|  |  | 
					
						
						|  | import gradio as gr | 
					
						
						|  | import clip,torch | 
					
						
						|  | import requests | 
					
						
						|  | from PIL import Image | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | from io import BytesIO | 
					
						
						|  | import urllib.request | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from selenium import webdriver | 
					
						
						|  | from selenium.webdriver.common.by import By | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def test2(): | 
					
						
						|  | driver = webdriver.Chrome() | 
					
						
						|  |  | 
					
						
						|  | driver.get('https://www.hiphoper.com/') | 
					
						
						|  |  | 
					
						
						|  | imgs = driver.find_elements(By.CSS_SELECTOR,'img.card__image') | 
					
						
						|  | result = [] | 
					
						
						|  |  | 
					
						
						|  | for img in imgs: | 
					
						
						|  |  | 
					
						
						|  | result.append(img.get_attribute('src')) | 
					
						
						|  |  | 
					
						
						|  | driver.quit() | 
					
						
						|  |  | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def similarity(v1,v2,type=0): | 
					
						
						|  | if type ==0: | 
					
						
						|  | v1_norm = np.linalg.norm(v1) | 
					
						
						|  | v2_norm = np.linalg.norm(v2) | 
					
						
						|  |  | 
					
						
						|  | return np.dot(v1,v2)/(v1_norm*v2_norm) | 
					
						
						|  | else: | 
					
						
						|  | return np.sqrt(np.sum((v1-v2)**2)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def democlip(url ,texts): | 
					
						
						|  |  | 
					
						
						|  | if url =='': | 
					
						
						|  | print('SYSTEM : alternative url') | 
					
						
						|  | url = 'https://i.pinimg.com/564x/47/b5/5d/47b55de6f168db65cf46d7d1f0451b64.jpg' | 
					
						
						|  | else: | 
					
						
						|  | print('SYSTEM : URL progressed') | 
					
						
						|  |  | 
					
						
						|  | if texts =='': | 
					
						
						|  | texts ='black desk room girl flower' | 
					
						
						|  | else: | 
					
						
						|  | print('SYSTEM : TEXT progressed') | 
					
						
						|  |  | 
					
						
						|  | response = requests.get(url) | 
					
						
						|  | image_bytes = response.content | 
					
						
						|  | texts = list(texts.split(' ')) | 
					
						
						|  |  | 
					
						
						|  | """Gets the embedding values for the image.""" | 
					
						
						|  | device = "cuda" if torch.cuda.is_available() else "cpu" | 
					
						
						|  | model, preprocess = clip.load("ViT-B/32", device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | text_token = clip.tokenize(texts).to(device) | 
					
						
						|  | image = preprocess(Image.open(BytesIO(image_bytes))).unsqueeze(0).to(device) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | image_features = model.encode_image(image) | 
					
						
						|  | text_features = model.encode_text(text_token) | 
					
						
						|  |  | 
					
						
						|  | logits_per_image, logits_per_text = model(image,text_token) | 
					
						
						|  | probs = logits_per_image.softmax(dim=-1).cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | word_dict = {'image':{},'text':{}} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i,text in enumerate(texts): | 
					
						
						|  | word_dict['text'][text] = text_features[i].cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i,img in enumerate(image): | 
					
						
						|  | word_dict['image'][img] = image_features[i].cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tu,ts,tv = torch.pca_lowrank(text_features,center=True) | 
					
						
						|  |  | 
					
						
						|  | text_pca = torch.matmul(text_features,tv[:,:3]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | imgu,imgs,imgv = torch.pca_lowrank(image_features,center=True) | 
					
						
						|  |  | 
					
						
						|  | image_pca = torch.matmul(image_features,imgv[:,:3]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print(text_pca.shape,image_pca.shape) | 
					
						
						|  | return text_pca,image_pca | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def PCA(img_emb, text_emb,n_components = 3): | 
					
						
						|  | x = torch.tensor([[1.,2.,3.,7.],[4.,5.,3.,6.],[7.,9.,8.,9.],[11.,13.,17.,11.]]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | print(x.shape) | 
					
						
						|  | u,s,v = torch.pca_lowrank(x,q=None, center=False,niter=2) | 
					
						
						|  |  | 
					
						
						|  | u.shape,s.shape,v.shape | 
					
						
						|  |  | 
					
						
						|  | u@torch.diag(s)@v.T | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | demo = gr.Interface( | 
					
						
						|  | fn=democlip, | 
					
						
						|  |  | 
					
						
						|  | inputs = ['text',gr.Textbox(label='input prediction')], | 
					
						
						|  |  | 
					
						
						|  | outputs = [gr.Textbox(label='text pca Box'),gr.Textbox(label='image pca Box')] | 
					
						
						|  | ) | 
					
						
						|  | demo.launch() |