Spaces:
Paused
Paused
from flask import Flask, request, jsonify, send_from_directory | |
import torch | |
import shutil | |
import os | |
import sys | |
from src.utils.preprocess import CropAndExtract | |
from src.test_audio2coeff import Audio2Coeff | |
from src.facerender.animate import AnimateFromCoeff | |
from src.generate_batch import get_data | |
from src.generate_facerender_batch import get_facerender_data | |
import tempfile | |
from openai import OpenAI | |
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings | |
# from flask_cors import CORS, cross_origin | |
import uuid | |
import time | |
from PIL import Image | |
import moviepy.editor as mp | |
import requests | |
import json | |
import pickle | |
# from videoretalking import inference_function | |
# import base64 | |
# import gfpgan_enhancer | |
# from time import strftime | |
# from argparse import Namespace | |
# from argparse import ArgumentParser | |
# from flask_swagger_ui import get_swaggerui_blueprint | |
# import threading | |
# import elevenlabs | |
# from src.utils.init_path import init_path | |
class AnimationConfig: | |
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded): | |
self.driven_audio = driven_audio_path | |
self.source_image = source_image_path | |
self.ref_eyeblink = None | |
self.ref_pose = ref_pose_video_path | |
self.checkpoint_dir = './checkpoints' | |
self.result_dir = result_folder | |
self.pose_style = pose_style | |
self.batch_size = 8 | |
self.expression_scale = expression_scale | |
# self.input_yaw = [-15,0,10,5,0,-10,-5,0, 5,10] | |
self.input_yaw = None | |
self.input_pitch = None | |
self.input_roll = None | |
self.enhancer = enhancer | |
self.background_enhancer = None | |
self.cpu = False | |
self.face3dvis = False | |
self.still = still | |
self.preprocess = preprocess | |
self.verbose = False | |
self.old_version = False | |
self.net_recon = 'resnet50' | |
self.init_path = None | |
self.use_last_fc = False | |
self.bfm_folder = './checkpoints/BFM_Fitting/' | |
self.bfm_model = 'BFM_model_front.mat' | |
self.focal = 1015. | |
self.center = 112. | |
self.camera_d = 10. | |
self.z_near = 5. | |
self.z_far = 15. | |
self.device = 'cuda' | |
self.image_hardcoded = image_hardcoded | |
app = Flask(__name__) | |
# CORS(app) | |
TEMP_DIR = None | |
start_time = None | |
VIDEO_DIRECTORY = None | |
preprocessed_data = None | |
args = None | |
unique_id = None | |
app.config['temp_response'] = None | |
app.config['generation_thread'] = None | |
app.config['text_prompt'] = None | |
app.config['final_video_path'] = None | |
app.config['final_video_duration'] = None | |
# Global paths | |
dir_path = os.path.dirname(os.path.realpath(__file__)) | |
current_root_path = dir_path | |
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') | |
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') | |
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') | |
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') | |
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') | |
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') | |
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') | |
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') | |
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') | |
# Function for running the actual task (using preprocessed data) | |
def process_chunk(audio_chunk, args): | |
print("Entered Process Chunk Function") | |
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint | |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting | |
global free_view_checkpoint | |
if args.preprocess == 'full': | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') | |
else: | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') | |
# first_coeff_path = preprocessed_data["first_coeff_path"] | |
# crop_pic_path = preprocessed_data["crop_pic_path"] | |
# crop_info_path = "/home/user/app/preprocess_data/crop_info.json" | |
# with open(crop_info_path , "rb") as f: | |
# crop_info = json.load(f) | |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, args.device) | |
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(args.source_image, first_frame_dir, args.preprocess, source_image_flag=True) | |
print(f"Loaded existing preprocessed data") | |
print("first_coeff_path",first_coeff_path) | |
print("crop_pic_path",crop_pic_path) | |
print("crop_info",crop_info) | |
torch.cuda.empty_cache() | |
if args.ref_pose is not None: | |
ref_pose_videoname = os.path.splitext(os.path.split(args.ref_pose)[-1])[0] | |
ref_pose_frame_dir = os.path.join(args.result_dir, ref_pose_videoname) | |
os.makedirs(ref_pose_frame_dir, exist_ok=True) | |
ref_pose_coeff_path, _, _ = preprocess_model.generate(args.ref_pose, ref_pose_frame_dir) | |
print('ref_eyeblink_coeff_path',ref_pose_coeff_path) | |
else: | |
ref_pose_coeff_path = None | |
print('ref_eyeblink_coeff_path',ref_pose_coeff_path) | |
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still) | |
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
audio2exp_checkpoint, audio2exp_yaml_path, | |
wav2lip_checkpoint, args.device) | |
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path) | |
# Further processing with animate_from_coeff using the coeff_path | |
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
facerender_yaml_path, args.device) | |
torch.cuda.empty_cache() | |
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk, | |
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll, | |
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) | |
torch.cuda.empty_cache() | |
print("Will Enter Animation") | |
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info, | |
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) | |
# video_clip = mp.VideoFileClip(temp_file_path) | |
# duration = video_clip.duration | |
app.config['temp_response'] = base64_video | |
app.config['final_video_path'] = temp_file_path | |
# app.config['final_video_duration'] = duration | |
torch.cuda.empty_cache() | |
return base64_video, temp_file_path | |
def create_temp_dir(): | |
return tempfile.TemporaryDirectory() | |
def save_uploaded_file(file, filename,TEMP_DIR): | |
unique_filename = str(uuid.uuid4()) + "_" + filename | |
file_path = os.path.join(TEMP_DIR.name, unique_filename) | |
file.save(file_path) | |
return file_path | |
client = OpenAI(api_key="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") | |
def openai_chat_avatar(text_prompt): | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[{"role": "system", "content": "Ensure answers are concise, human-like, and clear while maintaining quality. Use the fewest possible words, avoiding unnecessary articles, prepositions, and adjectives. Responses should be short but still address the question thoroughly without being verbose.Keep them to one sentence only"}, | |
{"role": "user", "content": f"Hi! I need help with something. {text_prompt}"}, | |
], | |
max_tokens = len(text_prompt) + 300 # Use the length of the input text | |
# temperature=0.3, | |
# stop=["Translate:", "Text:"] | |
) | |
return response | |
def custom_cleanup(temp_dir, exclude_dir): | |
# Iterate over the files and directories in TEMP_DIR | |
for filename in os.listdir(temp_dir): | |
file_path = os.path.join(temp_dir, filename) | |
# Skip the directory we want to exclude | |
if file_path != exclude_dir: | |
try: | |
if os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
else: | |
os.remove(file_path) | |
print(f"Deleted: {file_path}") | |
except Exception as e: | |
print(f"Failed to delete {file_path}. Reason: {e}") | |
def generate_audio(voice_cloning, voice_gender, text_prompt): | |
print("generate_audio") | |
if voice_cloning == 'no': | |
if voice_gender == 'male': | |
voice = 'echo' | |
print('Entering Audio creation using elevenlabs') | |
set_api_key('92e149985ea2732b4359c74346c3daee') | |
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
print('Audio file saved using elevenlabs') | |
else: | |
voice = 'nova' | |
print('Entering Audio creation using whisper') | |
response = client.audio.speech.create(model="tts-1-hd", | |
voice=voice, | |
input = text_prompt) | |
print('Audio created using whisper') | |
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
driven_audio_path = temp_file.name | |
response.write_to_file(driven_audio_path) | |
print('Audio file saved using whisper') | |
elif voice_cloning == 'yes': | |
set_api_key('92e149985ea2732b4359c74346c3daee') | |
# user_voice_path = '/home/user/app/images/AUDIO-2024-10-04-09-51-34.m4a' | |
# voice = clone(name = "User Cloned Voice", | |
# files = [user_voice_path] ) | |
# DeZH4ash9IU9gUcNjVXh | |
voice = Voice(voice_id="KR6RRu8YgfxrhYocGuOc",name="Sachin",settings=VoiceSettings( | |
stability=0.71, similarity_boost=0.9, style=0.0, use_speaker_boost=True),) | |
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
# audio_duration = get_audio_duration(driven_audio_path) | |
# print('Total Audio Duration in seconds',audio_duration) | |
return driven_audio_path | |
def run_preprocessing(args): | |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting | |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
fixed_temp_dir = "/home/user/app/preprocess_data/" | |
os.makedirs(fixed_temp_dir, exist_ok=True) | |
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl") | |
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes": | |
print("Loading preprocessed data...") | |
with open(preprocessed_data_path, "rb") as f: | |
preprocessed_data = pickle.load(f) | |
print("Loaded existing preprocessed data from:", preprocessed_data_path) | |
return preprocessed_data | |
def generate_video(): | |
global start_time, VIDEO_DIRECTORY | |
start_time = time.time() | |
global TEMP_DIR | |
TEMP_DIR = create_temp_dir() | |
print('request:',request.method) | |
try: | |
if request.method == 'POST': | |
# source_image = request.files['source_image'] | |
image_path = '/home/user/app/images/shared_image1.png' | |
source_image = Image.open(image_path) | |
text_prompt = request.form['text_prompt'] | |
print('Input text prompt: ',text_prompt) | |
text_prompt = text_prompt.strip() | |
if not text_prompt: | |
return jsonify({'error': 'Input text prompt cannot be blank'}), 400 | |
voice_cloning = request.form.get('voice_cloning', 'no') | |
image_hardcoded = request.form.get('image_hardcoded', 'yes') | |
chat_model_used = request.form.get('chat_model_used', 'openai') | |
target_language = request.form.get('target_language', 'original_text') | |
print('target_language',target_language) | |
pose_style = int(request.form.get('pose_style', 1)) | |
expression_scale = float(request.form.get('expression_scale', 1)) | |
enhancer = request.form.get('enhancer', None) | |
voice_gender = request.form.get('voice_gender', 'male') | |
still_str = request.form.get('still', 'False') | |
still = still_str.lower() == 'false' | |
print('still', still) | |
preprocess = request.form.get('preprocess', 'crop') | |
print('preprocess selected: ',preprocess) | |
ref_pose_video = request.files.get('ref_pose', None) | |
if chat_model_used == 'openai': | |
response = openai_chat_avatar(text_prompt) | |
text_prompt = response.choices[0].message.content.strip() | |
app.config['text_prompt'] = text_prompt | |
print('Final output text prompt using openai: ',text_prompt) | |
else: | |
app.config['text_prompt'] = text_prompt | |
print('Final output text prompt using openai: ',text_prompt) | |
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR) | |
print(source_image_path) | |
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt) | |
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) | |
result_folder = os.path.join(save_dir, "results") | |
os.makedirs(result_folder, exist_ok=True) | |
ref_pose_video_path = None | |
if ref_pose_video: | |
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
ref_pose_video_path = temp_file.name | |
ref_pose_video.save(ref_pose_video_path) | |
print('ref_pose_video_path',ref_pose_video_path) | |
except Exception as e: | |
app.logger.error(f"An error occurred: {e}") | |
return "An error occurred", 500 | |
# Example of using the class with some hypothetical paths | |
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded) | |
if torch.cuda.is_available() and not args.cpu: | |
args.device = "cuda" | |
else: | |
args.device = "cpu" | |
try: | |
# preprocessed_data = run_preprocessing(args) | |
base64_video, temp_file_path = process_chunk(driven_audio_path, args) | |
final_video_path = app.config['final_video_path'] | |
print('final_video_path',final_video_path) | |
if temp_file_path and temp_file_path.endswith('.mp4'): | |
filename = os.path.basename(temp_file_path) | |
os.makedirs('videos', exist_ok=True) | |
VIDEO_DIRECTORY = os.path.abspath('videos') | |
print("VIDEO_DIRECTORY: ",VIDEO_DIRECTORY) | |
destination_path = os.path.join(VIDEO_DIRECTORY, filename) | |
shutil.copy(temp_file_path, destination_path) | |
video_url = f"/videos/{filename}" | |
if final_video_path and os.path.exists(final_video_path): | |
os.remove(final_video_path) | |
print("Deleted video file:", final_video_path) | |
preprocess_dir = os.path.join("/tmp", "preprocess_data") | |
custom_cleanup(TEMP_DIR.name, preprocess_dir) | |
print("Temporary files cleaned up, but preprocess_data is retained.") | |
end_time = time.time() | |
time_taken = end_time - start_time | |
print(f"Time taken for endpoint: {time_taken:.2f} seconds") | |
return jsonify({ | |
"message": "Video processed and saved successfully.", | |
"video_url": video_url, | |
"time_taken": time_taken, | |
"status": "success" | |
}) | |
else: | |
return jsonify({ | |
"message": "Failed to process the video.", | |
"status": "error" | |
}), 500 | |
except Exception as e: | |
return jsonify({'status': 'error', 'message': str(e)}), 500 | |
def serve_video(filename): | |
global VIDEO_DIRECTORY | |
return send_from_directory(VIDEO_DIRECTORY, filename, as_attachment=False) | |
def health_status(): | |
response = {"online": "true"} | |
return jsonify(response) | |
if __name__ == '__main__': | |
app.run(debug=True) |