur = qsize * 0.02 | |
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
quad += pad[:2] | |
# Transform. | |
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | |
if output_size < transform_size: | |
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | |
return img | |
def compute_transform(lm, predictor, detector=None, scale=1.0, fa=None): | |
# lm = get_landmark(filepath, predictor, detector, fa) | |
# if lm is None: | |
# raise Exception(f'Did not detect any faces in image: {filepath}') | |
lm_chin = lm[0: 17] # left-right | |
lm_eyebrow_left = lm[17: 22] # left-right | |
lm_eyebrow_right = lm[22: 27] # left-right | |
lm_nose = lm[27: 31] # top-down | |
lm_nostrils = lm[31: 36] # top-down | |
lm_eye_left = lm[36: 42] # left-clockwise | |
lm_eye_right = lm[42: 48] # left-clockwise | |
lm_mouth_outer = lm[48: 60] # left-clockwise | |
lm_mouth_inner = lm[60: 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
x /= np.hypot(*x) | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
x *= scale | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
return c, x, y | |
def crop_faces(IMAGE_SIZE, files, scale, center_sigma=0.0, xy_sigma=0.0, use_fa=False, fa=None): | |
if use_fa: | |
if fa == None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=True, device=device) | |
predictor = None | |
detector = None | |
else: | |
fa = None | |
predictor = None | |
detector = None | |
# predictor = dlib.shape_predictor(paths_config.shape_predictor_path) | |
# detector = dlib.get_frontal_face_detector() | |
cs, xs, ys = [], [], [] | |
for lm, pil in tqdm(files): | |
c, x, y = compute_transform(lm, predictor, detector=detector, | |
scale=scale, fa=fa) | |
cs.append(c) | |
xs.append(x) | |
ys.append(y) | |
cs = np.stack(cs) | |
xs = np.stack(xs) | |
ys = np.stack(ys) | |
if center_sigma != 0: | |
cs = gaussian_filter1d(cs, sigma=center_sigma, axis=0) | |
if xy_sigma != 0: | |
xs = gaussian_filter1d(xs, sigma=xy_sigma, axis=0) | |
ys = gaussian_filter1d(ys, sigma=xy_sigma, axis=0) | |
quads = np.stack([cs - xs - ys, cs - xs + ys, cs + xs + ys, cs + xs - ys], axis=1) | |
quads = list(quads) | |
crops, orig_images = crop_faces_by_quads(IMAGE_SIZE, files, quads) | |
return crops, orig_images, quads | |
def crop_faces_by_quads(IMAGE_SIZE, files, quads): | |
orig_images = [] | |
crops = [] | |
for quad, (_, path) in tqdm(zip(quads, files), total=len(quads)): | |
crop = crop_image(path, IMAGE_SIZE, quad.copy()) | |
orig_image = path # Image.open(path) | |
orig_images.append(orig_image) | |
crops.append(crop) | |
return crops, orig_images | |
def calc_alignment_coefficients(pa, pb): | |
matrix = [] | |
for p1, p2 in zip(pa, pb): | |
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]]) | |
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]]) | |
a = np.matrix(matrix, dtype=float) | |
b = np.array(pb).reshape(8) | |
res = np.dot(np.linalg.inv(a.T * a) * a.T, b) | |
return np.array(res).reshape(8) |