RAG_PDF_Chatbot / app.py
Sourudra's picture
Update app.py
84039f2 verified
import gradio as gr
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
# Step 1: Load and Split Documents
def load_documents(pdf_files):
loaders = [PyPDFLoader(file.name) for file in pdf_files]
docs = []
for loader in loaders:
docs.extend(loader.load())
# Split documents into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
return text_splitter.split_documents(docs)
# Step 2: Create Vector Database
def create_vector_db(splits):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = FAISS.from_documents(splits, embeddings)
return vector_db
# Step 3: Initialize Conversational Retrieval Chain
def initialize_qa_chain(vector_db):
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_chain_type(
retriever=vector_db.as_retriever(),
chain_type="stuff",
memory=memory
)
return qa_chain
# Step 4: Handle Conversation
def handle_conversation(qa_chain, query, history):
result = qa_chain({"question": query, "chat_history": history})
response = result["answer"]
history.append((query, response))
return history, history
# Gradio UI
def demo():
vector_db = gr.State()
qa_chain = gr.State()
with gr.Blocks() as interface:
gr.Markdown("<h1><center>CPU-Friendly RAG Chatbot</center></h1>")
with gr.Tab("Step 1: Upload PDFs"):
pdf_files = gr.File(file_types=[".pdf"], label="Upload PDF Files", file_count="multiple")
create_db_button = gr.Button("Create Vector Database")
db_status = gr.Textbox(label="Database Status", value="Not created", interactive=False)
with gr.Tab("Step 2: Chat"):
chatbot = gr.Chatbot()
query = gr.Textbox(label="Your Query")
send_button = gr.Button("Ask")
# Create database
create_db_button.click(
fn=lambda files: (create_vector_db(load_documents(files)), "Database created successfully!"),
inputs=[pdf_files],
outputs=[vector_db, db_status]
)
# Initialize QA Chain
create_db_button.click(
fn=lambda db: initialize_qa_chain(db),
inputs=[vector_db],
outputs=[qa_chain]
)
# Handle conversation
send_button.click(
fn=handle_conversation,
inputs=[qa_chain, query, chatbot],
outputs=[chatbot, chatbot]
)
return interface
# Launch the app
if __name__ == "__main__":
demo().launch()