aiavatartest / src /test_audio2coeff.py
Spanicin's picture
Upload 141 files
04c1e71 verified
raw
history blame
4.89 kB
import os
import torch
import numpy as np
from scipy.io import savemat, loadmat
from yacs.config import CfgNode as CN
from scipy.signal import savgol_filter
from src.audio2pose_models.audio2pose import Audio2Pose
from src.audio2exp_models.networks import SimpleWrapperV2
from src.audio2exp_models.audio2exp import Audio2Exp
def load_cpk(checkpoint_path, model=None, optimizer=None, device="cpu"):
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
if model is not None:
model.load_state_dict(checkpoint['model'])
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
return checkpoint['epoch']
class Audio2Coeff():
def __init__(self, audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, device):
#load config
fcfg_pose = open(audio2pose_yaml_path)
cfg_pose = CN.load_cfg(fcfg_pose)
cfg_pose.freeze()
fcfg_exp = open(audio2exp_yaml_path)
cfg_exp = CN.load_cfg(fcfg_exp)
cfg_exp.freeze()
# load audio2pose_model
self.audio2pose_model = Audio2Pose(cfg_pose, wav2lip_checkpoint, device=device)
self.audio2pose_model = self.audio2pose_model.to(device)
self.audio2pose_model.eval()
for param in self.audio2pose_model.parameters():
param.requires_grad = False
try:
load_cpk(audio2pose_checkpoint, model=self.audio2pose_model, device=device)
except:
raise Exception("Failed in loading audio2pose_checkpoint")
# load audio2exp_model
netG = SimpleWrapperV2()
netG = netG.to(device)
for param in netG.parameters():
netG.requires_grad = False
netG.eval()
try:
load_cpk(audio2exp_checkpoint, model=netG, device=device)
except:
raise Exception("Failed in loading audio2exp_checkpoint")
self.audio2exp_model = Audio2Exp(netG, cfg_exp, device=device, prepare_training_loss=False)
self.audio2exp_model = self.audio2exp_model.to(device)
for param in self.audio2exp_model.parameters():
param.requires_grad = False
self.audio2exp_model.eval()
self.device = device
def generate(self, batch, coeff_save_dir, pose_style, ref_pose_coeff_path=None):
with torch.no_grad():
#test
results_dict_exp= self.audio2exp_model.test(batch)
exp_pred = results_dict_exp['exp_coeff_pred'] #bs T 64
#for class_id in range(1):
#class_id = 0#(i+10)%45
#class_id = random.randint(0,46) #46 styles can be selected
batch['class'] = torch.LongTensor([pose_style]).to(self.device)
results_dict_pose = self.audio2pose_model.test(batch)
pose_pred = results_dict_pose['pose_pred'] #bs T 6
pose_len = pose_pred.shape[1]
if pose_len<13:
pose_len = int((pose_len-1)/2)*2+1
pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), pose_len, 2, axis=1)).to(self.device)
else:
pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), 13, 2, axis=1)).to(self.device)
coeffs_pred = torch.cat((exp_pred, pose_pred), dim=-1) #bs T 70
coeffs_pred_numpy = coeffs_pred[0].clone().detach().cpu().numpy()
if ref_pose_coeff_path is not None:
coeffs_pred_numpy = self.using_refpose(coeffs_pred_numpy, ref_pose_coeff_path)
savemat(os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name'])),
{'coeff_3dmm': coeffs_pred_numpy})
return os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name']))
def using_refpose(self, coeffs_pred_numpy, ref_pose_coeff_path):
num_frames = coeffs_pred_numpy.shape[0]
refpose_coeff_dict = loadmat(ref_pose_coeff_path)
refpose_coeff = refpose_coeff_dict['coeff_3dmm'][:,64:70]
refpose_num_frames = refpose_coeff.shape[0]
if refpose_num_frames<num_frames:
div = num_frames//refpose_num_frames
re = num_frames%refpose_num_frames
refpose_coeff_list = [refpose_coeff for i in range(div)]
refpose_coeff_list.append(refpose_coeff[:re, :])
refpose_coeff = np.concatenate(refpose_coeff_list, axis=0)
coeffs_pred_numpy[:, 64:70] = refpose_coeff[:num_frames, :]
return coeffs_pred_numpy