Update app.py
Browse files
app.py
CHANGED
@@ -74,6 +74,7 @@ def bansum(text):
|
|
74 |
st.title("NLP APPLICATION")
|
75 |
#@st.cache_resource(experimental_allow_widgets=True)
|
76 |
def main():
|
|
|
77 |
#global tokenizer, model
|
78 |
#tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
79 |
#model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|
@@ -106,28 +107,34 @@ def main():
|
|
106 |
img = Image.open(uploaded_photo)
|
107 |
img = img.save("img.png")
|
108 |
img = cv2.imread("img.png")
|
|
|
109 |
if st.button("Content Type: Bangla"):
|
110 |
text = pytesseract.image_to_string(img, lang="ben")
|
|
|
111 |
if st.button("Content Type: English"):
|
112 |
text=pytesseract.image_to_string(img)
|
|
|
113 |
#st.success(text)
|
114 |
elif camera_photo:
|
115 |
img = Image.open(camera_photo)
|
116 |
img = img.save("img.png")
|
117 |
img = cv2.imread("img.png")
|
118 |
#text = pytesseract.image_to_string(img) if st.checkbox("Bangla") else pytesseract.image_to_string(img, lang="ben")
|
|
|
119 |
if st.button("Content Type: Bangla"):
|
120 |
text = pytesseract.image_to_string(img, lang="ben")
|
|
|
121 |
if st.button("Content Type: English"):
|
122 |
text=pytesseract.image_to_string(img)
|
|
|
123 |
st.success(text)
|
124 |
elif uploaded_photo==None and camera_photo==None:
|
125 |
text = message
|
126 |
|
127 |
if st.checkbox("Mark for Text Summarization"):
|
128 |
-
if
|
129 |
bansum(text)
|
130 |
-
|
131 |
engsum(text)
|
132 |
|
133 |
if st.checkbox("English Text Generation"):
|
@@ -141,7 +148,6 @@ def main():
|
|
141 |
if isinstance(out, list) and out[0].get("generated_text"):
|
142 |
text_output = out[0]["generated_text"]
|
143 |
st.success(text_output)
|
144 |
-
|
145 |
-
st.cache_data.clear()
|
146 |
if __name__ == '__main__':
|
147 |
main()
|
|
|
74 |
st.title("NLP APPLICATION")
|
75 |
#@st.cache_resource(experimental_allow_widgets=True)
|
76 |
def main():
|
77 |
+
s=0
|
78 |
#global tokenizer, model
|
79 |
#tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
80 |
#model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
|
|
|
107 |
img = Image.open(uploaded_photo)
|
108 |
img = img.save("img.png")
|
109 |
img = cv2.imread("img.png")
|
110 |
+
st.text("Press the content type:")
|
111 |
if st.button("Content Type: Bangla"):
|
112 |
text = pytesseract.image_to_string(img, lang="ben")
|
113 |
+
s=1
|
114 |
if st.button("Content Type: English"):
|
115 |
text=pytesseract.image_to_string(img)
|
116 |
+
s=0
|
117 |
#st.success(text)
|
118 |
elif camera_photo:
|
119 |
img = Image.open(camera_photo)
|
120 |
img = img.save("img.png")
|
121 |
img = cv2.imread("img.png")
|
122 |
#text = pytesseract.image_to_string(img) if st.checkbox("Bangla") else pytesseract.image_to_string(img, lang="ben")
|
123 |
+
st.text("Press the content type:")
|
124 |
if st.button("Content Type: Bangla"):
|
125 |
text = pytesseract.image_to_string(img, lang="ben")
|
126 |
+
s=1
|
127 |
if st.button("Content Type: English"):
|
128 |
text=pytesseract.image_to_string(img)
|
129 |
+
s=0
|
130 |
st.success(text)
|
131 |
elif uploaded_photo==None and camera_photo==None:
|
132 |
text = message
|
133 |
|
134 |
if st.checkbox("Mark for Text Summarization"):
|
135 |
+
if s==1:
|
136 |
bansum(text)
|
137 |
+
else:
|
138 |
engsum(text)
|
139 |
|
140 |
if st.checkbox("English Text Generation"):
|
|
|
148 |
if isinstance(out, list) and out[0].get("generated_text"):
|
149 |
text_output = out[0]["generated_text"]
|
150 |
st.success(text_output)
|
151 |
+
|
|
|
152 |
if __name__ == '__main__':
|
153 |
main()
|