Spaces:
Sleeping
Sleeping
Anne Marthe Sophie Ngo Bibinbe
commited on
Commit
·
a4c368e
1
Parent(s):
dbff38f
completed
Browse files- .gradio/certificate.pem +31 -0
- app.py +233 -233
- requirements.txt +1 -0
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
app.py
CHANGED
|
@@ -1,251 +1,251 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
| 11 |
-
|
| 12 |
-
if torch.cuda.is_available():
|
| 13 |
-
|
| 14 |
-
else:
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 18 |
-
pipe = pipe.to(device)
|
| 19 |
-
|
| 20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
MAX_IMAGE_SIZE = 1024
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
-
def infer(
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
examples = [
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
-
css = """
|
| 61 |
-
#col-container {
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
with gr.Blocks(css=css) as demo:
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
|
| 153 |
-
if __name__ == "__main__":
|
| 154 |
-
|
| 155 |
|
| 156 |
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
#
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
# """
|
| 193 |
|
| 194 |
-
# output_video = "output.mp4" # Placeholder for processed video
|
| 195 |
-
# output_file = "output.txt" # Placeholder for generated file
|
| 196 |
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
|
| 199 |
-
#
|
|
|
|
| 200 |
|
| 201 |
-
#
|
| 202 |
-
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
| 206 |
|
| 207 |
-
#
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
|
| 216 |
|
| 217 |
-
#
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
# '''
|
| 221 |
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
|
| 231 |
-
#
|
| 232 |
-
|
| 233 |
|
| 234 |
-
#
|
| 235 |
-
|
| 236 |
-
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
#
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
#
|
| 250 |
-
|
| 251 |
-
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import numpy as np
|
| 3 |
+
# import random
|
| 4 |
+
|
| 5 |
+
# # import spaces #[uncomment to use ZeroGPU]
|
| 6 |
+
# from diffusers import DiffusionPipeline
|
| 7 |
+
# import torch
|
| 8 |
+
|
| 9 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
| 11 |
+
|
| 12 |
+
# if torch.cuda.is_available():
|
| 13 |
+
# torch_dtype = torch.float16
|
| 14 |
+
# else:
|
| 15 |
+
# torch_dtype = torch.float32
|
| 16 |
+
|
| 17 |
+
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 18 |
+
# pipe = pipe.to(device)
|
| 19 |
+
|
| 20 |
+
# MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
+
# MAX_IMAGE_SIZE = 1024
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# # @spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
+
# def infer(
|
| 26 |
+
# prompt,
|
| 27 |
+
# negative_prompt,
|
| 28 |
+
# seed,
|
| 29 |
+
# randomize_seed,
|
| 30 |
+
# width,
|
| 31 |
+
# height,
|
| 32 |
+
# guidance_scale,
|
| 33 |
+
# num_inference_steps,
|
| 34 |
+
# progress=gr.Progress(track_tqdm=True),
|
| 35 |
+
# ):
|
| 36 |
+
# if randomize_seed:
|
| 37 |
+
# seed = random.randint(0, MAX_SEED)
|
| 38 |
+
|
| 39 |
+
# generator = torch.Generator().manual_seed(seed)
|
| 40 |
+
|
| 41 |
+
# image = pipe(
|
| 42 |
+
# prompt=prompt,
|
| 43 |
+
# negative_prompt=negative_prompt,
|
| 44 |
+
# guidance_scale=guidance_scale,
|
| 45 |
+
# num_inference_steps=num_inference_steps,
|
| 46 |
+
# width=width,
|
| 47 |
+
# height=height,
|
| 48 |
+
# generator=generator,
|
| 49 |
+
# ).images[0]
|
| 50 |
+
|
| 51 |
+
# return image, seed
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# examples = [
|
| 55 |
+
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
+
# "An astronaut riding a green horse",
|
| 57 |
+
# "A delicious ceviche cheesecake slice",
|
| 58 |
+
# ]
|
| 59 |
+
|
| 60 |
+
# css = """
|
| 61 |
+
# #col-container {
|
| 62 |
+
# margin: 0 auto;
|
| 63 |
+
# max-width: 640px;
|
| 64 |
+
# }
|
| 65 |
+
# """
|
| 66 |
+
|
| 67 |
+
# with gr.Blocks(css=css) as demo:
|
| 68 |
+
# with gr.Column(elem_id="col-container"):
|
| 69 |
+
# gr.Markdown(" # Text-to-Image Gradio Template")
|
| 70 |
+
|
| 71 |
+
# with gr.Row():
|
| 72 |
+
# prompt = gr.Text(
|
| 73 |
+
# label="Prompt",
|
| 74 |
+
# show_label=False,
|
| 75 |
+
# max_lines=1,
|
| 76 |
+
# placeholder="Enter your prompt",
|
| 77 |
+
# container=False,
|
| 78 |
+
# )
|
| 79 |
+
|
| 80 |
+
# run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
+
|
| 82 |
+
# result = gr.Image(label="Result", show_label=False)
|
| 83 |
+
|
| 84 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
+
# negative_prompt = gr.Text(
|
| 86 |
+
# label="Negative prompt",
|
| 87 |
+
# max_lines=1,
|
| 88 |
+
# placeholder="Enter a negative prompt",
|
| 89 |
+
# visible=False,
|
| 90 |
+
# )
|
| 91 |
+
|
| 92 |
+
# seed = gr.Slider(
|
| 93 |
+
# label="Seed",
|
| 94 |
+
# minimum=0,
|
| 95 |
+
# maximum=MAX_SEED,
|
| 96 |
+
# step=1,
|
| 97 |
+
# value=0,
|
| 98 |
+
# )
|
| 99 |
+
|
| 100 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
+
|
| 102 |
+
# with gr.Row():
|
| 103 |
+
# width = gr.Slider(
|
| 104 |
+
# label="Width",
|
| 105 |
+
# minimum=256,
|
| 106 |
+
# maximum=MAX_IMAGE_SIZE,
|
| 107 |
+
# step=32,
|
| 108 |
+
# value=1024, # Replace with defaults that work for your model
|
| 109 |
+
# )
|
| 110 |
+
|
| 111 |
+
# height = gr.Slider(
|
| 112 |
+
# label="Height",
|
| 113 |
+
# minimum=256,
|
| 114 |
+
# maximum=MAX_IMAGE_SIZE,
|
| 115 |
+
# step=32,
|
| 116 |
+
# value=1024, # Replace with defaults that work for your model
|
| 117 |
+
# )
|
| 118 |
+
|
| 119 |
+
# with gr.Row():
|
| 120 |
+
# guidance_scale = gr.Slider(
|
| 121 |
+
# label="Guidance scale",
|
| 122 |
+
# minimum=0.0,
|
| 123 |
+
# maximum=10.0,
|
| 124 |
+
# step=0.1,
|
| 125 |
+
# value=0.0, # Replace with defaults that work for your model
|
| 126 |
+
# )
|
| 127 |
+
|
| 128 |
+
# num_inference_steps = gr.Slider(
|
| 129 |
+
# label="Number of inference steps",
|
| 130 |
+
# minimum=1,
|
| 131 |
+
# maximum=50,
|
| 132 |
+
# step=1,
|
| 133 |
+
# value=2, # Replace with defaults that work for your model
|
| 134 |
+
# )
|
| 135 |
+
|
| 136 |
+
# gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
+
# gr.on(
|
| 138 |
+
# triggers=[run_button.click, prompt.submit],
|
| 139 |
+
# fn=infer,
|
| 140 |
+
# inputs=[
|
| 141 |
+
# prompt,
|
| 142 |
+
# negative_prompt,
|
| 143 |
+
# seed,
|
| 144 |
+
# randomize_seed,
|
| 145 |
+
# width,
|
| 146 |
+
# height,
|
| 147 |
+
# guidance_scale,
|
| 148 |
+
# num_inference_steps,
|
| 149 |
+
# ],
|
| 150 |
+
# outputs=[result, seed],
|
| 151 |
+
# )
|
| 152 |
|
| 153 |
+
# if __name__ == "__main__":
|
| 154 |
+
# demo.launch(share=True)
|
| 155 |
|
| 156 |
|
| 157 |
|
| 158 |
+
import gradio as gr
|
| 159 |
+
import shutil
|
| 160 |
+
import os
|
| 161 |
+
import subprocess
|
| 162 |
+
import sys
|
| 163 |
+
# Run the .bat file before launching the app
|
| 164 |
+
try:
|
| 165 |
+
import PromptTrack
|
| 166 |
+
except ImportError:
|
| 167 |
+
print("PromptTrack not found. Installing...")
|
| 168 |
+
subprocess.run([sys.executable, "-m", "pip", "install",
|
| 169 |
+
"--index-url", "https://test.pypi.org/simple/",
|
| 170 |
+
"--extra-index-url", "https://pypi.org/simple/",
|
| 171 |
+
"PromptTrack"], check=True)
|
| 172 |
+
subprocess.run([sys.executable, "-m", "pip", "install",
|
| 173 |
+
"--no-deps", "bytetracker"], check=True)
|
| 174 |
+
import PromptTrack # Retry import after installation
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
from PromptTrack import PromptTracker
|
| 178 |
+
tracker = PromptTracker()
|
| 179 |
+
def process_video(video_path, prompt):
|
| 180 |
+
detection_threshold=0.3
|
| 181 |
+
track_thresh=0.4
|
| 182 |
+
match_thresh=1
|
| 183 |
+
max_time_lost=float("inf")
|
| 184 |
+
nbr_frames_fixing=800
|
| 185 |
+
output_video = video_path.split('mp4')[0]+"_with_id.mp4" # Placeholder for processed video
|
| 186 |
+
output_file = video_path.split('mp4')[0]+"_mot_.json" # Tracking result
|
| 187 |
+
output_file_2 = video_path.split('mp4')[0]+"_object_detection.json" # detection results
|
| 188 |
+
video_file = video_path
|
| 189 |
+
tracker.detect_objects(video_file, prompt=prompt, nms_threshold=0.8, detection_threshold=detection_threshold, detector="OWL-VITV2")
|
| 190 |
+
tracker.process_mot(video_file, fixed_parc=True, track_thresh=track_thresh, match_thresh=match_thresh, frame_rate=25, max_time_lost=max_time_lost, nbr_frames_fixing=nbr_frames_fixing)
|
| 191 |
+
tracker.read_video_with_mot(video_file, fps=25)
|
|
|
|
| 192 |
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
'''output_video = "output.mp4" # Placeholder for processed video
|
| 195 |
+
output_file = "output.txt" # Placeholder for generated file
|
| 196 |
|
| 197 |
+
'''
|
| 198 |
+
# Copy the input video to simulate processing
|
| 199 |
+
shutil.copy(video_path.name, output_video)
|
| 200 |
|
| 201 |
+
# Create an output text file with the prompt content
|
| 202 |
+
with open(output_file, "w") as f:
|
| 203 |
+
f.write(f"User Prompt: {prompt}\n")
|
| 204 |
|
| 205 |
+
return output_video, output_file
|
| 206 |
|
| 207 |
+
# Define Gradio interface
|
| 208 |
+
iface = gr.Interface(
|
| 209 |
+
fn=process_video,
|
| 210 |
+
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
|
| 211 |
+
outputs=[gr.Video(), gr.File(label="Generated File")],
|
| 212 |
+
title="Video Processing App",
|
| 213 |
+
description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
|
| 214 |
+
)
|
| 215 |
|
| 216 |
|
| 217 |
+
# Launch the app
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
iface.launch()
|
|
|
|
| 220 |
|
| 221 |
|
| 222 |
+
'''
|
| 223 |
+
import gradio as gr
|
| 224 |
+
import shutil
|
| 225 |
+
import os
|
| 226 |
|
| 227 |
+
def process_video(video, prompt):
|
| 228 |
+
output_video = "output.mp4" # Placeholder for processed video
|
| 229 |
+
output_file = "output.txt" # Placeholder for generated file
|
| 230 |
|
| 231 |
+
# Copy the input video to simulate processing
|
| 232 |
+
shutil.copy(video.name, output_video)
|
| 233 |
|
| 234 |
+
# Create an output text file with the prompt content
|
| 235 |
+
with open(output_file, "w") as f:
|
| 236 |
+
f.write(f"User Prompt: {prompt}\n")
|
| 237 |
|
| 238 |
+
return output_video, output_file
|
| 239 |
+
|
| 240 |
+
# Define Gradio interface
|
| 241 |
+
iface = gr.Interface(
|
| 242 |
+
fn=process_video,
|
| 243 |
+
inputs=[gr.File(label="Upload Video"), gr.Textbox(placeholder="Enter your prompt")],
|
| 244 |
+
outputs=[gr.Video(), gr.File(label="Generated File")],
|
| 245 |
+
title="Video Processing App",
|
| 246 |
+
description="Upload a video and enter a prompt. The app will return the processed video and a generated file."
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# Launch the app
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
iface.launch(share=True)'''
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
|
|
|
|
| 2 |
accelerate
|
| 3 |
diffusers
|
| 4 |
invisible_watermark
|
|
|
|
| 1 |
|
| 2 |
+
gradio>=4.0.0
|
| 3 |
accelerate
|
| 4 |
diffusers
|
| 5 |
invisible_watermark
|