Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -28,6 +28,20 @@ uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_c
|
|
28 |
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
29 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
30 |
camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if choice == 'Caption':
|
32 |
#st.subheader("Detection")
|
33 |
if st.session_state["photo"]=="done":
|
@@ -37,20 +51,6 @@ if choice == 'Caption':
|
|
37 |
our_image= load_image(camera_photo)
|
38 |
elif uploaded_photo==None and camera_photo==None:
|
39 |
our_image= load_image('image.jpg')
|
40 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
-
model.to(device)
|
42 |
-
max_length = 16
|
43 |
-
num_beams = 4
|
44 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
45 |
-
def predict_step(our_image):
|
46 |
-
if our_image.mode != "RGB":
|
47 |
-
our_image = our_image.convert(mode="RGB")
|
48 |
-
pixel_values = feature_extractor(images=our_image, return_tensors="pt").pixel_values
|
49 |
-
pixel_values = pixel_values.to(device)
|
50 |
-
output_ids = model.generate(pixel_values, **gen_kwargs)
|
51 |
-
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
52 |
-
preds = [pred.strip() for pred in preds]
|
53 |
-
return preds
|
54 |
st.success(predict_step(our_image))
|
55 |
elif choice == 'About':
|
56 |
st.subheader("About Image Captioning App")
|
|
|
28 |
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
29 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
30 |
camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
model.to(device)
|
33 |
+
max_length = 16
|
34 |
+
num_beams = 4
|
35 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
36 |
+
def predict_step(our_image):
|
37 |
+
if our_image.mode != "RGB":
|
38 |
+
our_image = our_image.convert(mode="RGB")
|
39 |
+
pixel_values = feature_extractor(images=our_image, return_tensors="pt").pixel_values
|
40 |
+
pixel_values = pixel_values.to(device)
|
41 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
42 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
43 |
+
preds = [pred.strip() for pred in preds]
|
44 |
+
return preds
|
45 |
if choice == 'Caption':
|
46 |
#st.subheader("Detection")
|
47 |
if st.session_state["photo"]=="done":
|
|
|
51 |
our_image= load_image(camera_photo)
|
52 |
elif uploaded_photo==None and camera_photo==None:
|
53 |
our_image= load_image('image.jpg')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
st.success(predict_step(our_image))
|
55 |
elif choice == 'About':
|
56 |
st.subheader("About Image Captioning App")
|