add demo
Browse files- .gitattributes +2 -0
- .gitmodules +3 -0
- LICENSE +21 -0
- NOTICE +263 -0
- README.md +8 -6
- app.py +376 -0
- assets/NOTICE +8 -0
- assets/pexels-heyho-5998120_19mm.jpg +3 -0
- assets/pexels-itsterrymag-12639296_24mm.jpg +3 -0
- extern/ZoeDepth +1 -0
- extern/splatting-0.0.1-py3-none-any.whl +3 -0
- genwarp/GenWarp.py +546 -0
- genwarp/__init__.py +1 -0
- genwarp/models/__init__.py +4 -0
- genwarp/models/attention.py +499 -0
- genwarp/models/motion_module.py +399 -0
- genwarp/models/mutual_self_attention.py +420 -0
- genwarp/models/pose_guider.py +63 -0
- genwarp/models/resnet.py +265 -0
- genwarp/models/transformer_2d.py +409 -0
- genwarp/models/transformer_3d.py +179 -0
- genwarp/models/unet_2d_blocks.py +1087 -0
- genwarp/models/unet_2d_condition.py +1324 -0
- genwarp/models/unet_3d.py +645 -0
- genwarp/models/unet_3d_blocks.py +885 -0
- genwarp/ops.py +130 -0
- requirements.txt +14 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/*.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
extern/splatting-0.0.1-py3-none-any.whl filter=lfs diff=lfs merge=lfs -text
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "extern/ZoeDepth"]
|
2 |
+
path = extern/ZoeDepth
|
3 |
+
url = git@github.com:isl-org/ZoeDepth.git
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Sony Research Inc.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
NOTICE
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This repository contains files and parts of codes adapted or modified from thrid-party repositories under other licenses. Below are list of the reporitories. Adapted files are specified in top lines of each file.
|
2 |
+
|
3 |
+
-----------------------------
|
4 |
+
Moore-AnimateAnyone
|
5 |
+
Apache License, Version 2.0
|
6 |
+
Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
7 |
+
https://github.com/MooreThreads/Moore-AnimateAnyone
|
8 |
+
|
9 |
+
-----------------------------
|
10 |
+
magic-animate
|
11 |
+
BSD 3-Clause License
|
12 |
+
Copyright (c) Bytedance Inc.
|
13 |
+
https://github.com/magic-research/magic-animate
|
14 |
+
|
15 |
+
-----------------------------
|
16 |
+
AnimateDiff
|
17 |
+
Apache License, Version 2.0
|
18 |
+
https://github.com/guoyww/AnimateDiff
|
19 |
+
|
20 |
+
-----------------------------
|
21 |
+
Diffusers
|
22 |
+
Apache License, Version 2.0
|
23 |
+
Copyright (c) Hugging Face Inc.
|
24 |
+
https://github.com/huggingface/diffusers
|
25 |
+
|
26 |
+
|
27 |
+
================================================================================
|
28 |
+
|
29 |
+
|
30 |
+
Apache License
|
31 |
+
Version 2.0, January 2004
|
32 |
+
http://www.apache.org/licenses/
|
33 |
+
|
34 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
35 |
+
|
36 |
+
1. Definitions.
|
37 |
+
|
38 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
39 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
40 |
+
|
41 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
42 |
+
the copyright owner that is granting the License.
|
43 |
+
|
44 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
45 |
+
other entities that control, are controlled by, or are under common
|
46 |
+
control with that entity. For the purposes of this definition,
|
47 |
+
"control" means (i) the power, direct or indirect, to cause the
|
48 |
+
direction or management of such entity, whether by contract or
|
49 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
50 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
51 |
+
|
52 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
53 |
+
exercising permissions granted by this License.
|
54 |
+
|
55 |
+
"Source" form shall mean the preferred form for making modifications,
|
56 |
+
including but not limited to software source code, documentation
|
57 |
+
source, and configuration files.
|
58 |
+
|
59 |
+
"Object" form shall mean any form resulting from mechanical
|
60 |
+
transformation or translation of a Source form, including but
|
61 |
+
not limited to compiled object code, generated documentation,
|
62 |
+
and conversions to other media types.
|
63 |
+
|
64 |
+
"Work" shall mean the work of authorship, whether in Source or
|
65 |
+
Object form, made available under the License, as indicated by a
|
66 |
+
copyright notice that is included in or attached to the work
|
67 |
+
(an example is provided in the Appendix below).
|
68 |
+
|
69 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
70 |
+
form, that is based on (or derived from) the Work and for which the
|
71 |
+
editorial revisions, annotations, elaborations, or other modifications
|
72 |
+
represent, as a whole, an original work of authorship. For the purposes
|
73 |
+
of this License, Derivative Works shall not include works that remain
|
74 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
75 |
+
the Work and Derivative Works thereof.
|
76 |
+
|
77 |
+
"Contribution" shall mean any work of authorship, including
|
78 |
+
the original version of the Work and any modifications or additions
|
79 |
+
to that Work or Derivative Works thereof, that is intentionally
|
80 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
81 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
82 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
83 |
+
means any form of electronic, verbal, or written communication sent
|
84 |
+
to the Licensor or its representatives, including but not limited to
|
85 |
+
communication on electronic mailing lists, source code control systems,
|
86 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
87 |
+
Licensor for the purpose of discussing and improving the Work, but
|
88 |
+
excluding communication that is conspicuously marked or otherwise
|
89 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
90 |
+
|
91 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
92 |
+
on behalf of whom a Contribution has been received by Licensor and
|
93 |
+
subsequently incorporated within the Work.
|
94 |
+
|
95 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
96 |
+
this License, each Contributor hereby grants to You a perpetual,
|
97 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
98 |
+
copyright license to reproduce, prepare Derivative Works of,
|
99 |
+
publicly display, publicly perform, sublicense, and distribute the
|
100 |
+
Work and such Derivative Works in Source or Object form.
|
101 |
+
|
102 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
103 |
+
this License, each Contributor hereby grants to You a perpetual,
|
104 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
105 |
+
(except as stated in this section) patent license to make, have made,
|
106 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
107 |
+
where such license applies only to those patent claims licensable
|
108 |
+
by such Contributor that are necessarily infringed by their
|
109 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
110 |
+
with the Work to which such Contribution(s) was submitted. If You
|
111 |
+
institute patent litigation against any entity (including a
|
112 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
113 |
+
or a Contribution incorporated within the Work constitutes direct
|
114 |
+
or contributory patent infringement, then any patent licenses
|
115 |
+
granted to You under this License for that Work shall terminate
|
116 |
+
as of the date such litigation is filed.
|
117 |
+
|
118 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
119 |
+
Work or Derivative Works thereof in any medium, with or without
|
120 |
+
modifications, and in Source or Object form, provided that You
|
121 |
+
meet the following conditions:
|
122 |
+
|
123 |
+
(a) You must give any other recipients of the Work or
|
124 |
+
Derivative Works a copy of this License; and
|
125 |
+
|
126 |
+
(b) You must cause any modified files to carry prominent notices
|
127 |
+
stating that You changed the files; and
|
128 |
+
|
129 |
+
(c) You must retain, in the Source form of any Derivative Works
|
130 |
+
that You distribute, all copyright, patent, trademark, and
|
131 |
+
attribution notices from the Source form of the Work,
|
132 |
+
excluding those notices that do not pertain to any part of
|
133 |
+
the Derivative Works; and
|
134 |
+
|
135 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
136 |
+
distribution, then any Derivative Works that You distribute must
|
137 |
+
include a readable copy of the attribution notices contained
|
138 |
+
within such NOTICE file, excluding those notices that do not
|
139 |
+
pertain to any part of the Derivative Works, in at least one
|
140 |
+
of the following places: within a NOTICE text file distributed
|
141 |
+
as part of the Derivative Works; within the Source form or
|
142 |
+
documentation, if provided along with the Derivative Works; or,
|
143 |
+
within a display generated by the Derivative Works, if and
|
144 |
+
wherever such third-party notices normally appear. The contents
|
145 |
+
of the NOTICE file are for informational purposes only and
|
146 |
+
do not modify the License. You may add Your own attribution
|
147 |
+
notices within Derivative Works that You distribute, alongside
|
148 |
+
or as an addendum to the NOTICE text from the Work, provided
|
149 |
+
that such additional attribution notices cannot be construed
|
150 |
+
as modifying the License.
|
151 |
+
|
152 |
+
You may add Your own copyright statement to Your modifications and
|
153 |
+
may provide additional or different license terms and conditions
|
154 |
+
for use, reproduction, or distribution of Your modifications, or
|
155 |
+
for any such Derivative Works as a whole, provided Your use,
|
156 |
+
reproduction, and distribution of the Work otherwise complies with
|
157 |
+
the conditions stated in this License.
|
158 |
+
|
159 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
160 |
+
any Contribution intentionally submitted for inclusion in the Work
|
161 |
+
by You to the Licensor shall be under the terms and conditions of
|
162 |
+
this License, without any additional terms or conditions.
|
163 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
164 |
+
the terms of any separate license agreement you may have executed
|
165 |
+
with Licensor regarding such Contributions.
|
166 |
+
|
167 |
+
6. Trademarks. This License does not grant permission to use the trade
|
168 |
+
names, trademarks, service marks, or product names of the Licensor,
|
169 |
+
except as required for reasonable and customary use in describing the
|
170 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
171 |
+
|
172 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
173 |
+
agreed to in writing, Licensor provides the Work (and each
|
174 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
175 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
176 |
+
implied, including, without limitation, any warranties or conditions
|
177 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
178 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
179 |
+
appropriateness of using or redistributing the Work and assume any
|
180 |
+
risks associated with Your exercise of permissions under this License.
|
181 |
+
|
182 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
183 |
+
whether in tort (including negligence), contract, or otherwise,
|
184 |
+
unless required by applicable law (such as deliberate and grossly
|
185 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
186 |
+
liable to You for damages, including any direct, indirect, special,
|
187 |
+
incidental, or consequential damages of any character arising as a
|
188 |
+
result of this License or out of the use or inability to use the
|
189 |
+
Work (including but not limited to damages for loss of goodwill,
|
190 |
+
work stoppage, computer failure or malfunction, or any and all
|
191 |
+
other commercial damages or losses), even if such Contributor
|
192 |
+
has been advised of the possibility of such damages.
|
193 |
+
|
194 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
195 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
196 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
197 |
+
or other liability obligations and/or rights consistent with this
|
198 |
+
License. However, in accepting such obligations, You may act only
|
199 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
200 |
+
of any other Contributor, and only if You agree to indemnify,
|
201 |
+
defend, and hold each Contributor harmless for any liability
|
202 |
+
incurred by, or claims asserted against, such Contributor by reason
|
203 |
+
of your accepting any such warranty or additional liability.
|
204 |
+
|
205 |
+
END OF TERMS AND CONDITIONS
|
206 |
+
|
207 |
+
APPENDIX: How to apply the Apache License to your work.
|
208 |
+
|
209 |
+
To apply the Apache License to your work, attach the following
|
210 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
211 |
+
replaced with your own identifying information. (Don't include
|
212 |
+
the brackets!) The text should be enclosed in the appropriate
|
213 |
+
comment syntax for the file format. We also recommend that a
|
214 |
+
file or class name and description of purpose be included on the
|
215 |
+
same "printed page" as the copyright notice for easier
|
216 |
+
identification within third-party archives.
|
217 |
+
|
218 |
+
Copyright [yyyy] [name of copyright owner]
|
219 |
+
|
220 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
221 |
+
you may not use this file except in compliance with the License.
|
222 |
+
You may obtain a copy of the License at
|
223 |
+
|
224 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
225 |
+
|
226 |
+
Unless required by applicable law or agreed to in writing, software
|
227 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
228 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
229 |
+
See the License for the specific language governing permissions and
|
230 |
+
limitations under the License.
|
231 |
+
|
232 |
+
|
233 |
+
================================================================================
|
234 |
+
|
235 |
+
|
236 |
+
BSD 3-Clause License
|
237 |
+
|
238 |
+
Copyright 2023 MagicAnimate Team All rights reserved.
|
239 |
+
|
240 |
+
Redistribution and use in source and binary forms, with or without
|
241 |
+
modification, are permitted provided that the following conditions are met:
|
242 |
+
|
243 |
+
1. Redistributions of source code must retain the above copyright notice, this
|
244 |
+
list of conditions and the following disclaimer.
|
245 |
+
|
246 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
247 |
+
this list of conditions and the following disclaimer in the documentation
|
248 |
+
and/or other materials provided with the distribution.
|
249 |
+
|
250 |
+
3. Neither the name of the copyright holder nor the names of its
|
251 |
+
contributors may be used to endorse or promote products derived from
|
252 |
+
this software without specific prior written permission.
|
253 |
+
|
254 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
255 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
256 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
257 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
258 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
259 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
260 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
261 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
262 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
263 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
README.md
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: GenWarp
|
3 |
+
emoji: 🌃
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
preload_from_hub:
|
12 |
+
- Sony/genwarp
|
13 |
+
- stabilityai/sd-vae-ft-mse diffusion_pytorch_model.safetensors
|
14 |
+
- lambdalabs/sd-image-variations-diffusers image_encoder/pytorch_model.bin
|
15 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
from subprocess import check_call
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
from os.path import basename, splitext, join
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy.spatial import KDTree
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from torchvision.transforms.functional import to_tensor, to_pil_image
|
16 |
+
from einops import rearrange
|
17 |
+
import gradio as gr
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
|
20 |
+
from extern.ZoeDepth.zoedepth.utils.misc import colorize
|
21 |
+
|
22 |
+
from gradio_model3dgscamera import Model3DGSCamera
|
23 |
+
|
24 |
+
IMAGE_SIZE = 512
|
25 |
+
NEAR, FAR = 0.01, 100
|
26 |
+
FOVY = np.deg2rad(55)
|
27 |
+
|
28 |
+
def download_models():
|
29 |
+
models = [
|
30 |
+
{
|
31 |
+
'repo': 'stabilityai/sd-vae-ft-mse',
|
32 |
+
'sub': None,
|
33 |
+
'dst': 'checkpoints/sd-vae-ft-mse',
|
34 |
+
'files': ['config.json', 'diffusion_pytorch_model.safetensors'],
|
35 |
+
'token': None
|
36 |
+
},
|
37 |
+
{
|
38 |
+
'repo': 'lambdalabs/sd-image-variations-diffusers',
|
39 |
+
'sub': 'image_encoder',
|
40 |
+
'dst': 'checkpoints',
|
41 |
+
'files': ['config.json', 'pytorch_model.bin'],
|
42 |
+
'token': None
|
43 |
+
},
|
44 |
+
{
|
45 |
+
'repo': 'Sony/genwarp',
|
46 |
+
'sub': 'multi1',
|
47 |
+
'dst': 'checkpoints',
|
48 |
+
'files': ['config.json', 'denoising_unet.pth', 'pose_guider.pth', 'reference_unet.pth'],
|
49 |
+
'token': None
|
50 |
+
}
|
51 |
+
]
|
52 |
+
|
53 |
+
for model in models:
|
54 |
+
for file in model['files']:
|
55 |
+
hf_hub_download(
|
56 |
+
repo_id=model['repo'],
|
57 |
+
subfolder=model['sub'],
|
58 |
+
filename=file,
|
59 |
+
local_dir=model['dst'],
|
60 |
+
token=model['token']
|
61 |
+
)
|
62 |
+
|
63 |
+
# Crop the image to the shorter side.
|
64 |
+
def crop(img: Image) -> Image:
|
65 |
+
W, H = img.size
|
66 |
+
if W < H:
|
67 |
+
left, right = 0, W
|
68 |
+
top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
|
69 |
+
else:
|
70 |
+
left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
|
71 |
+
top, bottom = 0, H
|
72 |
+
return img.crop((left, top, right, bottom))
|
73 |
+
|
74 |
+
def unproject(depth):
|
75 |
+
fovy_deg = 55
|
76 |
+
H, W = depth.shape[2:4]
|
77 |
+
|
78 |
+
mean_depth = depth.mean(dim=(2, 3)).squeeze().item()
|
79 |
+
|
80 |
+
viewport_mtx = get_viewport_matrix(
|
81 |
+
IMAGE_SIZE, IMAGE_SIZE,
|
82 |
+
batch_size=1
|
83 |
+
).to(depth)
|
84 |
+
|
85 |
+
# Projection matrix.
|
86 |
+
fovy = torch.ones(1) * FOVY
|
87 |
+
proj_mtx = get_projection_matrix(
|
88 |
+
fovy=fovy,
|
89 |
+
aspect_wh=1.,
|
90 |
+
near=NEAR,
|
91 |
+
far=FAR
|
92 |
+
).to(depth)
|
93 |
+
|
94 |
+
view_mtx = camera_lookat(
|
95 |
+
torch.tensor([[0., 0., 0.]]),
|
96 |
+
torch.tensor([[0., 0., 1.]]),
|
97 |
+
torch.tensor([[0., -1., 0.]])
|
98 |
+
).to(depth)
|
99 |
+
|
100 |
+
scr_mtx = (viewport_mtx @ proj_mtx).to(depth)
|
101 |
+
|
102 |
+
grid = torch.stack(torch.meshgrid(
|
103 |
+
torch.arange(W), torch.arange(H), indexing='xy'), dim=-1
|
104 |
+
).to(depth)[None] # BHW2
|
105 |
+
|
106 |
+
screen = F.pad(grid, (0, 1), 'constant', 0)
|
107 |
+
screen = F.pad(screen, (0, 1), 'constant', 1)
|
108 |
+
screen_flat = rearrange(screen, 'b h w c -> b (h w) c')
|
109 |
+
|
110 |
+
eye = screen_flat @ torch.linalg.inv_ex(
|
111 |
+
scr_mtx.float()
|
112 |
+
)[0].mT.to(depth)
|
113 |
+
eye = eye * rearrange(depth, 'b c h w -> b (h w) c')
|
114 |
+
eye[..., 3] = 1
|
115 |
+
|
116 |
+
points = eye @ torch.linalg.inv_ex(view_mtx.float())[0].mT.to(depth)
|
117 |
+
points = points[0, :, :3]
|
118 |
+
|
119 |
+
# Translate to the origin.
|
120 |
+
points[..., 2] -= mean_depth
|
121 |
+
camera_pos = (0, 0, -mean_depth)
|
122 |
+
view_mtx = camera_lookat(
|
123 |
+
torch.tensor([[0., 0., -mean_depth]]),
|
124 |
+
torch.tensor([[0., 0., 0.]]),
|
125 |
+
torch.tensor([[0., -1., 0.]])
|
126 |
+
).to(depth)
|
127 |
+
|
128 |
+
return points, camera_pos, view_mtx, proj_mtx
|
129 |
+
|
130 |
+
def calc_dist2(points: np.ndarray):
|
131 |
+
dists, _ = KDTree(points).query(points, k=4)
|
132 |
+
mean_dists = (dists[:, 1:] ** 2).mean(1)
|
133 |
+
return mean_dists
|
134 |
+
|
135 |
+
def save_as_splat(
|
136 |
+
filepath: str,
|
137 |
+
xyz: np.ndarray,
|
138 |
+
rgb: np.ndarray
|
139 |
+
):
|
140 |
+
# To gaussian splat
|
141 |
+
inv_sigmoid = lambda x: np.log(x / (1 - x))
|
142 |
+
dist2 = np.clip(calc_dist2(xyz), a_min=0.0000001, a_max=None)
|
143 |
+
scales = np.repeat(np.log(np.sqrt(dist2))[..., np.newaxis], 3, axis=1)
|
144 |
+
rots = np.zeros((xyz.shape[0], 4))
|
145 |
+
rots[:, 0] = 1
|
146 |
+
opacities = inv_sigmoid(0.1 * np.ones((xyz.shape[0], 1)))
|
147 |
+
|
148 |
+
sorted_indices = np.argsort((
|
149 |
+
-np.exp(np.sum(scales, axis=-1, keepdims=True))
|
150 |
+
/ (1 + np.exp(-opacities))
|
151 |
+
).squeeze())
|
152 |
+
|
153 |
+
buffer = BytesIO()
|
154 |
+
for idx in sorted_indices:
|
155 |
+
position = xyz[idx]
|
156 |
+
scale = np.exp(scales[idx]).astype(np.float32)
|
157 |
+
rot = rots[idx].astype(np.float32)
|
158 |
+
color = np.concatenate(
|
159 |
+
(rgb[idx], 1 / (1 + np.exp(-opacities[idx]))),
|
160 |
+
axis=-1
|
161 |
+
)
|
162 |
+
buffer.write(position.tobytes())
|
163 |
+
buffer.write(scale.tobytes())
|
164 |
+
buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
|
165 |
+
buffer.write(
|
166 |
+
((rot / np.linalg.norm(rot)) * 128 + 128)
|
167 |
+
.clip(0, 255)
|
168 |
+
.astype(np.uint8)
|
169 |
+
.tobytes()
|
170 |
+
)
|
171 |
+
|
172 |
+
with open(filepath, "wb") as f:
|
173 |
+
f.write(buffer.getvalue())
|
174 |
+
|
175 |
+
def view_from_rt(position, rotation):
|
176 |
+
t = np.array(position)
|
177 |
+
euler = np.array(rotation)
|
178 |
+
|
179 |
+
cx = np.cos(euler[0])
|
180 |
+
sx = np.sin(euler[0])
|
181 |
+
cy = np.cos(euler[1])
|
182 |
+
sy = np.sin(euler[1])
|
183 |
+
cz = np.cos(euler[2])
|
184 |
+
sz = np.sin(euler[2])
|
185 |
+
R = np.array([
|
186 |
+
cy * cz + sy * sx * sz,
|
187 |
+
-cy * sz + sy * sx * cz,
|
188 |
+
sy * cx,
|
189 |
+
cx * sz,
|
190 |
+
cx * cz,
|
191 |
+
-sx,
|
192 |
+
-sy * cz + cy * sx * sz,
|
193 |
+
sy * sz + cy * sx * cz,
|
194 |
+
cy * cx
|
195 |
+
])
|
196 |
+
view_mtx = np.array([
|
197 |
+
[R[0], R[1], R[2], 0],
|
198 |
+
[R[3], R[4], R[5], 0],
|
199 |
+
[R[6], R[7], R[8], 0],
|
200 |
+
[
|
201 |
+
-t[0] * R[0] - t[1] * R[3] - t[2] * R[6],
|
202 |
+
-t[0] * R[1] - t[1] * R[4] - t[2] * R[7],
|
203 |
+
-t[0] * R[2] - t[1] * R[5] - t[2] * R[8],
|
204 |
+
1
|
205 |
+
]
|
206 |
+
]).T
|
207 |
+
|
208 |
+
B = np.array([
|
209 |
+
[1, 0, 0, 0],
|
210 |
+
[0, -1, 0, 0],
|
211 |
+
[0, 0, -1, 0],
|
212 |
+
[0, 0, 0, 1]
|
213 |
+
])
|
214 |
+
return B @ view_mtx
|
215 |
+
|
216 |
+
|
217 |
+
# Setup.
|
218 |
+
download_models()
|
219 |
+
|
220 |
+
mde = torch.hub.load(
|
221 |
+
'./extern/ZoeDepth',
|
222 |
+
'ZoeD_N',
|
223 |
+
source='local',
|
224 |
+
pretrained=True,
|
225 |
+
trust_repo=True
|
226 |
+
)
|
227 |
+
|
228 |
+
import spaces
|
229 |
+
|
230 |
+
check_call([
|
231 |
+
sys.executable, '-m', 'pip', 'install',
|
232 |
+
'extern/splatting-0.0.1-py3-none-any.whl'
|
233 |
+
])
|
234 |
+
|
235 |
+
from genwarp import GenWarp
|
236 |
+
from genwarp.ops import (
|
237 |
+
camera_lookat, get_projection_matrix, get_viewport_matrix
|
238 |
+
)
|
239 |
+
|
240 |
+
# GenWarp
|
241 |
+
genwarp_cfg = dict(
|
242 |
+
pretrained_model_path='checkpoints',
|
243 |
+
checkpoint_name='multi1',
|
244 |
+
half_precision_weights=True
|
245 |
+
)
|
246 |
+
genwarp_nvs = GenWarp(cfg=genwarp_cfg, device='cpu')
|
247 |
+
|
248 |
+
|
249 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
250 |
+
with gr.Blocks(
|
251 |
+
title='GenWarp Demo',
|
252 |
+
css='img {display: inline;}'
|
253 |
+
) as demo:
|
254 |
+
# Internal states.
|
255 |
+
src_image = gr.State()
|
256 |
+
src_depth = gr.State()
|
257 |
+
proj_mtx = gr.State()
|
258 |
+
src_view_mtx = gr.State()
|
259 |
+
|
260 |
+
# Blocks.
|
261 |
+
gr.Markdown(
|
262 |
+
"""
|
263 |
+
# GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping
|
264 |
+
[![Project Site](https://img.shields.io/badge/Project-Web-green)](https://genwarp-nvs.github.io/)
|
265 |
+
[![Spaces](https://img.shields.io/badge/Spaces-Demo-yellow?logo=huggingface)](https://huggingface.co/spaces/Sony/GenWarp)
|
266 |
+
[![Github](https://img.shields.io/badge/Github-Repo-orange?logo=github)](https://github.com/sony/genwarp/)
|
267 |
+
[![Models](https://img.shields.io/badge/Models-checkpoints-blue?logo=huggingface)](https://huggingface.co/Sony/genwarp)
|
268 |
+
[![arXiv](https://img.shields.io/badge/arXiv-2405.17251-red?logo=arxiv)](https://arxiv.org/abs/2405.17251)
|
269 |
+
|
270 |
+
## Introduction
|
271 |
+
This is an official demo for the paper "[GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping](https://genwarp-nvs.github.io/)". Genwarp can generate novel view images from a single input conditioned on camera poses. In this demo, we offer a basic use of inference of the model. For detailed information, please refer the [paper](https://arxiv.org/abs/2405.17251).
|
272 |
+
|
273 |
+
## How to Use
|
274 |
+
1. Upload a reference image to "Reference Input"
|
275 |
+
- You can also select a image from "Examples"
|
276 |
+
2. Move the camera to your desired view in "Unprojected 3DGS" 3D viewer
|
277 |
+
3. Hit "Generate a novel view" button and check the result
|
278 |
+
|
279 |
+
"""
|
280 |
+
)
|
281 |
+
file = gr.File(label='Reference Input', file_types=['image'])
|
282 |
+
examples = gr.Examples(
|
283 |
+
examples=['./assets/pexels-heyho-5998120_19mm.jpg',
|
284 |
+
'./assets/pexels-itsterrymag-12639296_24mm.jpg'],
|
285 |
+
inputs=file
|
286 |
+
)
|
287 |
+
with gr.Row():
|
288 |
+
image_widget = gr.Image(
|
289 |
+
label='Reference View', type='filepath',
|
290 |
+
interactive=False
|
291 |
+
)
|
292 |
+
depth_widget = gr.Image(label='Estimated Depth', type='pil')
|
293 |
+
viewer = Model3DGSCamera(
|
294 |
+
label = 'Unprojected 3DGS',
|
295 |
+
width=IMAGE_SIZE,
|
296 |
+
height=IMAGE_SIZE,
|
297 |
+
camera_width=IMAGE_SIZE,
|
298 |
+
camera_height=IMAGE_SIZE,
|
299 |
+
camera_fx=IMAGE_SIZE / (np.tan(FOVY / 2.)) / 2.,
|
300 |
+
camera_fy=IMAGE_SIZE / (np.tan(FOVY / 2.)) / 2.,
|
301 |
+
camera_near=NEAR,
|
302 |
+
camera_far=FAR
|
303 |
+
)
|
304 |
+
button = gr.Button('Generate a novel view', size='lg', variant='primary')
|
305 |
+
with gr.Row():
|
306 |
+
warped_widget = gr.Image(
|
307 |
+
label='Warped Image', type='pil', interactive=False
|
308 |
+
)
|
309 |
+
gen_widget = gr.Image(
|
310 |
+
label='Generated View', type='pil', interactive=False
|
311 |
+
)
|
312 |
+
|
313 |
+
# Callbacks
|
314 |
+
@spaces.GPU
|
315 |
+
def cb_mde(image_file: str):
|
316 |
+
image = to_tensor(crop(Image.open(
|
317 |
+
image_file
|
318 |
+
).convert('RGB')).resize((IMAGE_SIZE, IMAGE_SIZE)))[None].cuda()
|
319 |
+
depth = mde.cuda().infer(image)
|
320 |
+
depth_image = to_pil_image(colorize(depth[0]))
|
321 |
+
return to_pil_image(image[0]), depth_image, image.cpu().detach(), depth.cpu().detach()
|
322 |
+
|
323 |
+
@spaces.GPU
|
324 |
+
def cb_3d(image, depth, image_file):
|
325 |
+
xyz, camera_pos, view_mtx, proj_mtx = unproject(depth.cuda())
|
326 |
+
rgb = rearrange(image, 'b c h w -> b (h w) c')[0]
|
327 |
+
splat_file = join(tmpdir, f'./{splitext(basename(image_file))[0]}.splat')
|
328 |
+
save_as_splat(splat_file, xyz.cpu().detach().numpy(), rgb.cpu().detach().numpy())
|
329 |
+
return (splat_file, camera_pos, None), view_mtx.cpu().detach(), proj_mtx.cpu().detach()
|
330 |
+
|
331 |
+
@spaces.GPU
|
332 |
+
def cb_generate(viewer, image, depth, src_view_mtx, proj_mtx):
|
333 |
+
image = image.cuda()
|
334 |
+
depth = depth.cuda()
|
335 |
+
src_view_mtx = src_view_mtx.cuda()
|
336 |
+
proj_mtx = proj_mtx.cuda()
|
337 |
+
src_camera_pos = viewer[1]
|
338 |
+
src_camera_rot = viewer[2]
|
339 |
+
tar_view_mtx = view_from_rt(src_camera_pos, src_camera_rot)
|
340 |
+
tar_view_mtx = torch.from_numpy(tar_view_mtx).to(image)
|
341 |
+
rel_view_mtx = (
|
342 |
+
tar_view_mtx @ torch.linalg.inv(src_view_mtx.to(image))
|
343 |
+
).to(image)
|
344 |
+
|
345 |
+
# GenWarp.
|
346 |
+
renders = genwarp_nvs.to('cuda')(
|
347 |
+
src_image=image.half(),
|
348 |
+
src_depth=depth.half(),
|
349 |
+
rel_view_mtx=rel_view_mtx.half(),
|
350 |
+
src_proj_mtx=proj_mtx.half(),
|
351 |
+
tar_proj_mtx=proj_mtx.half()
|
352 |
+
)
|
353 |
+
|
354 |
+
warped = renders['warped']
|
355 |
+
synthesized = renders['synthesized']
|
356 |
+
warped_pil = to_pil_image(warped[0])
|
357 |
+
synthesized_pil = to_pil_image(synthesized[0])
|
358 |
+
|
359 |
+
return warped_pil, synthesized_pil
|
360 |
+
|
361 |
+
# Events
|
362 |
+
file.change(
|
363 |
+
fn=cb_mde,
|
364 |
+
inputs=file,
|
365 |
+
outputs=[image_widget, depth_widget, src_image, src_depth]
|
366 |
+
).then(
|
367 |
+
fn=cb_3d,
|
368 |
+
inputs=[src_image, src_depth, image_widget],
|
369 |
+
outputs=[viewer, src_view_mtx, proj_mtx])
|
370 |
+
button.click(
|
371 |
+
fn=cb_generate,
|
372 |
+
inputs=[viewer, src_image, src_depth, src_view_mtx, proj_mtx],
|
373 |
+
outputs=[warped_widget, gen_widget])
|
374 |
+
|
375 |
+
if __name__ == '__main__':
|
376 |
+
demo.launch()
|
assets/NOTICE
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Images are taken from Pexels
|
2 |
+
https://www.pexels.com/
|
3 |
+
|
4 |
+
pexels-itsterrymag-12639296_24mm.jpg
|
5 |
+
https://www.pexels.com/ja-jp/photo/12639296/
|
6 |
+
|
7 |
+
pexels-heyho-5998120_19mm.jpg
|
8 |
+
https://www.pexels.com/ja-jp/photo/5998120/
|
assets/pexels-heyho-5998120_19mm.jpg
ADDED
Git LFS Details
|
assets/pexels-itsterrymag-12639296_24mm.jpg
ADDED
Git LFS Details
|
extern/ZoeDepth
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit edb6daf45458569e24f50250ef1ed08c015f17a7
|
extern/splatting-0.0.1-py3-none-any.whl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26d488928a774f4677a0f6cdd9f2a2a63ee73502d90676f507444cc21ecd069d
|
3 |
+
size 5189840
|
genwarp/GenWarp.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import join
|
2 |
+
from typing import Union, Optional, List, Dict, Tuple, Any
|
3 |
+
from dataclasses import dataclass
|
4 |
+
import inspect
|
5 |
+
|
6 |
+
from omegaconf import OmegaConf, DictConfig
|
7 |
+
from jaxtyping import Float
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import Tensor
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
|
14 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
15 |
+
from diffusers.image_processor import VaeImageProcessor
|
16 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
17 |
+
|
18 |
+
from .models import (
|
19 |
+
PoseGuider,
|
20 |
+
UNet2DConditionModel,
|
21 |
+
UNet3DConditionModel,
|
22 |
+
ReferenceAttentionControl
|
23 |
+
)
|
24 |
+
from .ops import get_viewport_matrix, forward_warper
|
25 |
+
|
26 |
+
class GenWarp():
|
27 |
+
@dataclass
|
28 |
+
class Config():
|
29 |
+
pretrained_model_path: str = ''
|
30 |
+
checkpoint_name: str = ''
|
31 |
+
half_precision_weights: bool = False
|
32 |
+
height: int = 512
|
33 |
+
width: int = 512
|
34 |
+
num_inference_steps: int = 20
|
35 |
+
guidance_scale: float = 3.5
|
36 |
+
|
37 |
+
cfg: Config
|
38 |
+
|
39 |
+
class Embedder():
|
40 |
+
def __init__(self, **kwargs) -> None:
|
41 |
+
self.kwargs = kwargs
|
42 |
+
self.create_embedding_fn()
|
43 |
+
|
44 |
+
def create_embedding_fn(self) -> None:
|
45 |
+
embed_fns = []
|
46 |
+
d = self.kwargs['input_dims']
|
47 |
+
out_dim = 0
|
48 |
+
if self.kwargs['include_input']:
|
49 |
+
embed_fns.append(lambda x : x)
|
50 |
+
out_dim += d
|
51 |
+
|
52 |
+
max_freq = self.kwargs['max_freq_log2']
|
53 |
+
N_freqs = self.kwargs['num_freqs']
|
54 |
+
|
55 |
+
if self.kwargs['log_sampling']:
|
56 |
+
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
|
57 |
+
else:
|
58 |
+
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
|
59 |
+
|
60 |
+
for freq in freq_bands:
|
61 |
+
for p_fn in self.kwargs['periodic_fns']:
|
62 |
+
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
|
63 |
+
out_dim += d
|
64 |
+
|
65 |
+
self.embed_fns = embed_fns
|
66 |
+
self.out_dim = out_dim
|
67 |
+
|
68 |
+
def embed(self, inputs) -> Tensor:
|
69 |
+
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
cfg: Optional[Union[dict, DictConfig]] = None,
|
74 |
+
device: Optional[str] = 'cpu'
|
75 |
+
) -> None:
|
76 |
+
self.cfg = OmegaConf.structured(self.Config(**cfg))
|
77 |
+
self.model_path = join(
|
78 |
+
self.cfg.pretrained_model_path, self.cfg.checkpoint_name
|
79 |
+
)
|
80 |
+
self.device = device
|
81 |
+
self.configure()
|
82 |
+
|
83 |
+
def configure(self) -> None:
|
84 |
+
print(f"Loading GenWarp...")
|
85 |
+
|
86 |
+
# Configurations.
|
87 |
+
self.dtype = (
|
88 |
+
torch.float16 if self.cfg.half_precision_weights else torch.float32
|
89 |
+
)
|
90 |
+
self.viewport_mtx: Float[Tensor, 'B 4 4'] = get_viewport_matrix(
|
91 |
+
self.cfg.width, self.cfg.height,
|
92 |
+
batch_size=1, device=self.device
|
93 |
+
).to(self.dtype)
|
94 |
+
|
95 |
+
# Load models.
|
96 |
+
self.load_models()
|
97 |
+
|
98 |
+
# Timestep
|
99 |
+
self.scheduler.set_timesteps(
|
100 |
+
self.cfg.num_inference_steps, device=self.device)
|
101 |
+
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
|
102 |
+
|
103 |
+
print(f"Loaded GenWarp.")
|
104 |
+
|
105 |
+
def load_models(self) -> None:
|
106 |
+
# VAE.
|
107 |
+
self.vae = AutoencoderKL.from_pretrained(
|
108 |
+
join(self.cfg.pretrained_model_path, 'sd-vae-ft-mse')
|
109 |
+
).to(self.device, dtype=self.dtype)
|
110 |
+
|
111 |
+
# Image processor.
|
112 |
+
self.vae_scale_factor = \
|
113 |
+
2 ** (len(self.vae.config.block_out_channels) - 1)
|
114 |
+
self.vae_image_processor = VaeImageProcessor(
|
115 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
116 |
+
)
|
117 |
+
self.clip_image_processor = CLIPImageProcessor()
|
118 |
+
|
119 |
+
# Image encoder.
|
120 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
121 |
+
join(self.cfg.pretrained_model_path, 'image_encoder')
|
122 |
+
).to(self.device, dtype=self.dtype)
|
123 |
+
|
124 |
+
# Reference Unet.
|
125 |
+
self.reference_unet = UNet2DConditionModel.from_config(
|
126 |
+
UNet2DConditionModel.load_config(
|
127 |
+
join(self.model_path, 'config.json')
|
128 |
+
)).to(self.device, dtype=self.dtype)
|
129 |
+
self.reference_unet.load_state_dict(torch.load(
|
130 |
+
join(self.model_path, 'reference_unet.pth'),
|
131 |
+
map_location='cpu'),
|
132 |
+
)
|
133 |
+
|
134 |
+
# Denoising Unet.
|
135 |
+
self.denoising_unet = UNet3DConditionModel.from_pretrained_2d(
|
136 |
+
join(self.model_path, 'config.json'),
|
137 |
+
join(self.model_path, 'denoising_unet.pth')
|
138 |
+
).to(self.device, dtype=self.dtype)
|
139 |
+
self.unet_in_channels = self.denoising_unet.config.in_channels
|
140 |
+
|
141 |
+
# Pose guider.
|
142 |
+
self.pose_guider = PoseGuider(
|
143 |
+
conditioning_embedding_channels=320,
|
144 |
+
conditioning_channels=11,
|
145 |
+
).to(self.device, dtype=self.dtype)
|
146 |
+
self.pose_guider.load_state_dict(torch.load(
|
147 |
+
join(self.model_path, 'pose_guider.pth'),
|
148 |
+
map_location='cpu'),
|
149 |
+
)
|
150 |
+
|
151 |
+
# Noise scheduler
|
152 |
+
sched_kwargs = OmegaConf.to_container(OmegaConf.create({
|
153 |
+
'num_train_timesteps': 1000,
|
154 |
+
'beta_start': 0.00085,
|
155 |
+
'beta_end': 0.012,
|
156 |
+
'beta_schedule': 'scaled_linear',
|
157 |
+
'steps_offset': 1,
|
158 |
+
'clip_sample': False
|
159 |
+
}))
|
160 |
+
sched_kwargs.update(
|
161 |
+
rescale_betas_zero_snr=True,
|
162 |
+
timestep_spacing='trailing',
|
163 |
+
prediction_type='v_prediction',
|
164 |
+
)
|
165 |
+
self.scheduler = DDIMScheduler(**sched_kwargs)
|
166 |
+
|
167 |
+
self.vae.requires_grad_(False)
|
168 |
+
self.image_encoder.requires_grad_(False)
|
169 |
+
self.reference_unet.requires_grad_(False)
|
170 |
+
self.denoising_unet.requires_grad_(False)
|
171 |
+
self.pose_guider.requires_grad_(False)
|
172 |
+
|
173 |
+
# Coordinates embedding.
|
174 |
+
self.embedder = self.get_embedder(2)
|
175 |
+
|
176 |
+
def to(self, device: str):
|
177 |
+
self.device = device
|
178 |
+
self.viewport_mtx = self.viewport_mtx.to(device)
|
179 |
+
self.vae = self.vae.to(device)
|
180 |
+
self.image_encoder = self.image_encoder.to(device)
|
181 |
+
self.reference_unet = self.reference_unet.to(device)
|
182 |
+
self.denoising_unet = self.denoising_unet.to(device)
|
183 |
+
self.pose_guider = self.pose_guider.to(device)
|
184 |
+
|
185 |
+
return self
|
186 |
+
|
187 |
+
def get_embedder(self, multires):
|
188 |
+
embed_kwargs = {
|
189 |
+
'include_input' : True,
|
190 |
+
'input_dims' : 2,
|
191 |
+
'max_freq_log2' : multires-1,
|
192 |
+
'num_freqs' : multires,
|
193 |
+
'log_sampling' : True,
|
194 |
+
'periodic_fns' : [torch.sin, torch.cos],
|
195 |
+
}
|
196 |
+
|
197 |
+
embedder_obj = self.Embedder(**embed_kwargs)
|
198 |
+
embed = lambda x, eo=embedder_obj : eo.embed(x)
|
199 |
+
return embed
|
200 |
+
|
201 |
+
def __call__(
|
202 |
+
self,
|
203 |
+
src_image: Float[Tensor, 'B C H W'],
|
204 |
+
src_depth: Float[Tensor, 'B C H W'],
|
205 |
+
rel_view_mtx: Float[Tensor, 'B 4 4'],
|
206 |
+
src_proj_mtx: Float[Tensor, 'B 4 4'],
|
207 |
+
tar_proj_mtx: Float[Tensor, 'B 4 4'],
|
208 |
+
) -> Dict[str, Tensor]:
|
209 |
+
""" Perform NVS.
|
210 |
+
"""
|
211 |
+
batch_size = src_image.shape[0]
|
212 |
+
|
213 |
+
# Rearrange and resize.
|
214 |
+
src_image = self.preprocess_image(src_image)
|
215 |
+
src_depth = self.preprocess_image(src_depth)
|
216 |
+
viewport_mtx = repeat(
|
217 |
+
self.viewport_mtx, 'b h w -> (repeat b) h w',
|
218 |
+
repeat=batch_size)
|
219 |
+
|
220 |
+
pipe_args = dict(
|
221 |
+
src_image=src_image,
|
222 |
+
src_depth=src_depth,
|
223 |
+
rel_view_mtx=rel_view_mtx,
|
224 |
+
src_proj_mtx=src_proj_mtx,
|
225 |
+
tar_proj_mtx=tar_proj_mtx,
|
226 |
+
viewport_mtx=viewport_mtx
|
227 |
+
)
|
228 |
+
|
229 |
+
# Prepare inputs.
|
230 |
+
conditions, renders = self.prepare_conditions(**pipe_args)
|
231 |
+
|
232 |
+
# NVS.
|
233 |
+
latents_clean = self.perform_nvs(
|
234 |
+
**pipe_args,
|
235 |
+
**conditions
|
236 |
+
)
|
237 |
+
|
238 |
+
# Decode to images.
|
239 |
+
synthesized = self.decode_latents(latents_clean)
|
240 |
+
|
241 |
+
inference_out = {
|
242 |
+
'synthesized': synthesized,
|
243 |
+
'warped': renders['warped'],
|
244 |
+
'mask': renders['mask'],
|
245 |
+
'correspondence': conditions['correspondence']
|
246 |
+
}
|
247 |
+
|
248 |
+
return inference_out
|
249 |
+
|
250 |
+
def preprocess_image(
|
251 |
+
self,
|
252 |
+
image: Float[Tensor, 'B C H W']
|
253 |
+
) -> Float[Tensor, 'B C H W']:
|
254 |
+
image = F.interpolate(
|
255 |
+
image, (self.cfg.height, self.cfg.width)
|
256 |
+
)
|
257 |
+
return image
|
258 |
+
|
259 |
+
def get_image_prompt(
|
260 |
+
self,
|
261 |
+
src_image: Float[Tensor, 'B C H W']
|
262 |
+
) -> Float[Tensor, '2 B L']:
|
263 |
+
ref_image_for_clip = self.vae_image_processor.preprocess(
|
264 |
+
src_image, height=224, width=224
|
265 |
+
)
|
266 |
+
ref_image_for_clip = ref_image_for_clip * 0.5 + 0.5
|
267 |
+
|
268 |
+
clip_image = self.clip_image_processor.preprocess(
|
269 |
+
ref_image_for_clip, return_tensors='pt'
|
270 |
+
).pixel_values
|
271 |
+
|
272 |
+
clip_image_embeds = self.image_encoder(
|
273 |
+
clip_image.to(self.device, dtype=self.image_encoder.dtype)
|
274 |
+
).image_embeds
|
275 |
+
|
276 |
+
image_prompt_embeds = clip_image_embeds.unsqueeze(1)
|
277 |
+
uncond_image_prompt_embeds = torch.zeros_like(image_prompt_embeds)
|
278 |
+
|
279 |
+
image_prompt_embeds = torch.cat(
|
280 |
+
[uncond_image_prompt_embeds, image_prompt_embeds], dim=0
|
281 |
+
)
|
282 |
+
|
283 |
+
return image_prompt_embeds
|
284 |
+
|
285 |
+
def encode_images(
|
286 |
+
self,
|
287 |
+
rgb: Float[Tensor, 'B C H W']
|
288 |
+
) -> Float[Tensor, 'B C H W']:
|
289 |
+
rgb = self.vae_image_processor.preprocess(rgb)
|
290 |
+
latents = self.vae.encode(rgb).latent_dist.mean
|
291 |
+
latents = latents * 0.18215
|
292 |
+
return latents
|
293 |
+
|
294 |
+
def decode_latents(
|
295 |
+
self,
|
296 |
+
latents: Float[Tensor, 'B C H W']
|
297 |
+
) -> Float[Tensor, 'B C H W']:
|
298 |
+
latents = 1 / 0.18215 * latents
|
299 |
+
rgb = []
|
300 |
+
for frame_idx in range(latents.shape[0]):
|
301 |
+
rgb.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
302 |
+
rgb = torch.cat(rgb)
|
303 |
+
rgb = (rgb / 2 + 0.5).clamp(0, 1)
|
304 |
+
return rgb.squeeze(2)
|
305 |
+
|
306 |
+
def get_reference_controls(
|
307 |
+
self,
|
308 |
+
batch_size: int
|
309 |
+
) -> Tuple[ReferenceAttentionControl, ReferenceAttentionControl]:
|
310 |
+
reader = ReferenceAttentionControl(
|
311 |
+
self.denoising_unet,
|
312 |
+
do_classifier_free_guidance=True,
|
313 |
+
mode='read',
|
314 |
+
batch_size=batch_size,
|
315 |
+
fusion_blocks='full',
|
316 |
+
feature_fusion_type='attention_full_sharing'
|
317 |
+
)
|
318 |
+
writer = ReferenceAttentionControl(
|
319 |
+
self.reference_unet,
|
320 |
+
do_classifier_free_guidance=True,
|
321 |
+
mode='write',
|
322 |
+
batch_size=batch_size,
|
323 |
+
fusion_blocks='full',
|
324 |
+
feature_fusion_type='attention_full_sharing'
|
325 |
+
)
|
326 |
+
|
327 |
+
return reader, writer
|
328 |
+
|
329 |
+
def prepare_extra_step_kwargs(
|
330 |
+
self,
|
331 |
+
generator,
|
332 |
+
eta
|
333 |
+
) -> Dict[str, Any]:
|
334 |
+
accepts_eta = 'eta' in set(
|
335 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
336 |
+
)
|
337 |
+
extra_step_kwargs = {}
|
338 |
+
if accepts_eta:
|
339 |
+
extra_step_kwargs['eta'] = eta
|
340 |
+
|
341 |
+
# check if the scheduler accepts generator
|
342 |
+
accepts_generator = 'generator' in set(
|
343 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
344 |
+
)
|
345 |
+
if accepts_generator:
|
346 |
+
extra_step_kwargs['generator'] = generator
|
347 |
+
return extra_step_kwargs
|
348 |
+
|
349 |
+
def get_pose_features(
|
350 |
+
self,
|
351 |
+
src_embed: Float[Tensor, 'B C H W'],
|
352 |
+
trg_embed: Float[Tensor, 'B C H W'],
|
353 |
+
do_classifier_guidance: bool = True
|
354 |
+
) -> Tuple[Tensor, Tensor]:
|
355 |
+
pose_cond_tensor = src_embed.unsqueeze(2)
|
356 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
357 |
+
device=self.device, dtype=self.pose_guider.dtype
|
358 |
+
)
|
359 |
+
pose_cond_tensor_2 = trg_embed.unsqueeze(2)
|
360 |
+
pose_cond_tensor_2 = pose_cond_tensor_2.to(
|
361 |
+
device=self.device, dtype=self.pose_guider.dtype
|
362 |
+
)
|
363 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
364 |
+
pose_fea_2 = self.pose_guider(pose_cond_tensor_2)
|
365 |
+
|
366 |
+
if do_classifier_guidance:
|
367 |
+
pose_fea = torch.cat([pose_fea] * 2)
|
368 |
+
pose_fea_2 = torch.cat([pose_fea_2] * 2)
|
369 |
+
|
370 |
+
return pose_fea, pose_fea_2
|
371 |
+
|
372 |
+
@torch.no_grad()
|
373 |
+
def prepare_conditions(
|
374 |
+
self,
|
375 |
+
src_image: Float[Tensor, 'B C H W'],
|
376 |
+
src_depth: Float[Tensor, 'B C H W'],
|
377 |
+
rel_view_mtx: Float[Tensor, 'B 4 4'],
|
378 |
+
src_proj_mtx: Float[Tensor, 'B 4 4'],
|
379 |
+
tar_proj_mtx: Float[Tensor, 'B 4 4'],
|
380 |
+
viewport_mtx: Float[Tensor, 'B 4 4']
|
381 |
+
) -> Tuple[Dict[str, Tensor], Dict[str, Tensor]]:
|
382 |
+
# Prepare inputs.
|
383 |
+
B = src_image.shape[0]
|
384 |
+
H, W = src_image.shape[2:4]
|
385 |
+
src_scr_mtx = (viewport_mtx @ src_proj_mtx).to(src_proj_mtx)
|
386 |
+
mvp_mtx = (tar_proj_mtx @ rel_view_mtx).to(rel_view_mtx)
|
387 |
+
|
388 |
+
# Coordinate grids.
|
389 |
+
grid: Float[Tensor, 'H W C'] = torch.stack(torch.meshgrid(
|
390 |
+
torch.arange(W), torch.arange(H), indexing='xy'), dim=-1
|
391 |
+
).to(self.device, dtype=self.dtype)
|
392 |
+
|
393 |
+
# Unproject depth.
|
394 |
+
screen = F.pad(grid, (0, 1), 'constant', 0) # z=0 (z doesn't matter)
|
395 |
+
screen = F.pad(screen, (0, 1), 'constant', 1) # w=1
|
396 |
+
screen = repeat(screen, 'h w c -> b h w c', b=B)
|
397 |
+
screen_flat = rearrange(screen, 'b h w c -> b (h w) c')
|
398 |
+
# To eye coordinates.
|
399 |
+
eye = screen_flat @ torch.linalg.inv_ex(
|
400 |
+
src_scr_mtx.float()
|
401 |
+
)[0].mT.to(self.dtype)
|
402 |
+
# Overwrite depth.
|
403 |
+
eye = eye * rearrange(src_depth, 'b c h w -> b (h w) c')
|
404 |
+
eye[..., 3] = 1
|
405 |
+
|
406 |
+
# Coordinates embedding.
|
407 |
+
coords = torch.stack((grid[..., 0]/H, grid[..., 1]/W), dim=-1)
|
408 |
+
embed = repeat(self.embedder(coords), 'h w c -> b c h w', b=B)
|
409 |
+
|
410 |
+
# Warping.
|
411 |
+
input_image: Float[Tensor, 'B C H W'] = torch.cat(
|
412 |
+
[embed, src_image], dim=1
|
413 |
+
)
|
414 |
+
output_image = forward_warper(
|
415 |
+
input_image, screen_flat[..., :2], eye,
|
416 |
+
mvp_mtx=mvp_mtx, viewport_mtx=viewport_mtx
|
417 |
+
)
|
418 |
+
warped_embed = output_image['warped'][:, :embed.shape[1]]
|
419 |
+
warped_image = output_image['warped'][:, embed.shape[1]:]
|
420 |
+
# mask == 1 where there's no pixel
|
421 |
+
mask = output_image['mask']
|
422 |
+
correspondence = output_image['correspondence']
|
423 |
+
|
424 |
+
# Conditions.
|
425 |
+
src_coords_embed = torch.cat(
|
426 |
+
[embed, torch.zeros_like(mask, device=mask.device)], dim=1)
|
427 |
+
trg_coords_embed = torch.cat([warped_embed, mask], dim=1)
|
428 |
+
|
429 |
+
# Outputs.
|
430 |
+
conditions = dict(
|
431 |
+
src_coords_embed=src_coords_embed,
|
432 |
+
trg_coords_embed=trg_coords_embed,
|
433 |
+
correspondence=correspondence
|
434 |
+
)
|
435 |
+
|
436 |
+
renders = dict(
|
437 |
+
warped=warped_image,
|
438 |
+
mask=1 - mask # mask == 1 where there's a pixel
|
439 |
+
)
|
440 |
+
|
441 |
+
return conditions, renders
|
442 |
+
|
443 |
+
def perform_nvs(
|
444 |
+
self,
|
445 |
+
src_image,
|
446 |
+
src_coords_embed,
|
447 |
+
trg_coords_embed,
|
448 |
+
correspondence,
|
449 |
+
eta: float=0.0,
|
450 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]]=None,
|
451 |
+
**kwargs,
|
452 |
+
) -> Float[Tensor, 'B C H W']:
|
453 |
+
batch_size = src_image.shape[0]
|
454 |
+
|
455 |
+
# For the cross attention.
|
456 |
+
reference_control_reader, reference_control_writer = \
|
457 |
+
self.get_reference_controls(batch_size)
|
458 |
+
|
459 |
+
# Prepare extra step kwargs.
|
460 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(
|
461 |
+
generator, eta
|
462 |
+
)
|
463 |
+
|
464 |
+
with torch.no_grad():
|
465 |
+
# Create fake inputs. It'll be replaced by pure noise.
|
466 |
+
latents = torch.randn(
|
467 |
+
batch_size,
|
468 |
+
self.unet_in_channels,
|
469 |
+
self.cfg.height // self.vae_scale_factor,
|
470 |
+
self.cfg.width // self.vae_scale_factor
|
471 |
+
).to(self.device, dtype=src_image.dtype)
|
472 |
+
initial_t = torch.tensor(
|
473 |
+
[self.num_train_timesteps - 1] * batch_size
|
474 |
+
).to(self.device, dtype=torch.long)
|
475 |
+
|
476 |
+
# Add noise.
|
477 |
+
noise = torch.randn_like(latents)
|
478 |
+
latents_noisy_start = self.scheduler.add_noise(
|
479 |
+
latents, noise, initial_t
|
480 |
+
)
|
481 |
+
latents_noisy_start = latents_noisy_start.unsqueeze(2)
|
482 |
+
|
483 |
+
# Prepare clip image embeds.
|
484 |
+
image_prompt_embeds = self.get_image_prompt(src_image)
|
485 |
+
|
486 |
+
# Prepare ref image latents.
|
487 |
+
ref_image_latents = self.encode_images(src_image)
|
488 |
+
|
489 |
+
# Prepare pose condition image.
|
490 |
+
pose_fea, pose_fea_2 = self.get_pose_features(
|
491 |
+
src_coords_embed, trg_coords_embed
|
492 |
+
)
|
493 |
+
|
494 |
+
pose_fea = pose_fea[:, :, 0, ...]
|
495 |
+
|
496 |
+
# Forward reference images.
|
497 |
+
self.reference_unet(
|
498 |
+
ref_image_latents.repeat(2, 1, 1, 1),
|
499 |
+
torch.zeros(batch_size * 2).to(ref_image_latents),
|
500 |
+
encoder_hidden_states=image_prompt_embeds,
|
501 |
+
pose_cond_fea=pose_fea,
|
502 |
+
return_dict=False,
|
503 |
+
)
|
504 |
+
# Update the denosing net with reference features.
|
505 |
+
reference_control_reader.update(
|
506 |
+
reference_control_writer,
|
507 |
+
correspondence=correspondence
|
508 |
+
)
|
509 |
+
|
510 |
+
timesteps = self.scheduler.timesteps
|
511 |
+
latents_noisy = latents_noisy_start
|
512 |
+
for t in timesteps:
|
513 |
+
# Prepare latents.
|
514 |
+
latent_model_input = torch.cat([latents_noisy] * 2)
|
515 |
+
latent_model_input = self.scheduler.scale_model_input(
|
516 |
+
latent_model_input, t
|
517 |
+
)
|
518 |
+
|
519 |
+
# Denoise.
|
520 |
+
noise_pred = self.denoising_unet(
|
521 |
+
latent_model_input,
|
522 |
+
t,
|
523 |
+
encoder_hidden_states=image_prompt_embeds,
|
524 |
+
pose_cond_fea=pose_fea_2,
|
525 |
+
return_dict=False,
|
526 |
+
)[0]
|
527 |
+
|
528 |
+
# CFG.
|
529 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
530 |
+
noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
|
531 |
+
noise_pred_text - noise_pred_uncond
|
532 |
+
)
|
533 |
+
|
534 |
+
# t -> t-1
|
535 |
+
latents_noisy = self.scheduler.step(
|
536 |
+
noise_pred, t, latents_noisy, **extra_step_kwargs,
|
537 |
+
return_dict=False
|
538 |
+
)[0]
|
539 |
+
|
540 |
+
# Noise disappears eventually
|
541 |
+
latents_clean = latents_noisy
|
542 |
+
|
543 |
+
reference_control_reader.clear()
|
544 |
+
reference_control_writer.clear()
|
545 |
+
|
546 |
+
return latents_clean.squeeze(2)
|
genwarp/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .GenWarp import GenWarp
|
genwarp/models/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .pose_guider import PoseGuider
|
2 |
+
from .unet_2d_condition import UNet2DConditionModel
|
3 |
+
from .unet_3d import UNet3DConditionModel
|
4 |
+
from .mutual_self_attention import ReferenceAttentionControl
|
genwarp/models/attention.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# Diffusers
|
9 |
+
# Apache License, Version 2.0
|
10 |
+
# Copyright (c) Hugging Face Inc.
|
11 |
+
# https://github.com/huggingface/diffusers
|
12 |
+
# ==============================================================================
|
13 |
+
|
14 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
15 |
+
|
16 |
+
from typing import Any, Dict, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward
|
20 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
21 |
+
from einops import rearrange
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
|
25 |
+
class BasicTransformerBlock(nn.Module):
|
26 |
+
r"""
|
27 |
+
A basic Transformer block.
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
dim (`int`): The number of channels in the input and output.
|
31 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
32 |
+
attention_head_dim (`int`): The number of channels in each head.
|
33 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
34 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
35 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
36 |
+
num_embeds_ada_norm (:
|
37 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
38 |
+
attention_bias (:
|
39 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
40 |
+
only_cross_attention (`bool`, *optional*):
|
41 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
42 |
+
double_self_attention (`bool`, *optional*):
|
43 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
44 |
+
upcast_attention (`bool`, *optional*):
|
45 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
46 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
47 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
48 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
49 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
50 |
+
final_dropout (`bool` *optional*, defaults to False):
|
51 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
52 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
53 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
54 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
55 |
+
The type of positional embeddings to apply to.
|
56 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
57 |
+
The maximum number of positional embeddings to apply.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
dim: int,
|
63 |
+
num_attention_heads: int,
|
64 |
+
attention_head_dim: int,
|
65 |
+
dropout=0.0,
|
66 |
+
cross_attention_dim: Optional[int] = None,
|
67 |
+
activation_fn: str = "geglu",
|
68 |
+
num_embeds_ada_norm: Optional[int] = None,
|
69 |
+
attention_bias: bool = False,
|
70 |
+
only_cross_attention: bool = False,
|
71 |
+
double_self_attention: bool = False,
|
72 |
+
upcast_attention: bool = False,
|
73 |
+
norm_elementwise_affine: bool = True,
|
74 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
75 |
+
norm_eps: float = 1e-5,
|
76 |
+
final_dropout: bool = False,
|
77 |
+
attention_type: str = "default",
|
78 |
+
positional_embeddings: Optional[str] = None,
|
79 |
+
num_positional_embeddings: Optional[int] = None,
|
80 |
+
):
|
81 |
+
super().__init__()
|
82 |
+
self.only_cross_attention = only_cross_attention
|
83 |
+
|
84 |
+
self.use_ada_layer_norm_zero = (
|
85 |
+
num_embeds_ada_norm is not None
|
86 |
+
) and norm_type == "ada_norm_zero"
|
87 |
+
self.use_ada_layer_norm = (
|
88 |
+
num_embeds_ada_norm is not None
|
89 |
+
) and norm_type == "ada_norm"
|
90 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
91 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
92 |
+
|
93 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
94 |
+
raise ValueError(
|
95 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
96 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
97 |
+
)
|
98 |
+
|
99 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
100 |
+
raise ValueError(
|
101 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
102 |
+
)
|
103 |
+
|
104 |
+
if positional_embeddings == "sinusoidal":
|
105 |
+
self.pos_embed = SinusoidalPositionalEmbedding(
|
106 |
+
dim, max_seq_length=num_positional_embeddings
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
self.pos_embed = None
|
110 |
+
|
111 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
112 |
+
# 1. Self-Attn
|
113 |
+
if self.use_ada_layer_norm:
|
114 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
115 |
+
elif self.use_ada_layer_norm_zero:
|
116 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
117 |
+
else:
|
118 |
+
self.norm1 = nn.LayerNorm(
|
119 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
120 |
+
)
|
121 |
+
|
122 |
+
self.attn1 = Attention(
|
123 |
+
query_dim=dim,
|
124 |
+
heads=num_attention_heads,
|
125 |
+
dim_head=attention_head_dim,
|
126 |
+
dropout=dropout,
|
127 |
+
bias=attention_bias,
|
128 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
129 |
+
upcast_attention=upcast_attention,
|
130 |
+
)
|
131 |
+
|
132 |
+
# 2. Cross-Attn
|
133 |
+
if cross_attention_dim is not None or double_self_attention:
|
134 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
135 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
136 |
+
# the second cross attention block.
|
137 |
+
self.norm2 = (
|
138 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
139 |
+
if self.use_ada_layer_norm
|
140 |
+
else nn.LayerNorm(
|
141 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
142 |
+
)
|
143 |
+
)
|
144 |
+
self.attn2 = Attention(
|
145 |
+
query_dim=dim,
|
146 |
+
cross_attention_dim=cross_attention_dim
|
147 |
+
if not double_self_attention
|
148 |
+
else None,
|
149 |
+
heads=num_attention_heads,
|
150 |
+
dim_head=attention_head_dim,
|
151 |
+
dropout=dropout,
|
152 |
+
bias=attention_bias,
|
153 |
+
upcast_attention=upcast_attention,
|
154 |
+
) # is self-attn if encoder_hidden_states is none
|
155 |
+
else:
|
156 |
+
self.norm2 = None
|
157 |
+
self.attn2 = None
|
158 |
+
|
159 |
+
# 3. Feed-forward
|
160 |
+
if not self.use_ada_layer_norm_single:
|
161 |
+
self.norm3 = nn.LayerNorm(
|
162 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
163 |
+
)
|
164 |
+
|
165 |
+
self.ff = FeedForward(
|
166 |
+
dim,
|
167 |
+
dropout=dropout,
|
168 |
+
activation_fn=activation_fn,
|
169 |
+
final_dropout=final_dropout,
|
170 |
+
)
|
171 |
+
|
172 |
+
# 4. Fuser
|
173 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
174 |
+
self.fuser = GatedSelfAttentionDense(
|
175 |
+
dim, cross_attention_dim, num_attention_heads, attention_head_dim
|
176 |
+
)
|
177 |
+
|
178 |
+
# 5. Scale-shift for PixArt-Alpha.
|
179 |
+
if self.use_ada_layer_norm_single:
|
180 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
181 |
+
|
182 |
+
# let chunk size default to None
|
183 |
+
self._chunk_size = None
|
184 |
+
self._chunk_dim = 0
|
185 |
+
|
186 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
187 |
+
# Sets chunk feed-forward
|
188 |
+
self._chunk_size = chunk_size
|
189 |
+
self._chunk_dim = dim
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
hidden_states: torch.FloatTensor,
|
194 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
195 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
196 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
197 |
+
timestep: Optional[torch.LongTensor] = None,
|
198 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
199 |
+
class_labels: Optional[torch.LongTensor] = None,
|
200 |
+
) -> torch.FloatTensor:
|
201 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
202 |
+
# 0. Self-Attention
|
203 |
+
batch_size = hidden_states.shape[0]
|
204 |
+
|
205 |
+
if self.use_ada_layer_norm:
|
206 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
207 |
+
elif self.use_ada_layer_norm_zero:
|
208 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
209 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
210 |
+
)
|
211 |
+
elif self.use_layer_norm:
|
212 |
+
norm_hidden_states = self.norm1(hidden_states)
|
213 |
+
elif self.use_ada_layer_norm_single:
|
214 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
215 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
216 |
+
).chunk(6, dim=1)
|
217 |
+
norm_hidden_states = self.norm1(hidden_states)
|
218 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
219 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
220 |
+
else:
|
221 |
+
raise ValueError("Incorrect norm used")
|
222 |
+
|
223 |
+
if self.pos_embed is not None:
|
224 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
225 |
+
|
226 |
+
# 1. Retrieve lora scale.
|
227 |
+
lora_scale = (
|
228 |
+
cross_attention_kwargs.get("scale", 1.0)
|
229 |
+
if cross_attention_kwargs is not None
|
230 |
+
else 1.0
|
231 |
+
)
|
232 |
+
|
233 |
+
# 2. Prepare GLIGEN inputs
|
234 |
+
cross_attention_kwargs = (
|
235 |
+
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
236 |
+
)
|
237 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
238 |
+
|
239 |
+
attn_output = self.attn1(
|
240 |
+
norm_hidden_states,
|
241 |
+
encoder_hidden_states=encoder_hidden_states
|
242 |
+
if self.only_cross_attention
|
243 |
+
else None,
|
244 |
+
attention_mask=attention_mask,
|
245 |
+
**cross_attention_kwargs,
|
246 |
+
)
|
247 |
+
if self.use_ada_layer_norm_zero:
|
248 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
249 |
+
elif self.use_ada_layer_norm_single:
|
250 |
+
attn_output = gate_msa * attn_output
|
251 |
+
|
252 |
+
hidden_states = attn_output + hidden_states
|
253 |
+
if hidden_states.ndim == 4:
|
254 |
+
hidden_states = hidden_states.squeeze(1)
|
255 |
+
|
256 |
+
# 2.5 GLIGEN Control
|
257 |
+
if gligen_kwargs is not None:
|
258 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
259 |
+
|
260 |
+
# 3. Cross-Attention
|
261 |
+
if self.attn2 is not None:
|
262 |
+
if self.use_ada_layer_norm:
|
263 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
264 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
265 |
+
norm_hidden_states = self.norm2(hidden_states)
|
266 |
+
elif self.use_ada_layer_norm_single:
|
267 |
+
# For PixArt norm2 isn't applied here:
|
268 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
269 |
+
norm_hidden_states = hidden_states
|
270 |
+
else:
|
271 |
+
raise ValueError("Incorrect norm")
|
272 |
+
|
273 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
274 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
275 |
+
|
276 |
+
attn_output = self.attn2(
|
277 |
+
norm_hidden_states,
|
278 |
+
encoder_hidden_states=encoder_hidden_states,
|
279 |
+
attention_mask=encoder_attention_mask,
|
280 |
+
**cross_attention_kwargs,
|
281 |
+
)
|
282 |
+
hidden_states = attn_output + hidden_states
|
283 |
+
|
284 |
+
# 4. Feed-forward
|
285 |
+
if not self.use_ada_layer_norm_single:
|
286 |
+
norm_hidden_states = self.norm3(hidden_states)
|
287 |
+
|
288 |
+
if self.use_ada_layer_norm_zero:
|
289 |
+
norm_hidden_states = (
|
290 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
291 |
+
)
|
292 |
+
|
293 |
+
if self.use_ada_layer_norm_single:
|
294 |
+
norm_hidden_states = self.norm2(hidden_states)
|
295 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
296 |
+
|
297 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
298 |
+
|
299 |
+
if self.use_ada_layer_norm_zero:
|
300 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
301 |
+
elif self.use_ada_layer_norm_single:
|
302 |
+
ff_output = gate_mlp * ff_output
|
303 |
+
|
304 |
+
hidden_states = ff_output + hidden_states
|
305 |
+
if hidden_states.ndim == 4:
|
306 |
+
hidden_states = hidden_states.squeeze(1)
|
307 |
+
|
308 |
+
return hidden_states
|
309 |
+
|
310 |
+
|
311 |
+
class WarpedFeatureInjector(nn.Module):
|
312 |
+
def __init__(self, dim: int):
|
313 |
+
super().__init__()
|
314 |
+
|
315 |
+
self.dim = dim
|
316 |
+
# Additional convolutional layers
|
317 |
+
self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False)
|
318 |
+
self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False)
|
319 |
+
self.conv3 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False)
|
320 |
+
# Initialize convolutional layers
|
321 |
+
nn.init.kaiming_normal_(self.conv1.weight, mode='fan_out', nonlinearity='relu')
|
322 |
+
nn.init.kaiming_normal_(self.conv2.weight, mode='fan_out', nonlinearity='relu')
|
323 |
+
nn.init.kaiming_normal_(self.conv3.weight, mode='fan_out', nonlinearity='relu')
|
324 |
+
|
325 |
+
# Zero convolution
|
326 |
+
self.out_conv = nn.Conv2d(
|
327 |
+
dim, dim, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False
|
328 |
+
)
|
329 |
+
nn.init.zeros_(self.out_conv.weight.data)
|
330 |
+
def forward(self, x):
|
331 |
+
# Apply convolutional layers
|
332 |
+
x = self.conv1(x)
|
333 |
+
x = self.conv2(x)
|
334 |
+
x = self.conv3(x)
|
335 |
+
|
336 |
+
# Apply zero convolution
|
337 |
+
x = self.out_conv(x)
|
338 |
+
|
339 |
+
return x
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
344 |
+
def __init__(
|
345 |
+
self,
|
346 |
+
dim: int,
|
347 |
+
num_attention_heads: int,
|
348 |
+
attention_head_dim: int,
|
349 |
+
dropout=0.0,
|
350 |
+
cross_attention_dim: Optional[int] = None,
|
351 |
+
activation_fn: str = "geglu",
|
352 |
+
num_embeds_ada_norm: Optional[int] = None,
|
353 |
+
attention_bias: bool = False,
|
354 |
+
only_cross_attention: bool = False,
|
355 |
+
upcast_attention: bool = False,
|
356 |
+
unet_use_cross_frame_attention=None,
|
357 |
+
unet_use_temporal_attention=None,
|
358 |
+
use_zero_convs=False,
|
359 |
+
):
|
360 |
+
super().__init__()
|
361 |
+
self.only_cross_attention = only_cross_attention
|
362 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
363 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
364 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
365 |
+
|
366 |
+
if use_zero_convs:
|
367 |
+
# self.zero_conv = nn.Conv2d(
|
368 |
+
# dim, dim, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False
|
369 |
+
# )
|
370 |
+
# nn.init.zeros_(self.zero_conv.weight.data)
|
371 |
+
self.zero_conv = WarpedFeatureInjector(dim)
|
372 |
+
|
373 |
+
else:
|
374 |
+
self.zero_conv = None
|
375 |
+
|
376 |
+
# SC-Attn
|
377 |
+
self.attn1 = Attention(
|
378 |
+
query_dim=dim,
|
379 |
+
heads=num_attention_heads,
|
380 |
+
dim_head=attention_head_dim,
|
381 |
+
dropout=dropout,
|
382 |
+
bias=attention_bias,
|
383 |
+
upcast_attention=upcast_attention,
|
384 |
+
)
|
385 |
+
self.norm1 = (
|
386 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
387 |
+
if self.use_ada_layer_norm
|
388 |
+
else nn.LayerNorm(dim)
|
389 |
+
)
|
390 |
+
|
391 |
+
# Cross-Attn
|
392 |
+
if cross_attention_dim is not None:
|
393 |
+
self.attn2 = Attention(
|
394 |
+
query_dim=dim,
|
395 |
+
cross_attention_dim=cross_attention_dim,
|
396 |
+
heads=num_attention_heads,
|
397 |
+
dim_head=attention_head_dim,
|
398 |
+
dropout=dropout,
|
399 |
+
bias=attention_bias,
|
400 |
+
upcast_attention=upcast_attention,
|
401 |
+
)
|
402 |
+
else:
|
403 |
+
self.attn2 = None
|
404 |
+
|
405 |
+
if cross_attention_dim is not None:
|
406 |
+
self.norm2 = (
|
407 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
408 |
+
if self.use_ada_layer_norm
|
409 |
+
else nn.LayerNorm(dim)
|
410 |
+
)
|
411 |
+
else:
|
412 |
+
self.norm2 = None
|
413 |
+
|
414 |
+
# Feed-forward
|
415 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
416 |
+
self.norm3 = nn.LayerNorm(dim)
|
417 |
+
self.use_ada_layer_norm_zero = False
|
418 |
+
|
419 |
+
# Temp-Attn
|
420 |
+
assert unet_use_temporal_attention is not None
|
421 |
+
if unet_use_temporal_attention:
|
422 |
+
self.attn_temp = Attention(
|
423 |
+
query_dim=dim,
|
424 |
+
heads=num_attention_heads,
|
425 |
+
dim_head=attention_head_dim,
|
426 |
+
dropout=dropout,
|
427 |
+
bias=attention_bias,
|
428 |
+
upcast_attention=upcast_attention,
|
429 |
+
)
|
430 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
431 |
+
self.norm_temp = (
|
432 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
433 |
+
if self.use_ada_layer_norm
|
434 |
+
else nn.LayerNorm(dim)
|
435 |
+
)
|
436 |
+
|
437 |
+
def forward(
|
438 |
+
self,
|
439 |
+
hidden_states,
|
440 |
+
encoder_hidden_states=None,
|
441 |
+
timestep=None,
|
442 |
+
attention_mask=None,
|
443 |
+
video_length=None,
|
444 |
+
):
|
445 |
+
norm_hidden_states = (
|
446 |
+
self.norm1(hidden_states, timestep)
|
447 |
+
if self.use_ada_layer_norm
|
448 |
+
else self.norm1(hidden_states)
|
449 |
+
)
|
450 |
+
|
451 |
+
if self.unet_use_cross_frame_attention:
|
452 |
+
hidden_states = (
|
453 |
+
self.attn1(
|
454 |
+
norm_hidden_states,
|
455 |
+
attention_mask=attention_mask,
|
456 |
+
video_length=video_length,
|
457 |
+
)
|
458 |
+
+ hidden_states
|
459 |
+
)
|
460 |
+
else:
|
461 |
+
hidden_states = (
|
462 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask)
|
463 |
+
+ hidden_states
|
464 |
+
)
|
465 |
+
|
466 |
+
if self.attn2 is not None:
|
467 |
+
# Cross-Attention
|
468 |
+
norm_hidden_states = (
|
469 |
+
self.norm2(hidden_states, timestep)
|
470 |
+
if self.use_ada_layer_norm
|
471 |
+
else self.norm2(hidden_states)
|
472 |
+
)
|
473 |
+
hidden_states = (
|
474 |
+
self.attn2(
|
475 |
+
norm_hidden_states,
|
476 |
+
encoder_hidden_states=encoder_hidden_states,
|
477 |
+
attention_mask=attention_mask,
|
478 |
+
)
|
479 |
+
+ hidden_states
|
480 |
+
)
|
481 |
+
|
482 |
+
# Feed-forward
|
483 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
484 |
+
|
485 |
+
# Temporal-Attention
|
486 |
+
if self.unet_use_temporal_attention:
|
487 |
+
d = hidden_states.shape[1]
|
488 |
+
hidden_states = rearrange(
|
489 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
490 |
+
)
|
491 |
+
norm_hidden_states = (
|
492 |
+
self.norm_temp(hidden_states, timestep)
|
493 |
+
if self.use_ada_layer_norm
|
494 |
+
else self.norm_temp(hidden_states)
|
495 |
+
)
|
496 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
497 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
498 |
+
|
499 |
+
return hidden_states
|
genwarp/models/motion_module.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# AnimateDiff
|
9 |
+
# Apache License, Version 2.0G
|
10 |
+
# https://github.com/guoyww/AnimateDiff
|
11 |
+
# ==============================================================================
|
12 |
+
|
13 |
+
# Adapt from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
|
14 |
+
import math
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Callable, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from diffusers.models.attention import FeedForward
|
21 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
22 |
+
from diffusers.utils import BaseOutput
|
23 |
+
from diffusers.utils.import_utils import is_xformers_available
|
24 |
+
from einops import rearrange, repeat
|
25 |
+
|
26 |
+
def zero_module(module):
|
27 |
+
# Zero out the parameters of a module and return it.
|
28 |
+
for p in module.parameters():
|
29 |
+
p.detach().zero_()
|
30 |
+
return module
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class TemporalTransformer3DModelOutput(BaseOutput):
|
35 |
+
sample: torch.FloatTensor
|
36 |
+
|
37 |
+
|
38 |
+
if is_xformers_available():
|
39 |
+
import xformers
|
40 |
+
import xformers.ops
|
41 |
+
else:
|
42 |
+
xformers = None
|
43 |
+
|
44 |
+
|
45 |
+
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
46 |
+
if motion_module_type == "Vanilla":
|
47 |
+
return VanillaTemporalModule(
|
48 |
+
in_channels=in_channels,
|
49 |
+
**motion_module_kwargs,
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
raise ValueError
|
53 |
+
|
54 |
+
|
55 |
+
class VanillaTemporalModule(nn.Module):
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
in_channels,
|
59 |
+
num_attention_heads=8,
|
60 |
+
num_transformer_block=2,
|
61 |
+
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
62 |
+
cross_frame_attention_mode=None,
|
63 |
+
temporal_position_encoding=False,
|
64 |
+
temporal_position_encoding_max_len=24,
|
65 |
+
temporal_attention_dim_div=1,
|
66 |
+
zero_initialize=True,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
|
70 |
+
self.temporal_transformer = TemporalTransformer3DModel(
|
71 |
+
in_channels=in_channels,
|
72 |
+
num_attention_heads=num_attention_heads,
|
73 |
+
attention_head_dim=in_channels
|
74 |
+
// num_attention_heads
|
75 |
+
// temporal_attention_dim_div,
|
76 |
+
num_layers=num_transformer_block,
|
77 |
+
attention_block_types=attention_block_types,
|
78 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
79 |
+
temporal_position_encoding=temporal_position_encoding,
|
80 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
81 |
+
)
|
82 |
+
|
83 |
+
if zero_initialize:
|
84 |
+
self.temporal_transformer.proj_out = zero_module(
|
85 |
+
self.temporal_transformer.proj_out
|
86 |
+
)
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
input_tensor,
|
91 |
+
temb,
|
92 |
+
encoder_hidden_states,
|
93 |
+
attention_mask=None,
|
94 |
+
anchor_frame_idx=None,
|
95 |
+
):
|
96 |
+
hidden_states = input_tensor
|
97 |
+
hidden_states = self.temporal_transformer(
|
98 |
+
hidden_states, encoder_hidden_states, attention_mask
|
99 |
+
)
|
100 |
+
|
101 |
+
output = hidden_states
|
102 |
+
return output
|
103 |
+
|
104 |
+
|
105 |
+
class TemporalTransformer3DModel(nn.Module):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
in_channels,
|
109 |
+
num_attention_heads,
|
110 |
+
attention_head_dim,
|
111 |
+
num_layers,
|
112 |
+
attention_block_types=(
|
113 |
+
"Temporal_Self",
|
114 |
+
"Temporal_Self",
|
115 |
+
),
|
116 |
+
dropout=0.0,
|
117 |
+
norm_num_groups=32,
|
118 |
+
cross_attention_dim=768,
|
119 |
+
activation_fn="geglu",
|
120 |
+
attention_bias=False,
|
121 |
+
upcast_attention=False,
|
122 |
+
cross_frame_attention_mode=None,
|
123 |
+
temporal_position_encoding=False,
|
124 |
+
temporal_position_encoding_max_len=24,
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
|
128 |
+
inner_dim = num_attention_heads * attention_head_dim
|
129 |
+
|
130 |
+
self.norm = torch.nn.GroupNorm(
|
131 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
132 |
+
)
|
133 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
134 |
+
|
135 |
+
self.transformer_blocks = nn.ModuleList(
|
136 |
+
[
|
137 |
+
TemporalTransformerBlock(
|
138 |
+
dim=inner_dim,
|
139 |
+
num_attention_heads=num_attention_heads,
|
140 |
+
attention_head_dim=attention_head_dim,
|
141 |
+
attention_block_types=attention_block_types,
|
142 |
+
dropout=dropout,
|
143 |
+
norm_num_groups=norm_num_groups,
|
144 |
+
cross_attention_dim=cross_attention_dim,
|
145 |
+
activation_fn=activation_fn,
|
146 |
+
attention_bias=attention_bias,
|
147 |
+
upcast_attention=upcast_attention,
|
148 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
149 |
+
temporal_position_encoding=temporal_position_encoding,
|
150 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
151 |
+
)
|
152 |
+
for d in range(num_layers)
|
153 |
+
]
|
154 |
+
)
|
155 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
156 |
+
|
157 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
158 |
+
assert (
|
159 |
+
hidden_states.dim() == 5
|
160 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
161 |
+
video_length = hidden_states.shape[2]
|
162 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
163 |
+
|
164 |
+
batch, channel, height, weight = hidden_states.shape
|
165 |
+
residual = hidden_states
|
166 |
+
|
167 |
+
hidden_states = self.norm(hidden_states)
|
168 |
+
inner_dim = hidden_states.shape[1]
|
169 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
170 |
+
batch, height * weight, inner_dim
|
171 |
+
)
|
172 |
+
hidden_states = self.proj_in(hidden_states)
|
173 |
+
|
174 |
+
# Transformer Blocks
|
175 |
+
for block in self.transformer_blocks:
|
176 |
+
hidden_states = block(
|
177 |
+
hidden_states,
|
178 |
+
encoder_hidden_states=encoder_hidden_states,
|
179 |
+
video_length=video_length,
|
180 |
+
)
|
181 |
+
|
182 |
+
# output
|
183 |
+
hidden_states = self.proj_out(hidden_states)
|
184 |
+
hidden_states = (
|
185 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
186 |
+
.permute(0, 3, 1, 2)
|
187 |
+
.contiguous()
|
188 |
+
)
|
189 |
+
|
190 |
+
output = hidden_states + residual
|
191 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
192 |
+
|
193 |
+
return output
|
194 |
+
|
195 |
+
|
196 |
+
class TemporalTransformerBlock(nn.Module):
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
dim,
|
200 |
+
num_attention_heads,
|
201 |
+
attention_head_dim,
|
202 |
+
attention_block_types=(
|
203 |
+
"Temporal_Self",
|
204 |
+
"Temporal_Self",
|
205 |
+
),
|
206 |
+
dropout=0.0,
|
207 |
+
norm_num_groups=32,
|
208 |
+
cross_attention_dim=768,
|
209 |
+
activation_fn="geglu",
|
210 |
+
attention_bias=False,
|
211 |
+
upcast_attention=False,
|
212 |
+
cross_frame_attention_mode=None,
|
213 |
+
temporal_position_encoding=False,
|
214 |
+
temporal_position_encoding_max_len=24,
|
215 |
+
):
|
216 |
+
super().__init__()
|
217 |
+
|
218 |
+
attention_blocks = []
|
219 |
+
norms = []
|
220 |
+
|
221 |
+
for block_name in attention_block_types:
|
222 |
+
attention_blocks.append(
|
223 |
+
VersatileAttention(
|
224 |
+
attention_mode=block_name.split("_")[0],
|
225 |
+
cross_attention_dim=cross_attention_dim
|
226 |
+
if block_name.endswith("_Cross")
|
227 |
+
else None,
|
228 |
+
query_dim=dim,
|
229 |
+
heads=num_attention_heads,
|
230 |
+
dim_head=attention_head_dim,
|
231 |
+
dropout=dropout,
|
232 |
+
bias=attention_bias,
|
233 |
+
upcast_attention=upcast_attention,
|
234 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
235 |
+
temporal_position_encoding=temporal_position_encoding,
|
236 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
237 |
+
)
|
238 |
+
)
|
239 |
+
norms.append(nn.LayerNorm(dim))
|
240 |
+
|
241 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
242 |
+
self.norms = nn.ModuleList(norms)
|
243 |
+
|
244 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
245 |
+
self.ff_norm = nn.LayerNorm(dim)
|
246 |
+
|
247 |
+
def forward(
|
248 |
+
self,
|
249 |
+
hidden_states,
|
250 |
+
encoder_hidden_states=None,
|
251 |
+
attention_mask=None,
|
252 |
+
video_length=None,
|
253 |
+
):
|
254 |
+
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
255 |
+
norm_hidden_states = norm(hidden_states)
|
256 |
+
hidden_states = (
|
257 |
+
attention_block(
|
258 |
+
norm_hidden_states,
|
259 |
+
encoder_hidden_states=encoder_hidden_states
|
260 |
+
if attention_block.is_cross_attention
|
261 |
+
else None,
|
262 |
+
video_length=video_length,
|
263 |
+
)
|
264 |
+
+ hidden_states
|
265 |
+
)
|
266 |
+
|
267 |
+
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
268 |
+
|
269 |
+
output = hidden_states
|
270 |
+
return output
|
271 |
+
|
272 |
+
|
273 |
+
class PositionalEncoding(nn.Module):
|
274 |
+
def __init__(self, d_model, dropout=0.0, max_len=24):
|
275 |
+
super().__init__()
|
276 |
+
self.dropout = nn.Dropout(p=dropout)
|
277 |
+
position = torch.arange(max_len).unsqueeze(1)
|
278 |
+
div_term = torch.exp(
|
279 |
+
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
280 |
+
)
|
281 |
+
pe = torch.zeros(1, max_len, d_model)
|
282 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
283 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
284 |
+
self.register_buffer("pe", pe)
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
x = x + self.pe[:, : x.size(1)]
|
288 |
+
return self.dropout(x)
|
289 |
+
|
290 |
+
|
291 |
+
class VersatileAttention(Attention):
|
292 |
+
def __init__(
|
293 |
+
self,
|
294 |
+
attention_mode=None,
|
295 |
+
cross_frame_attention_mode=None,
|
296 |
+
temporal_position_encoding=False,
|
297 |
+
temporal_position_encoding_max_len=24,
|
298 |
+
*args,
|
299 |
+
**kwargs,
|
300 |
+
):
|
301 |
+
super().__init__(*args, **kwargs)
|
302 |
+
assert attention_mode == "Temporal"
|
303 |
+
|
304 |
+
self.attention_mode = attention_mode
|
305 |
+
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
306 |
+
|
307 |
+
self.pos_encoder = (
|
308 |
+
PositionalEncoding(
|
309 |
+
kwargs["query_dim"],
|
310 |
+
dropout=0.0,
|
311 |
+
max_len=temporal_position_encoding_max_len,
|
312 |
+
)
|
313 |
+
if (temporal_position_encoding and attention_mode == "Temporal")
|
314 |
+
else None
|
315 |
+
)
|
316 |
+
|
317 |
+
def extra_repr(self):
|
318 |
+
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
319 |
+
|
320 |
+
def set_use_memory_efficient_attention_xformers(
|
321 |
+
self,
|
322 |
+
use_memory_efficient_attention_xformers: bool,
|
323 |
+
attention_op: Optional[Callable] = None,
|
324 |
+
):
|
325 |
+
if use_memory_efficient_attention_xformers:
|
326 |
+
if not is_xformers_available():
|
327 |
+
raise ModuleNotFoundError(
|
328 |
+
(
|
329 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
330 |
+
" xformers"
|
331 |
+
),
|
332 |
+
name="xformers",
|
333 |
+
)
|
334 |
+
elif not torch.cuda.is_available():
|
335 |
+
raise ValueError(
|
336 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
337 |
+
" only available for GPU "
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
try:
|
341 |
+
# Make sure we can run the memory efficient attention
|
342 |
+
_ = xformers.ops.memory_efficient_attention(
|
343 |
+
torch.randn((1, 2, 40), device="cuda"),
|
344 |
+
torch.randn((1, 2, 40), device="cuda"),
|
345 |
+
torch.randn((1, 2, 40), device="cuda"),
|
346 |
+
)
|
347 |
+
except Exception as e:
|
348 |
+
raise e
|
349 |
+
|
350 |
+
# XFormersAttnProcessor corrupts video generation and work with Pytorch 1.13.
|
351 |
+
# Pytorch 2.0.1 AttnProcessor works the same as XFormersAttnProcessor in Pytorch 1.13.
|
352 |
+
# You don't need XFormersAttnProcessor here.
|
353 |
+
# processor = XFormersAttnProcessor(
|
354 |
+
# attention_op=attention_op,
|
355 |
+
# )
|
356 |
+
processor = AttnProcessor()
|
357 |
+
else:
|
358 |
+
processor = AttnProcessor()
|
359 |
+
|
360 |
+
self.set_processor(processor)
|
361 |
+
|
362 |
+
def forward(
|
363 |
+
self,
|
364 |
+
hidden_states,
|
365 |
+
encoder_hidden_states=None,
|
366 |
+
attention_mask=None,
|
367 |
+
video_length=None,
|
368 |
+
**cross_attention_kwargs,
|
369 |
+
):
|
370 |
+
if self.attention_mode == "Temporal":
|
371 |
+
d = hidden_states.shape[1] # d means HxW
|
372 |
+
hidden_states = rearrange(
|
373 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
374 |
+
)
|
375 |
+
|
376 |
+
if self.pos_encoder is not None:
|
377 |
+
hidden_states = self.pos_encoder(hidden_states)
|
378 |
+
|
379 |
+
encoder_hidden_states = (
|
380 |
+
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
381 |
+
if encoder_hidden_states is not None
|
382 |
+
else encoder_hidden_states
|
383 |
+
)
|
384 |
+
|
385 |
+
else:
|
386 |
+
raise NotImplementedError
|
387 |
+
|
388 |
+
hidden_states = self.processor(
|
389 |
+
self,
|
390 |
+
hidden_states,
|
391 |
+
encoder_hidden_states=encoder_hidden_states,
|
392 |
+
attention_mask=attention_mask,
|
393 |
+
**cross_attention_kwargs,
|
394 |
+
)
|
395 |
+
|
396 |
+
if self.attention_mode == "Temporal":
|
397 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
398 |
+
|
399 |
+
return hidden_states
|
genwarp/models/mutual_self_attention.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# magic-animate
|
9 |
+
# BSD 3-Clause License
|
10 |
+
# Copyright (c) Bytedance Inc.
|
11 |
+
# https://github.com/magic-research/magic-animate
|
12 |
+
# ==============================================================================
|
13 |
+
|
14 |
+
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
import math
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from einops import rearrange
|
20 |
+
|
21 |
+
from .attention import TemporalBasicTransformerBlock
|
22 |
+
from .attention import BasicTransformerBlock
|
23 |
+
|
24 |
+
def torch_dfs(model: torch.nn.Module):
|
25 |
+
result = [model]
|
26 |
+
for child in model.children():
|
27 |
+
result += torch_dfs(child)
|
28 |
+
return result
|
29 |
+
|
30 |
+
|
31 |
+
class ReferenceAttentionControl:
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
unet,
|
35 |
+
mode="write",
|
36 |
+
do_classifier_free_guidance=False,
|
37 |
+
attention_auto_machine_weight=float("inf"),
|
38 |
+
gn_auto_machine_weight=1.0,
|
39 |
+
style_fidelity=1.0,
|
40 |
+
reference_attn=True,
|
41 |
+
reference_adain=False,
|
42 |
+
fusion_blocks="midup",
|
43 |
+
batch_size=1,
|
44 |
+
feature_fusion_type=None,
|
45 |
+
) -> None:
|
46 |
+
self.unet = unet
|
47 |
+
assert mode in ["read", "write"]
|
48 |
+
assert fusion_blocks in ["midup", "full"]
|
49 |
+
self.reference_attn = reference_attn
|
50 |
+
self.reference_adain = reference_adain
|
51 |
+
self.fusion_blocks = fusion_blocks
|
52 |
+
self.feature_fusion_type = feature_fusion_type
|
53 |
+
|
54 |
+
self.mode = mode
|
55 |
+
self.do_classifier_free_guidance = do_classifier_free_guidance
|
56 |
+
self.attention_auto_machine_weight = attention_auto_machine_weight
|
57 |
+
self.gn_auto_machine_weight = gn_auto_machine_weight
|
58 |
+
self.style_fidelity = style_fidelity
|
59 |
+
self.batch_size = batch_size
|
60 |
+
|
61 |
+
self.register_reference_hooks(
|
62 |
+
mode,
|
63 |
+
do_classifier_free_guidance,
|
64 |
+
attention_auto_machine_weight,
|
65 |
+
gn_auto_machine_weight,
|
66 |
+
style_fidelity,
|
67 |
+
reference_attn,
|
68 |
+
reference_adain,
|
69 |
+
fusion_blocks,
|
70 |
+
batch_size=batch_size,
|
71 |
+
)
|
72 |
+
|
73 |
+
def rehook(self):
|
74 |
+
self.register_reference_hooks(
|
75 |
+
self.mode,
|
76 |
+
self.do_classifier_free_guidance,
|
77 |
+
self.attention_auto_machine_weight,
|
78 |
+
self.gn_auto_machine_weight,
|
79 |
+
self.style_fidelity,
|
80 |
+
self.reference_attn,
|
81 |
+
self.reference_adain,
|
82 |
+
self.fusion_blocks,
|
83 |
+
self.batch_size,
|
84 |
+
)
|
85 |
+
|
86 |
+
def register_reference_hooks(
|
87 |
+
self,
|
88 |
+
mode,
|
89 |
+
do_classifier_free_guidance,
|
90 |
+
attention_auto_machine_weight,
|
91 |
+
gn_auto_machine_weight,
|
92 |
+
style_fidelity,
|
93 |
+
reference_attn,
|
94 |
+
reference_adain,
|
95 |
+
dtype=torch.float16,
|
96 |
+
batch_size=1,
|
97 |
+
num_images_per_prompt=1,
|
98 |
+
device=torch.device("cpu"),
|
99 |
+
fusion_blocks="midup",
|
100 |
+
):
|
101 |
+
do_classifier_free_guidance = do_classifier_free_guidance
|
102 |
+
attention_auto_machine_weight = attention_auto_machine_weight
|
103 |
+
gn_auto_machine_weight = gn_auto_machine_weight
|
104 |
+
style_fidelity = style_fidelity
|
105 |
+
reference_attn = reference_attn
|
106 |
+
reference_adain = reference_adain
|
107 |
+
fusion_blocks = fusion_blocks
|
108 |
+
num_images_per_prompt = num_images_per_prompt
|
109 |
+
dtype = dtype
|
110 |
+
feature_fusion_type = self.feature_fusion_type
|
111 |
+
|
112 |
+
if do_classifier_free_guidance:
|
113 |
+
uc_mask = (
|
114 |
+
torch.Tensor(
|
115 |
+
[1] * batch_size * num_images_per_prompt * 16
|
116 |
+
+ [0] * batch_size * num_images_per_prompt * 16
|
117 |
+
)
|
118 |
+
.to(device)
|
119 |
+
.bool()
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
uc_mask = (
|
123 |
+
torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
|
124 |
+
.to(device)
|
125 |
+
.bool()
|
126 |
+
)
|
127 |
+
|
128 |
+
def hacked_basic_transformer_inner_forward(
|
129 |
+
self,
|
130 |
+
hidden_states: torch.FloatTensor,
|
131 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
132 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
133 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
134 |
+
timestep: Optional[torch.LongTensor] = None,
|
135 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
136 |
+
class_labels: Optional[torch.LongTensor] = None,
|
137 |
+
video_length=None,
|
138 |
+
):
|
139 |
+
if self.use_ada_layer_norm: # False
|
140 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
141 |
+
elif self.use_ada_layer_norm_zero:
|
142 |
+
(
|
143 |
+
norm_hidden_states,
|
144 |
+
gate_msa,
|
145 |
+
shift_mlp,
|
146 |
+
scale_mlp,
|
147 |
+
gate_mlp,
|
148 |
+
) = self.norm1(
|
149 |
+
hidden_states,
|
150 |
+
timestep,
|
151 |
+
class_labels,
|
152 |
+
hidden_dtype=hidden_states.dtype,
|
153 |
+
)
|
154 |
+
else:
|
155 |
+
norm_hidden_states = self.norm1(hidden_states)
|
156 |
+
|
157 |
+
cross_attention_kwargs = (
|
158 |
+
cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
159 |
+
)
|
160 |
+
if self.only_cross_attention:
|
161 |
+
attn_output = self.attn1(
|
162 |
+
norm_hidden_states,
|
163 |
+
encoder_hidden_states=encoder_hidden_states
|
164 |
+
if self.only_cross_attention
|
165 |
+
else None,
|
166 |
+
attention_mask=attention_mask,
|
167 |
+
**cross_attention_kwargs,
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
if mode == "write":
|
171 |
+
self.bank.append(norm_hidden_states.clone())
|
172 |
+
self.bank_unnorm.append(hidden_states.clone())
|
173 |
+
attn_output = self.attn1(
|
174 |
+
norm_hidden_states,
|
175 |
+
encoder_hidden_states=encoder_hidden_states
|
176 |
+
if self.only_cross_attention
|
177 |
+
else None,
|
178 |
+
attention_mask=attention_mask,
|
179 |
+
**cross_attention_kwargs,
|
180 |
+
)
|
181 |
+
if mode == "read":
|
182 |
+
bank_fea = [
|
183 |
+
rearrange(
|
184 |
+
d.unsqueeze(1).repeat(1, video_length, 1, 1),
|
185 |
+
"b t l c -> (b t) l c",
|
186 |
+
)
|
187 |
+
for d in self.bank
|
188 |
+
]
|
189 |
+
|
190 |
+
bank_fea_unnorm = [
|
191 |
+
rearrange(
|
192 |
+
d.unsqueeze(1).repeat(1, video_length, 1, 1),
|
193 |
+
"b t l c -> (b t) l c",
|
194 |
+
)
|
195 |
+
for d in self.bank_unnorm
|
196 |
+
]
|
197 |
+
|
198 |
+
|
199 |
+
modify_norm_hidden_states = torch.cat(
|
200 |
+
[norm_hidden_states] + bank_fea, dim=1
|
201 |
+
)
|
202 |
+
|
203 |
+
if feature_fusion_type == 'attention_full_sharing':
|
204 |
+
# Full sharing for ablation exp.
|
205 |
+
hidden_states_uc = (
|
206 |
+
self.attn1(
|
207 |
+
norm_hidden_states,
|
208 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
209 |
+
attention_mask=None,
|
210 |
+
)
|
211 |
+
+ hidden_states
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
raise ValueError("feature_fusion_type is not valid")
|
215 |
+
|
216 |
+
if do_classifier_free_guidance:
|
217 |
+
hidden_states_c = hidden_states_uc.clone()
|
218 |
+
_uc_mask = uc_mask.clone()
|
219 |
+
if hidden_states.shape[0] != _uc_mask.shape[0]:
|
220 |
+
_uc_mask = (
|
221 |
+
torch.Tensor(
|
222 |
+
[1] * (hidden_states.shape[0] // 2)
|
223 |
+
+ [0] * (hidden_states.shape[0] // 2)
|
224 |
+
)
|
225 |
+
.to(device)
|
226 |
+
.bool()
|
227 |
+
)
|
228 |
+
hidden_states_c[_uc_mask] = (
|
229 |
+
self.attn1(
|
230 |
+
norm_hidden_states[_uc_mask],
|
231 |
+
encoder_hidden_states=norm_hidden_states[_uc_mask],
|
232 |
+
attention_mask=None,
|
233 |
+
)
|
234 |
+
+ hidden_states[_uc_mask]
|
235 |
+
)
|
236 |
+
hidden_states = hidden_states_c.clone()
|
237 |
+
else:
|
238 |
+
hidden_states = hidden_states_uc
|
239 |
+
|
240 |
+
if self.attn2 is not None:
|
241 |
+
# Cross-Attention
|
242 |
+
norm_hidden_states = (
|
243 |
+
self.norm2(hidden_states, timestep)
|
244 |
+
if self.use_ada_layer_norm
|
245 |
+
else self.norm2(hidden_states)
|
246 |
+
)
|
247 |
+
hidden_states = (
|
248 |
+
self.attn2(
|
249 |
+
norm_hidden_states,
|
250 |
+
encoder_hidden_states=encoder_hidden_states,
|
251 |
+
attention_mask=None,
|
252 |
+
)
|
253 |
+
+ hidden_states
|
254 |
+
)
|
255 |
+
|
256 |
+
# Feed-forward
|
257 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
258 |
+
|
259 |
+
# Temporal-Attention
|
260 |
+
if self.unet_use_temporal_attention:
|
261 |
+
d = hidden_states.shape[1]
|
262 |
+
hidden_states = rearrange(
|
263 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
264 |
+
)
|
265 |
+
norm_hidden_states = (
|
266 |
+
self.norm_temp(hidden_states, timestep)
|
267 |
+
if self.use_ada_layer_norm
|
268 |
+
else self.norm_temp(hidden_states)
|
269 |
+
)
|
270 |
+
hidden_states = (
|
271 |
+
self.attn_temp(norm_hidden_states) + hidden_states
|
272 |
+
)
|
273 |
+
hidden_states = rearrange(
|
274 |
+
hidden_states, "(b d) f c -> (b f) d c", d=d
|
275 |
+
)
|
276 |
+
|
277 |
+
return hidden_states
|
278 |
+
|
279 |
+
if self.use_ada_layer_norm_zero:
|
280 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
281 |
+
hidden_states = attn_output + hidden_states
|
282 |
+
|
283 |
+
if self.attn2 is not None:
|
284 |
+
norm_hidden_states = (
|
285 |
+
self.norm2(hidden_states, timestep)
|
286 |
+
if self.use_ada_layer_norm
|
287 |
+
else self.norm2(hidden_states)
|
288 |
+
)
|
289 |
+
|
290 |
+
attn_output = self.attn2(
|
291 |
+
norm_hidden_states,
|
292 |
+
encoder_hidden_states=encoder_hidden_states,
|
293 |
+
attention_mask=encoder_attention_mask,
|
294 |
+
**cross_attention_kwargs,
|
295 |
+
)
|
296 |
+
hidden_states = attn_output + hidden_states
|
297 |
+
|
298 |
+
norm_hidden_states = self.norm3(hidden_states)
|
299 |
+
|
300 |
+
if self.use_ada_layer_norm_zero:
|
301 |
+
norm_hidden_states = (
|
302 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
303 |
+
)
|
304 |
+
|
305 |
+
ff_output = self.ff(norm_hidden_states)
|
306 |
+
|
307 |
+
if self.use_ada_layer_norm_zero:
|
308 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
309 |
+
|
310 |
+
hidden_states = ff_output + hidden_states
|
311 |
+
|
312 |
+
return hidden_states
|
313 |
+
|
314 |
+
if self.reference_attn:
|
315 |
+
if self.fusion_blocks == "midup":
|
316 |
+
attn_modules = [
|
317 |
+
module
|
318 |
+
for module in (
|
319 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
320 |
+
)
|
321 |
+
if isinstance(module, BasicTransformerBlock)
|
322 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
323 |
+
]
|
324 |
+
elif self.fusion_blocks == "full":
|
325 |
+
attn_modules = [
|
326 |
+
module
|
327 |
+
for module in torch_dfs(self.unet)
|
328 |
+
if isinstance(module, BasicTransformerBlock)
|
329 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
330 |
+
]
|
331 |
+
attn_modules = sorted(
|
332 |
+
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
333 |
+
)
|
334 |
+
|
335 |
+
for i, module in enumerate(attn_modules):
|
336 |
+
module._original_inner_forward = module.forward
|
337 |
+
if isinstance(module, BasicTransformerBlock):
|
338 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
339 |
+
module, BasicTransformerBlock
|
340 |
+
)
|
341 |
+
if isinstance(module, TemporalBasicTransformerBlock):
|
342 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
343 |
+
module, TemporalBasicTransformerBlock
|
344 |
+
)
|
345 |
+
|
346 |
+
module.bank = []
|
347 |
+
module.bank_unnorm = []
|
348 |
+
module.correspondence = None
|
349 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
350 |
+
|
351 |
+
def update(self, writer, correspondence=None, dtype=torch.float16):
|
352 |
+
if self.reference_attn:
|
353 |
+
if self.fusion_blocks == "midup":
|
354 |
+
reader_attn_modules = [
|
355 |
+
module
|
356 |
+
for module in (
|
357 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
358 |
+
)
|
359 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
360 |
+
]
|
361 |
+
writer_attn_modules = [
|
362 |
+
module
|
363 |
+
for module in (
|
364 |
+
torch_dfs(writer.unet.mid_block)
|
365 |
+
+ torch_dfs(writer.unet.up_blocks)
|
366 |
+
)
|
367 |
+
if isinstance(module, BasicTransformerBlock)
|
368 |
+
]
|
369 |
+
elif self.fusion_blocks == "full":
|
370 |
+
reader_attn_modules = [
|
371 |
+
module
|
372 |
+
for module in torch_dfs(self.unet)
|
373 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
374 |
+
]
|
375 |
+
writer_attn_modules = [
|
376 |
+
module
|
377 |
+
for module in torch_dfs(writer.unet)
|
378 |
+
if isinstance(module, BasicTransformerBlock)
|
379 |
+
]
|
380 |
+
reader_attn_modules = sorted(
|
381 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
382 |
+
)
|
383 |
+
writer_attn_modules = sorted(
|
384 |
+
writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
385 |
+
)
|
386 |
+
for r, w in zip(reader_attn_modules, writer_attn_modules):
|
387 |
+
r.bank = [v.clone().to(dtype) for v in w.bank]
|
388 |
+
r.bank_unnorm = [v.clone().to(dtype) for v in w.bank_unnorm]
|
389 |
+
if correspondence is not None:
|
390 |
+
r.correspondence = [correspondence]
|
391 |
+
else:
|
392 |
+
r.correspondence = None
|
393 |
+
|
394 |
+
def clear(self):
|
395 |
+
if self.reference_attn:
|
396 |
+
if self.fusion_blocks == "midup":
|
397 |
+
reader_attn_modules = [
|
398 |
+
module
|
399 |
+
for module in (
|
400 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
401 |
+
)
|
402 |
+
if isinstance(module, BasicTransformerBlock)
|
403 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
404 |
+
]
|
405 |
+
elif self.fusion_blocks == "full":
|
406 |
+
reader_attn_modules = [
|
407 |
+
module
|
408 |
+
for module in torch_dfs(self.unet)
|
409 |
+
if isinstance(module, BasicTransformerBlock)
|
410 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
411 |
+
]
|
412 |
+
reader_attn_modules = sorted(
|
413 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
414 |
+
)
|
415 |
+
for r in reader_attn_modules:
|
416 |
+
r.bank.clear()
|
417 |
+
r.bank_unnorm.clear()
|
418 |
+
if r.correspondence is not None:
|
419 |
+
r.correspondence.clear()
|
420 |
+
r.correspondence = None
|
genwarp/models/pose_guider.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# ==============================================================================
|
8 |
+
|
9 |
+
from typing import Tuple
|
10 |
+
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from diffusers.models.modeling_utils import ModelMixin
|
14 |
+
|
15 |
+
from .motion_module import zero_module
|
16 |
+
from .resnet import InflatedConv3d
|
17 |
+
|
18 |
+
class PoseGuider(ModelMixin):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
conditioning_embedding_channels: int,
|
22 |
+
conditioning_channels: int = 3,
|
23 |
+
block_out_channels: Tuple[int] = (16, 32, 64, 128),
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
self.conv_in = InflatedConv3d(
|
27 |
+
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
28 |
+
)
|
29 |
+
|
30 |
+
self.blocks = nn.ModuleList([])
|
31 |
+
|
32 |
+
for i in range(len(block_out_channels) - 1):
|
33 |
+
channel_in = block_out_channels[i]
|
34 |
+
channel_out = block_out_channels[i + 1]
|
35 |
+
self.blocks.append(
|
36 |
+
InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
|
37 |
+
)
|
38 |
+
self.blocks.append(
|
39 |
+
InflatedConv3d(
|
40 |
+
channel_in, channel_out, kernel_size=3, padding=1, stride=2
|
41 |
+
)
|
42 |
+
)
|
43 |
+
|
44 |
+
self.conv_out = zero_module(
|
45 |
+
InflatedConv3d(
|
46 |
+
block_out_channels[-1],
|
47 |
+
conditioning_embedding_channels,
|
48 |
+
kernel_size=3,
|
49 |
+
padding=1,
|
50 |
+
)
|
51 |
+
)
|
52 |
+
|
53 |
+
def forward(self, conditioning):
|
54 |
+
embedding = self.conv_in(conditioning)
|
55 |
+
embedding = F.silu(embedding)
|
56 |
+
|
57 |
+
for block in self.blocks:
|
58 |
+
embedding = block(embedding)
|
59 |
+
embedding = F.silu(embedding)
|
60 |
+
|
61 |
+
embedding = self.conv_out(embedding)
|
62 |
+
|
63 |
+
return embedding
|
genwarp/models/resnet.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# Diffusers
|
9 |
+
# Apache License, Version 2.0
|
10 |
+
# Copyright (c) Hugging Face Inc.
|
11 |
+
# https://github.com/huggingface/diffusers
|
12 |
+
# ==============================================================================
|
13 |
+
|
14 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from einops import rearrange
|
20 |
+
|
21 |
+
|
22 |
+
class InflatedConv3d(nn.Conv2d):
|
23 |
+
def forward(self, x):
|
24 |
+
video_length = x.shape[2]
|
25 |
+
|
26 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
27 |
+
x = super().forward(x)
|
28 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
29 |
+
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
class InflatedGroupNorm(nn.GroupNorm):
|
34 |
+
def forward(self, x):
|
35 |
+
video_length = x.shape[2]
|
36 |
+
|
37 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
38 |
+
x = super().forward(x)
|
39 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
40 |
+
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
class Upsample3D(nn.Module):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
channels,
|
48 |
+
use_conv=False,
|
49 |
+
use_conv_transpose=False,
|
50 |
+
out_channels=None,
|
51 |
+
name="conv",
|
52 |
+
):
|
53 |
+
super().__init__()
|
54 |
+
self.channels = channels
|
55 |
+
self.out_channels = out_channels or channels
|
56 |
+
self.use_conv = use_conv
|
57 |
+
self.use_conv_transpose = use_conv_transpose
|
58 |
+
self.name = name
|
59 |
+
|
60 |
+
conv = None
|
61 |
+
if use_conv_transpose:
|
62 |
+
raise NotImplementedError
|
63 |
+
elif use_conv:
|
64 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
65 |
+
|
66 |
+
def forward(self, hidden_states, output_size=None):
|
67 |
+
assert hidden_states.shape[1] == self.channels
|
68 |
+
|
69 |
+
if self.use_conv_transpose:
|
70 |
+
raise NotImplementedError
|
71 |
+
|
72 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
73 |
+
dtype = hidden_states.dtype
|
74 |
+
if dtype == torch.bfloat16:
|
75 |
+
hidden_states = hidden_states.to(torch.float32)
|
76 |
+
|
77 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
78 |
+
if hidden_states.shape[0] >= 64:
|
79 |
+
hidden_states = hidden_states.contiguous()
|
80 |
+
|
81 |
+
# if `output_size` is passed we force the interpolation output
|
82 |
+
# size and do not make use of `scale_factor=2`
|
83 |
+
if output_size is None:
|
84 |
+
hidden_states = F.interpolate(
|
85 |
+
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest"
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
hidden_states = F.interpolate(
|
89 |
+
hidden_states, size=output_size, mode="nearest"
|
90 |
+
)
|
91 |
+
|
92 |
+
# If the input is bfloat16, we cast back to bfloat16
|
93 |
+
if dtype == torch.bfloat16:
|
94 |
+
hidden_states = hidden_states.to(dtype)
|
95 |
+
|
96 |
+
# if self.use_conv:
|
97 |
+
# if self.name == "conv":
|
98 |
+
# hidden_states = self.conv(hidden_states)
|
99 |
+
# else:
|
100 |
+
# hidden_states = self.Conv2d_0(hidden_states)
|
101 |
+
hidden_states = self.conv(hidden_states)
|
102 |
+
|
103 |
+
return hidden_states
|
104 |
+
|
105 |
+
|
106 |
+
class Downsample3D(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self, channels, use_conv=False, out_channels=None, padding=1, name="conv"
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
self.channels = channels
|
112 |
+
self.out_channels = out_channels or channels
|
113 |
+
self.use_conv = use_conv
|
114 |
+
self.padding = padding
|
115 |
+
stride = 2
|
116 |
+
self.name = name
|
117 |
+
|
118 |
+
if use_conv:
|
119 |
+
self.conv = InflatedConv3d(
|
120 |
+
self.channels, self.out_channels, 3, stride=stride, padding=padding
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
raise NotImplementedError
|
124 |
+
|
125 |
+
def forward(self, hidden_states):
|
126 |
+
assert hidden_states.shape[1] == self.channels
|
127 |
+
if self.use_conv and self.padding == 0:
|
128 |
+
raise NotImplementedError
|
129 |
+
|
130 |
+
assert hidden_states.shape[1] == self.channels
|
131 |
+
hidden_states = self.conv(hidden_states)
|
132 |
+
|
133 |
+
return hidden_states
|
134 |
+
|
135 |
+
|
136 |
+
class ResnetBlock3D(nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
*,
|
140 |
+
in_channels,
|
141 |
+
out_channels=None,
|
142 |
+
conv_shortcut=False,
|
143 |
+
dropout=0.0,
|
144 |
+
temb_channels=512,
|
145 |
+
groups=32,
|
146 |
+
groups_out=None,
|
147 |
+
pre_norm=True,
|
148 |
+
eps=1e-6,
|
149 |
+
non_linearity="swish",
|
150 |
+
time_embedding_norm="default",
|
151 |
+
output_scale_factor=1.0,
|
152 |
+
use_in_shortcut=None,
|
153 |
+
use_inflated_groupnorm=None,
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
self.pre_norm = pre_norm
|
157 |
+
self.pre_norm = True
|
158 |
+
self.in_channels = in_channels
|
159 |
+
out_channels = in_channels if out_channels is None else out_channels
|
160 |
+
self.out_channels = out_channels
|
161 |
+
self.use_conv_shortcut = conv_shortcut
|
162 |
+
self.time_embedding_norm = time_embedding_norm
|
163 |
+
self.output_scale_factor = output_scale_factor
|
164 |
+
|
165 |
+
if groups_out is None:
|
166 |
+
groups_out = groups
|
167 |
+
|
168 |
+
assert use_inflated_groupnorm != None
|
169 |
+
if use_inflated_groupnorm:
|
170 |
+
self.norm1 = InflatedGroupNorm(
|
171 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
172 |
+
)
|
173 |
+
else:
|
174 |
+
self.norm1 = torch.nn.GroupNorm(
|
175 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
176 |
+
)
|
177 |
+
|
178 |
+
self.conv1 = InflatedConv3d(
|
179 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
180 |
+
)
|
181 |
+
|
182 |
+
if temb_channels is not None:
|
183 |
+
if self.time_embedding_norm == "default":
|
184 |
+
time_emb_proj_out_channels = out_channels
|
185 |
+
elif self.time_embedding_norm == "scale_shift":
|
186 |
+
time_emb_proj_out_channels = out_channels * 2
|
187 |
+
else:
|
188 |
+
raise ValueError(
|
189 |
+
f"unknown time_embedding_norm : {self.time_embedding_norm} "
|
190 |
+
)
|
191 |
+
|
192 |
+
self.time_emb_proj = torch.nn.Linear(
|
193 |
+
temb_channels, time_emb_proj_out_channels
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
self.time_emb_proj = None
|
197 |
+
|
198 |
+
if use_inflated_groupnorm:
|
199 |
+
self.norm2 = InflatedGroupNorm(
|
200 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
self.norm2 = torch.nn.GroupNorm(
|
204 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
205 |
+
)
|
206 |
+
self.dropout = torch.nn.Dropout(dropout)
|
207 |
+
self.conv2 = InflatedConv3d(
|
208 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
209 |
+
)
|
210 |
+
|
211 |
+
if non_linearity == "swish":
|
212 |
+
self.nonlinearity = lambda x: F.silu(x)
|
213 |
+
elif non_linearity == "mish":
|
214 |
+
self.nonlinearity = Mish()
|
215 |
+
elif non_linearity == "silu":
|
216 |
+
self.nonlinearity = nn.SiLU()
|
217 |
+
|
218 |
+
self.use_in_shortcut = (
|
219 |
+
self.in_channels != self.out_channels
|
220 |
+
if use_in_shortcut is None
|
221 |
+
else use_in_shortcut
|
222 |
+
)
|
223 |
+
|
224 |
+
self.conv_shortcut = None
|
225 |
+
if self.use_in_shortcut:
|
226 |
+
self.conv_shortcut = InflatedConv3d(
|
227 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
228 |
+
)
|
229 |
+
|
230 |
+
def forward(self, input_tensor, temb):
|
231 |
+
hidden_states = input_tensor
|
232 |
+
|
233 |
+
hidden_states = self.norm1(hidden_states)
|
234 |
+
hidden_states = self.nonlinearity(hidden_states)
|
235 |
+
|
236 |
+
hidden_states = self.conv1(hidden_states)
|
237 |
+
|
238 |
+
if temb is not None:
|
239 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
240 |
+
|
241 |
+
if temb is not None and self.time_embedding_norm == "default":
|
242 |
+
hidden_states = hidden_states + temb
|
243 |
+
|
244 |
+
hidden_states = self.norm2(hidden_states)
|
245 |
+
|
246 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
247 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
248 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
249 |
+
|
250 |
+
hidden_states = self.nonlinearity(hidden_states)
|
251 |
+
|
252 |
+
hidden_states = self.dropout(hidden_states)
|
253 |
+
hidden_states = self.conv2(hidden_states)
|
254 |
+
|
255 |
+
if self.conv_shortcut is not None:
|
256 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
257 |
+
|
258 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
259 |
+
|
260 |
+
return output_tensor
|
261 |
+
|
262 |
+
|
263 |
+
class Mish(torch.nn.Module):
|
264 |
+
def forward(self, hidden_states):
|
265 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
genwarp/models/transformer_2d.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# Diffusers
|
9 |
+
# Apache License, Version 2.0
|
10 |
+
# Copyright (c) Hugging Face Inc.
|
11 |
+
# https://github.com/huggingface/diffusers
|
12 |
+
# ==============================================================================
|
13 |
+
|
14 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
20 |
+
# from diffusers.models.embeddings import CaptionProjection
|
21 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
22 |
+
from diffusers.models.modeling_utils import ModelMixin
|
23 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
24 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
25 |
+
from torch import nn
|
26 |
+
|
27 |
+
from .attention import BasicTransformerBlock
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class Transformer2DModelOutput(BaseOutput):
|
32 |
+
"""
|
33 |
+
The output of [`Transformer2DModel`].
|
34 |
+
|
35 |
+
Args:
|
36 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
37 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
38 |
+
distributions for the unnoised latent pixels.
|
39 |
+
"""
|
40 |
+
|
41 |
+
sample: torch.FloatTensor
|
42 |
+
ref_feature: torch.FloatTensor
|
43 |
+
|
44 |
+
|
45 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
46 |
+
"""
|
47 |
+
A 2D Transformer model for image-like data.
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
51 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
52 |
+
in_channels (`int`, *optional*):
|
53 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
54 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
55 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
56 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
57 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
58 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
59 |
+
num_vector_embeds (`int`, *optional*):
|
60 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
61 |
+
Includes the class for the masked latent pixel.
|
62 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
63 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
64 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
65 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
66 |
+
added to the hidden states.
|
67 |
+
|
68 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
69 |
+
attention_bias (`bool`, *optional*):
|
70 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
71 |
+
"""
|
72 |
+
|
73 |
+
_supports_gradient_checkpointing = True
|
74 |
+
|
75 |
+
@register_to_config
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
num_attention_heads: int = 16,
|
79 |
+
attention_head_dim: int = 88,
|
80 |
+
in_channels: Optional[int] = None,
|
81 |
+
out_channels: Optional[int] = None,
|
82 |
+
num_layers: int = 1,
|
83 |
+
dropout: float = 0.0,
|
84 |
+
norm_num_groups: int = 32,
|
85 |
+
cross_attention_dim: Optional[int] = None,
|
86 |
+
attention_bias: bool = False,
|
87 |
+
sample_size: Optional[int] = None,
|
88 |
+
num_vector_embeds: Optional[int] = None,
|
89 |
+
patch_size: Optional[int] = None,
|
90 |
+
activation_fn: str = "geglu",
|
91 |
+
num_embeds_ada_norm: Optional[int] = None,
|
92 |
+
use_linear_projection: bool = False,
|
93 |
+
only_cross_attention: bool = False,
|
94 |
+
double_self_attention: bool = False,
|
95 |
+
upcast_attention: bool = False,
|
96 |
+
norm_type: str = "layer_norm",
|
97 |
+
norm_elementwise_affine: bool = True,
|
98 |
+
norm_eps: float = 1e-5,
|
99 |
+
attention_type: str = "default",
|
100 |
+
caption_channels: int = None,
|
101 |
+
):
|
102 |
+
super().__init__()
|
103 |
+
self.use_linear_projection = use_linear_projection
|
104 |
+
self.num_attention_heads = num_attention_heads
|
105 |
+
self.attention_head_dim = attention_head_dim
|
106 |
+
inner_dim = num_attention_heads * attention_head_dim
|
107 |
+
|
108 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
109 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
110 |
+
|
111 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
112 |
+
# Define whether input is continuous or discrete depending on configuration
|
113 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
114 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
115 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
116 |
+
|
117 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
118 |
+
deprecation_message = (
|
119 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
120 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
121 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
122 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
123 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
124 |
+
)
|
125 |
+
deprecate(
|
126 |
+
"norm_type!=num_embeds_ada_norm",
|
127 |
+
"1.0.0",
|
128 |
+
deprecation_message,
|
129 |
+
standard_warn=False,
|
130 |
+
)
|
131 |
+
norm_type = "ada_norm"
|
132 |
+
|
133 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
134 |
+
raise ValueError(
|
135 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
136 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
137 |
+
)
|
138 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
139 |
+
raise ValueError(
|
140 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
141 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
142 |
+
)
|
143 |
+
elif (
|
144 |
+
not self.is_input_continuous
|
145 |
+
and not self.is_input_vectorized
|
146 |
+
and not self.is_input_patches
|
147 |
+
):
|
148 |
+
raise ValueError(
|
149 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
150 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
151 |
+
)
|
152 |
+
|
153 |
+
# 2. Define input layers
|
154 |
+
self.in_channels = in_channels
|
155 |
+
|
156 |
+
self.norm = torch.nn.GroupNorm(
|
157 |
+
num_groups=norm_num_groups,
|
158 |
+
num_channels=in_channels,
|
159 |
+
eps=1e-6,
|
160 |
+
affine=True,
|
161 |
+
)
|
162 |
+
if use_linear_projection:
|
163 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
164 |
+
else:
|
165 |
+
self.proj_in = conv_cls(
|
166 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
167 |
+
)
|
168 |
+
|
169 |
+
# 3. Define transformers blocks
|
170 |
+
self.transformer_blocks = nn.ModuleList(
|
171 |
+
[
|
172 |
+
BasicTransformerBlock(
|
173 |
+
inner_dim,
|
174 |
+
num_attention_heads,
|
175 |
+
attention_head_dim,
|
176 |
+
dropout=dropout,
|
177 |
+
cross_attention_dim=cross_attention_dim,
|
178 |
+
activation_fn=activation_fn,
|
179 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
180 |
+
attention_bias=attention_bias,
|
181 |
+
only_cross_attention=only_cross_attention,
|
182 |
+
double_self_attention=double_self_attention,
|
183 |
+
upcast_attention=upcast_attention,
|
184 |
+
norm_type=norm_type,
|
185 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
186 |
+
norm_eps=norm_eps,
|
187 |
+
attention_type=attention_type,
|
188 |
+
)
|
189 |
+
for d in range(num_layers)
|
190 |
+
]
|
191 |
+
)
|
192 |
+
|
193 |
+
# 4. Define output layers
|
194 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
195 |
+
# TODO: should use out_channels for continuous projections
|
196 |
+
if use_linear_projection:
|
197 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
198 |
+
else:
|
199 |
+
self.proj_out = conv_cls(
|
200 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
201 |
+
)
|
202 |
+
|
203 |
+
# 5. PixArt-Alpha blocks.
|
204 |
+
self.adaln_single = None
|
205 |
+
self.use_additional_conditions = False
|
206 |
+
if norm_type == "ada_norm_single":
|
207 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
208 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
209 |
+
# additional conditions until we find better name
|
210 |
+
self.adaln_single = AdaLayerNormSingle(
|
211 |
+
inner_dim, use_additional_conditions=self.use_additional_conditions
|
212 |
+
)
|
213 |
+
|
214 |
+
self.caption_projection = None
|
215 |
+
# if caption_channels is not None:
|
216 |
+
# self.caption_projection = CaptionProjection(
|
217 |
+
# in_features=caption_channels, hidden_size=inner_dim
|
218 |
+
# )
|
219 |
+
|
220 |
+
self.gradient_checkpointing = False
|
221 |
+
|
222 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
223 |
+
if hasattr(module, "gradient_checkpointing"):
|
224 |
+
module.gradient_checkpointing = value
|
225 |
+
|
226 |
+
def forward(
|
227 |
+
self,
|
228 |
+
hidden_states: torch.Tensor,
|
229 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
230 |
+
timestep: Optional[torch.LongTensor] = None,
|
231 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
232 |
+
class_labels: Optional[torch.LongTensor] = None,
|
233 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
234 |
+
attention_mask: Optional[torch.Tensor] = None,
|
235 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
236 |
+
return_dict: bool = True,
|
237 |
+
):
|
238 |
+
"""
|
239 |
+
The [`Transformer2DModel`] forward method.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
243 |
+
Input `hidden_states`.
|
244 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
245 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
246 |
+
self-attention.
|
247 |
+
timestep ( `torch.LongTensor`, *optional*):
|
248 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
249 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
250 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
251 |
+
`AdaLayerZeroNorm`.
|
252 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
253 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
254 |
+
`self.processor` in
|
255 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
256 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
257 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
258 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
259 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
260 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
261 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
262 |
+
|
263 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
264 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
265 |
+
|
266 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
267 |
+
above. This bias will be added to the cross-attention scores.
|
268 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
269 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
270 |
+
tuple.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
274 |
+
`tuple` where the first element is the sample tensor.
|
275 |
+
"""
|
276 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
277 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
278 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
279 |
+
# expects mask of shape:
|
280 |
+
# [batch, key_tokens]
|
281 |
+
# adds singleton query_tokens dimension:
|
282 |
+
# [batch, 1, key_tokens]
|
283 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
284 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
285 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
286 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
287 |
+
# assume that mask is expressed as:
|
288 |
+
# (1 = keep, 0 = discard)
|
289 |
+
# convert mask into a bias that can be added to attention scores:
|
290 |
+
# (keep = +0, discard = -10000.0)
|
291 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
292 |
+
attention_mask = attention_mask.unsqueeze(1)
|
293 |
+
|
294 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
295 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
296 |
+
encoder_attention_mask = (
|
297 |
+
1 - encoder_attention_mask.to(hidden_states.dtype)
|
298 |
+
) * -10000.0
|
299 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
300 |
+
|
301 |
+
# Retrieve lora scale.
|
302 |
+
lora_scale = (
|
303 |
+
cross_attention_kwargs.get("scale", 1.0)
|
304 |
+
if cross_attention_kwargs is not None
|
305 |
+
else 1.0
|
306 |
+
)
|
307 |
+
|
308 |
+
# 1. Input
|
309 |
+
batch, _, height, width = hidden_states.shape
|
310 |
+
residual = hidden_states
|
311 |
+
|
312 |
+
hidden_states = self.norm(hidden_states)
|
313 |
+
if not self.use_linear_projection:
|
314 |
+
hidden_states = (
|
315 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
316 |
+
if not USE_PEFT_BACKEND
|
317 |
+
else self.proj_in(hidden_states)
|
318 |
+
)
|
319 |
+
inner_dim = hidden_states.shape[1]
|
320 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
321 |
+
batch, height * width, inner_dim
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
inner_dim = hidden_states.shape[1]
|
325 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
326 |
+
batch, height * width, inner_dim
|
327 |
+
)
|
328 |
+
hidden_states = (
|
329 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
330 |
+
if not USE_PEFT_BACKEND
|
331 |
+
else self.proj_in(hidden_states)
|
332 |
+
)
|
333 |
+
|
334 |
+
# 2. Blocks
|
335 |
+
if self.caption_projection is not None:
|
336 |
+
batch_size = hidden_states.shape[0]
|
337 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
338 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
339 |
+
batch_size, -1, hidden_states.shape[-1]
|
340 |
+
)
|
341 |
+
|
342 |
+
ref_feature = hidden_states.reshape(batch, height, width, inner_dim)
|
343 |
+
for block in self.transformer_blocks:
|
344 |
+
if self.training and self.gradient_checkpointing:
|
345 |
+
|
346 |
+
def create_custom_forward(module, return_dict=None):
|
347 |
+
def custom_forward(*inputs):
|
348 |
+
if return_dict is not None:
|
349 |
+
return module(*inputs, return_dict=return_dict)
|
350 |
+
else:
|
351 |
+
return module(*inputs)
|
352 |
+
|
353 |
+
return custom_forward
|
354 |
+
|
355 |
+
ckpt_kwargs: Dict[str, Any] = (
|
356 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
357 |
+
)
|
358 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
359 |
+
create_custom_forward(block),
|
360 |
+
hidden_states,
|
361 |
+
attention_mask,
|
362 |
+
encoder_hidden_states,
|
363 |
+
encoder_attention_mask,
|
364 |
+
timestep,
|
365 |
+
cross_attention_kwargs,
|
366 |
+
class_labels,
|
367 |
+
**ckpt_kwargs,
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
hidden_states = block(
|
371 |
+
hidden_states,
|
372 |
+
attention_mask=attention_mask,
|
373 |
+
encoder_hidden_states=encoder_hidden_states,
|
374 |
+
encoder_attention_mask=encoder_attention_mask,
|
375 |
+
timestep=timestep,
|
376 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
377 |
+
class_labels=class_labels,
|
378 |
+
)
|
379 |
+
|
380 |
+
# 3. Output
|
381 |
+
if self.is_input_continuous:
|
382 |
+
if not self.use_linear_projection:
|
383 |
+
hidden_states = (
|
384 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
385 |
+
.permute(0, 3, 1, 2)
|
386 |
+
.contiguous()
|
387 |
+
)
|
388 |
+
hidden_states = (
|
389 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
390 |
+
if not USE_PEFT_BACKEND
|
391 |
+
else self.proj_out(hidden_states)
|
392 |
+
)
|
393 |
+
else:
|
394 |
+
hidden_states = (
|
395 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
396 |
+
if not USE_PEFT_BACKEND
|
397 |
+
else self.proj_out(hidden_states)
|
398 |
+
)
|
399 |
+
hidden_states = (
|
400 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
401 |
+
.permute(0, 3, 1, 2)
|
402 |
+
.contiguous()
|
403 |
+
)
|
404 |
+
|
405 |
+
output = hidden_states + residual
|
406 |
+
if not return_dict:
|
407 |
+
return (output, ref_feature)
|
408 |
+
|
409 |
+
return Transformer2DModelOutput(sample=output, ref_feature=ref_feature)
|
genwarp/models/transformer_3d.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# ==============================================================================
|
8 |
+
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
from diffusers.models import ModelMixin
|
15 |
+
from diffusers.utils import BaseOutput
|
16 |
+
from diffusers.utils.import_utils import is_xformers_available
|
17 |
+
from einops import rearrange, repeat
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from .attention import TemporalBasicTransformerBlock
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class Transformer3DModelOutput(BaseOutput):
|
25 |
+
sample: torch.FloatTensor
|
26 |
+
|
27 |
+
|
28 |
+
if is_xformers_available():
|
29 |
+
import xformers
|
30 |
+
import xformers.ops
|
31 |
+
else:
|
32 |
+
xformers = None
|
33 |
+
|
34 |
+
|
35 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
36 |
+
_supports_gradient_checkpointing = True
|
37 |
+
|
38 |
+
@register_to_config
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
num_attention_heads: int = 16,
|
42 |
+
attention_head_dim: int = 88,
|
43 |
+
in_channels: Optional[int] = None,
|
44 |
+
num_layers: int = 1,
|
45 |
+
dropout: float = 0.0,
|
46 |
+
norm_num_groups: int = 32,
|
47 |
+
cross_attention_dim: Optional[int] = None,
|
48 |
+
attention_bias: bool = False,
|
49 |
+
activation_fn: str = "geglu",
|
50 |
+
num_embeds_ada_norm: Optional[int] = None,
|
51 |
+
use_linear_projection: bool = False,
|
52 |
+
only_cross_attention: bool = False,
|
53 |
+
upcast_attention: bool = False,
|
54 |
+
unet_use_cross_frame_attention=None,
|
55 |
+
unet_use_temporal_attention=None,
|
56 |
+
use_zero_convs=False,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
self.use_linear_projection = use_linear_projection
|
60 |
+
self.num_attention_heads = num_attention_heads
|
61 |
+
self.attention_head_dim = attention_head_dim
|
62 |
+
inner_dim = num_attention_heads * attention_head_dim
|
63 |
+
|
64 |
+
# Define input layers
|
65 |
+
self.in_channels = in_channels
|
66 |
+
|
67 |
+
self.norm = torch.nn.GroupNorm(
|
68 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
69 |
+
)
|
70 |
+
if use_linear_projection:
|
71 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
72 |
+
else:
|
73 |
+
self.proj_in = nn.Conv2d(
|
74 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
75 |
+
)
|
76 |
+
|
77 |
+
# Define transformers blocks
|
78 |
+
self.transformer_blocks = nn.ModuleList(
|
79 |
+
[
|
80 |
+
TemporalBasicTransformerBlock(
|
81 |
+
inner_dim,
|
82 |
+
num_attention_heads,
|
83 |
+
attention_head_dim,
|
84 |
+
dropout=dropout,
|
85 |
+
cross_attention_dim=cross_attention_dim,
|
86 |
+
activation_fn=activation_fn,
|
87 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
88 |
+
attention_bias=attention_bias,
|
89 |
+
only_cross_attention=only_cross_attention,
|
90 |
+
upcast_attention=upcast_attention,
|
91 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
92 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
93 |
+
use_zero_convs=use_zero_convs,
|
94 |
+
)
|
95 |
+
for d in range(num_layers)
|
96 |
+
]
|
97 |
+
)
|
98 |
+
|
99 |
+
# 4. Define output layers
|
100 |
+
if use_linear_projection:
|
101 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
102 |
+
else:
|
103 |
+
self.proj_out = nn.Conv2d(
|
104 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
105 |
+
)
|
106 |
+
|
107 |
+
self.gradient_checkpointing = False
|
108 |
+
|
109 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
110 |
+
if hasattr(module, "gradient_checkpointing"):
|
111 |
+
module.gradient_checkpointing = value
|
112 |
+
|
113 |
+
def forward(
|
114 |
+
self,
|
115 |
+
hidden_states,
|
116 |
+
encoder_hidden_states=None,
|
117 |
+
timestep=None,
|
118 |
+
return_dict: bool = True,
|
119 |
+
):
|
120 |
+
# Input
|
121 |
+
assert (
|
122 |
+
hidden_states.dim() == 5
|
123 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
124 |
+
video_length = hidden_states.shape[2]
|
125 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
126 |
+
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
|
127 |
+
encoder_hidden_states = repeat(
|
128 |
+
encoder_hidden_states, "b n c -> (b f) n c", f=video_length
|
129 |
+
)
|
130 |
+
|
131 |
+
batch, channel, height, weight = hidden_states.shape
|
132 |
+
residual = hidden_states
|
133 |
+
|
134 |
+
hidden_states = self.norm(hidden_states)
|
135 |
+
if not self.use_linear_projection:
|
136 |
+
hidden_states = self.proj_in(hidden_states)
|
137 |
+
inner_dim = hidden_states.shape[1]
|
138 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
139 |
+
batch, height * weight, inner_dim
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
inner_dim = hidden_states.shape[1]
|
143 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
144 |
+
batch, height * weight, inner_dim
|
145 |
+
)
|
146 |
+
hidden_states = self.proj_in(hidden_states)
|
147 |
+
|
148 |
+
# Blocks
|
149 |
+
for i, block in enumerate(self.transformer_blocks):
|
150 |
+
hidden_states = block(
|
151 |
+
hidden_states,
|
152 |
+
encoder_hidden_states=encoder_hidden_states,
|
153 |
+
timestep=timestep,
|
154 |
+
video_length=video_length,
|
155 |
+
)
|
156 |
+
|
157 |
+
# Output
|
158 |
+
if not self.use_linear_projection:
|
159 |
+
hidden_states = (
|
160 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
161 |
+
.permute(0, 3, 1, 2)
|
162 |
+
.contiguous()
|
163 |
+
)
|
164 |
+
hidden_states = self.proj_out(hidden_states)
|
165 |
+
else:
|
166 |
+
hidden_states = self.proj_out(hidden_states)
|
167 |
+
hidden_states = (
|
168 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
169 |
+
.permute(0, 3, 1, 2)
|
170 |
+
.contiguous()
|
171 |
+
)
|
172 |
+
|
173 |
+
output = hidden_states + residual
|
174 |
+
|
175 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
176 |
+
if not return_dict:
|
177 |
+
return (output,)
|
178 |
+
|
179 |
+
return Transformer3DModelOutput(sample=output)
|
genwarp/models/unet_2d_blocks.py
ADDED
@@ -0,0 +1,1087 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# Diffusers
|
9 |
+
# Apache License, Version 2.0
|
10 |
+
# Copyright (c) Hugging Face Inc.
|
11 |
+
# https://github.com/huggingface/diffusers
|
12 |
+
# ==============================================================================
|
13 |
+
|
14 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
15 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from diffusers.models.activations import get_activation
|
21 |
+
from diffusers.models.attention_processor import Attention
|
22 |
+
from diffusers.models import DualTransformer2DModel
|
23 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
24 |
+
from diffusers.utils import is_torch_version, logging
|
25 |
+
from diffusers.utils.torch_utils import apply_freeu
|
26 |
+
from torch import nn
|
27 |
+
|
28 |
+
from .transformer_2d import Transformer2DModel
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
31 |
+
|
32 |
+
|
33 |
+
def get_down_block(
|
34 |
+
down_block_type: str,
|
35 |
+
num_layers: int,
|
36 |
+
in_channels: int,
|
37 |
+
out_channels: int,
|
38 |
+
temb_channels: int,
|
39 |
+
add_downsample: bool,
|
40 |
+
resnet_eps: float,
|
41 |
+
resnet_act_fn: str,
|
42 |
+
transformer_layers_per_block: int = 1,
|
43 |
+
num_attention_heads: Optional[int] = None,
|
44 |
+
resnet_groups: Optional[int] = None,
|
45 |
+
cross_attention_dim: Optional[int] = None,
|
46 |
+
downsample_padding: Optional[int] = None,
|
47 |
+
dual_cross_attention: bool = False,
|
48 |
+
use_linear_projection: bool = False,
|
49 |
+
only_cross_attention: bool = False,
|
50 |
+
upcast_attention: bool = False,
|
51 |
+
resnet_time_scale_shift: str = "default",
|
52 |
+
attention_type: str = "default",
|
53 |
+
resnet_skip_time_act: bool = False,
|
54 |
+
resnet_out_scale_factor: float = 1.0,
|
55 |
+
cross_attention_norm: Optional[str] = None,
|
56 |
+
attention_head_dim: Optional[int] = None,
|
57 |
+
downsample_type: Optional[str] = None,
|
58 |
+
dropout: float = 0.0,
|
59 |
+
):
|
60 |
+
# If attn head dim is not defined, we default it to the number of heads
|
61 |
+
if attention_head_dim is None:
|
62 |
+
logger.warn(
|
63 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
64 |
+
)
|
65 |
+
attention_head_dim = num_attention_heads
|
66 |
+
|
67 |
+
down_block_type = (
|
68 |
+
down_block_type[7:]
|
69 |
+
if down_block_type.startswith("UNetRes")
|
70 |
+
else down_block_type
|
71 |
+
)
|
72 |
+
if down_block_type == "DownBlock2D":
|
73 |
+
return DownBlock2D(
|
74 |
+
num_layers=num_layers,
|
75 |
+
in_channels=in_channels,
|
76 |
+
out_channels=out_channels,
|
77 |
+
temb_channels=temb_channels,
|
78 |
+
dropout=dropout,
|
79 |
+
add_downsample=add_downsample,
|
80 |
+
resnet_eps=resnet_eps,
|
81 |
+
resnet_act_fn=resnet_act_fn,
|
82 |
+
resnet_groups=resnet_groups,
|
83 |
+
downsample_padding=downsample_padding,
|
84 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
85 |
+
)
|
86 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
87 |
+
if cross_attention_dim is None:
|
88 |
+
raise ValueError(
|
89 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock2D"
|
90 |
+
)
|
91 |
+
return CrossAttnDownBlock2D(
|
92 |
+
num_layers=num_layers,
|
93 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
94 |
+
in_channels=in_channels,
|
95 |
+
out_channels=out_channels,
|
96 |
+
temb_channels=temb_channels,
|
97 |
+
dropout=dropout,
|
98 |
+
add_downsample=add_downsample,
|
99 |
+
resnet_eps=resnet_eps,
|
100 |
+
resnet_act_fn=resnet_act_fn,
|
101 |
+
resnet_groups=resnet_groups,
|
102 |
+
downsample_padding=downsample_padding,
|
103 |
+
cross_attention_dim=cross_attention_dim,
|
104 |
+
num_attention_heads=num_attention_heads,
|
105 |
+
dual_cross_attention=dual_cross_attention,
|
106 |
+
use_linear_projection=use_linear_projection,
|
107 |
+
only_cross_attention=only_cross_attention,
|
108 |
+
upcast_attention=upcast_attention,
|
109 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
110 |
+
attention_type=attention_type,
|
111 |
+
)
|
112 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
113 |
+
|
114 |
+
|
115 |
+
def get_up_block(
|
116 |
+
up_block_type: str,
|
117 |
+
num_layers: int,
|
118 |
+
in_channels: int,
|
119 |
+
out_channels: int,
|
120 |
+
prev_output_channel: int,
|
121 |
+
temb_channels: int,
|
122 |
+
add_upsample: bool,
|
123 |
+
resnet_eps: float,
|
124 |
+
resnet_act_fn: str,
|
125 |
+
resolution_idx: Optional[int] = None,
|
126 |
+
transformer_layers_per_block: int = 1,
|
127 |
+
num_attention_heads: Optional[int] = None,
|
128 |
+
resnet_groups: Optional[int] = None,
|
129 |
+
cross_attention_dim: Optional[int] = None,
|
130 |
+
dual_cross_attention: bool = False,
|
131 |
+
use_linear_projection: bool = False,
|
132 |
+
only_cross_attention: bool = False,
|
133 |
+
upcast_attention: bool = False,
|
134 |
+
resnet_time_scale_shift: str = "default",
|
135 |
+
attention_type: str = "default",
|
136 |
+
resnet_skip_time_act: bool = False,
|
137 |
+
resnet_out_scale_factor: float = 1.0,
|
138 |
+
cross_attention_norm: Optional[str] = None,
|
139 |
+
attention_head_dim: Optional[int] = None,
|
140 |
+
upsample_type: Optional[str] = None,
|
141 |
+
dropout: float = 0.0,
|
142 |
+
) -> nn.Module:
|
143 |
+
# If attn head dim is not defined, we default it to the number of heads
|
144 |
+
if attention_head_dim is None:
|
145 |
+
logger.warn(
|
146 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
147 |
+
)
|
148 |
+
attention_head_dim = num_attention_heads
|
149 |
+
|
150 |
+
up_block_type = (
|
151 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
152 |
+
)
|
153 |
+
if up_block_type == "UpBlock2D":
|
154 |
+
return UpBlock2D(
|
155 |
+
num_layers=num_layers,
|
156 |
+
in_channels=in_channels,
|
157 |
+
out_channels=out_channels,
|
158 |
+
prev_output_channel=prev_output_channel,
|
159 |
+
temb_channels=temb_channels,
|
160 |
+
resolution_idx=resolution_idx,
|
161 |
+
dropout=dropout,
|
162 |
+
add_upsample=add_upsample,
|
163 |
+
resnet_eps=resnet_eps,
|
164 |
+
resnet_act_fn=resnet_act_fn,
|
165 |
+
resnet_groups=resnet_groups,
|
166 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
167 |
+
)
|
168 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
169 |
+
if cross_attention_dim is None:
|
170 |
+
raise ValueError(
|
171 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock2D"
|
172 |
+
)
|
173 |
+
return CrossAttnUpBlock2D(
|
174 |
+
num_layers=num_layers,
|
175 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
176 |
+
in_channels=in_channels,
|
177 |
+
out_channels=out_channels,
|
178 |
+
prev_output_channel=prev_output_channel,
|
179 |
+
temb_channels=temb_channels,
|
180 |
+
resolution_idx=resolution_idx,
|
181 |
+
dropout=dropout,
|
182 |
+
add_upsample=add_upsample,
|
183 |
+
resnet_eps=resnet_eps,
|
184 |
+
resnet_act_fn=resnet_act_fn,
|
185 |
+
resnet_groups=resnet_groups,
|
186 |
+
cross_attention_dim=cross_attention_dim,
|
187 |
+
num_attention_heads=num_attention_heads,
|
188 |
+
dual_cross_attention=dual_cross_attention,
|
189 |
+
use_linear_projection=use_linear_projection,
|
190 |
+
only_cross_attention=only_cross_attention,
|
191 |
+
upcast_attention=upcast_attention,
|
192 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
193 |
+
attention_type=attention_type,
|
194 |
+
)
|
195 |
+
|
196 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
197 |
+
|
198 |
+
|
199 |
+
class AutoencoderTinyBlock(nn.Module):
|
200 |
+
"""
|
201 |
+
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
202 |
+
blocks.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
in_channels (`int`): The number of input channels.
|
206 |
+
out_channels (`int`): The number of output channels.
|
207 |
+
act_fn (`str`):
|
208 |
+
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
212 |
+
`out_channels`.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
216 |
+
super().__init__()
|
217 |
+
act_fn = get_activation(act_fn)
|
218 |
+
self.conv = nn.Sequential(
|
219 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
220 |
+
act_fn,
|
221 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
222 |
+
act_fn,
|
223 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
224 |
+
)
|
225 |
+
self.skip = (
|
226 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
227 |
+
if in_channels != out_channels
|
228 |
+
else nn.Identity()
|
229 |
+
)
|
230 |
+
self.fuse = nn.ReLU()
|
231 |
+
|
232 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
233 |
+
return self.fuse(self.conv(x) + self.skip(x))
|
234 |
+
|
235 |
+
|
236 |
+
class UNetMidBlock2D(nn.Module):
|
237 |
+
"""
|
238 |
+
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
in_channels (`int`): The number of input channels.
|
242 |
+
temb_channels (`int`): The number of temporal embedding channels.
|
243 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
244 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
245 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
246 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
|
247 |
+
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
|
248 |
+
model on tasks with long-range temporal dependencies.
|
249 |
+
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
|
250 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
251 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
252 |
+
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
|
253 |
+
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
|
254 |
+
Whether to use pre-normalization for the resnet blocks.
|
255 |
+
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
|
256 |
+
attention_head_dim (`int`, *optional*, defaults to 1):
|
257 |
+
Dimension of a single attention head. The number of attention heads is determined based on this value and
|
258 |
+
the number of input channels.
|
259 |
+
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
|
260 |
+
|
261 |
+
Returns:
|
262 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
263 |
+
in_channels, height, width)`.
|
264 |
+
|
265 |
+
"""
|
266 |
+
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
in_channels: int,
|
270 |
+
temb_channels: int,
|
271 |
+
dropout: float = 0.0,
|
272 |
+
num_layers: int = 1,
|
273 |
+
resnet_eps: float = 1e-6,
|
274 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
275 |
+
resnet_act_fn: str = "swish",
|
276 |
+
resnet_groups: int = 32,
|
277 |
+
attn_groups: Optional[int] = None,
|
278 |
+
resnet_pre_norm: bool = True,
|
279 |
+
add_attention: bool = True,
|
280 |
+
attention_head_dim: int = 1,
|
281 |
+
output_scale_factor: float = 1.0,
|
282 |
+
):
|
283 |
+
super().__init__()
|
284 |
+
resnet_groups = (
|
285 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
286 |
+
)
|
287 |
+
self.add_attention = add_attention
|
288 |
+
|
289 |
+
if attn_groups is None:
|
290 |
+
attn_groups = (
|
291 |
+
resnet_groups if resnet_time_scale_shift == "default" else None
|
292 |
+
)
|
293 |
+
|
294 |
+
# there is always at least one resnet
|
295 |
+
resnets = [
|
296 |
+
ResnetBlock2D(
|
297 |
+
in_channels=in_channels,
|
298 |
+
out_channels=in_channels,
|
299 |
+
temb_channels=temb_channels,
|
300 |
+
eps=resnet_eps,
|
301 |
+
groups=resnet_groups,
|
302 |
+
dropout=dropout,
|
303 |
+
time_embedding_norm=resnet_time_scale_shift,
|
304 |
+
non_linearity=resnet_act_fn,
|
305 |
+
output_scale_factor=output_scale_factor,
|
306 |
+
pre_norm=resnet_pre_norm,
|
307 |
+
)
|
308 |
+
]
|
309 |
+
attentions = []
|
310 |
+
|
311 |
+
if attention_head_dim is None:
|
312 |
+
logger.warn(
|
313 |
+
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
314 |
+
)
|
315 |
+
attention_head_dim = in_channels
|
316 |
+
|
317 |
+
for _ in range(num_layers):
|
318 |
+
if self.add_attention:
|
319 |
+
attentions.append(
|
320 |
+
Attention(
|
321 |
+
in_channels,
|
322 |
+
heads=in_channels // attention_head_dim,
|
323 |
+
dim_head=attention_head_dim,
|
324 |
+
rescale_output_factor=output_scale_factor,
|
325 |
+
eps=resnet_eps,
|
326 |
+
norm_num_groups=attn_groups,
|
327 |
+
spatial_norm_dim=temb_channels
|
328 |
+
if resnet_time_scale_shift == "spatial"
|
329 |
+
else None,
|
330 |
+
residual_connection=True,
|
331 |
+
bias=True,
|
332 |
+
upcast_softmax=True,
|
333 |
+
_from_deprecated_attn_block=True,
|
334 |
+
)
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
attentions.append(None)
|
338 |
+
|
339 |
+
resnets.append(
|
340 |
+
ResnetBlock2D(
|
341 |
+
in_channels=in_channels,
|
342 |
+
out_channels=in_channels,
|
343 |
+
temb_channels=temb_channels,
|
344 |
+
eps=resnet_eps,
|
345 |
+
groups=resnet_groups,
|
346 |
+
dropout=dropout,
|
347 |
+
time_embedding_norm=resnet_time_scale_shift,
|
348 |
+
non_linearity=resnet_act_fn,
|
349 |
+
output_scale_factor=output_scale_factor,
|
350 |
+
pre_norm=resnet_pre_norm,
|
351 |
+
)
|
352 |
+
)
|
353 |
+
|
354 |
+
self.attentions = nn.ModuleList(attentions)
|
355 |
+
self.resnets = nn.ModuleList(resnets)
|
356 |
+
|
357 |
+
def forward(
|
358 |
+
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
|
359 |
+
) -> torch.FloatTensor:
|
360 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
361 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
362 |
+
if attn is not None:
|
363 |
+
hidden_states = attn(hidden_states, temb=temb)
|
364 |
+
hidden_states = resnet(hidden_states, temb)
|
365 |
+
|
366 |
+
return hidden_states
|
367 |
+
|
368 |
+
|
369 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
370 |
+
def __init__(
|
371 |
+
self,
|
372 |
+
in_channels: int,
|
373 |
+
temb_channels: int,
|
374 |
+
dropout: float = 0.0,
|
375 |
+
num_layers: int = 1,
|
376 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
377 |
+
resnet_eps: float = 1e-6,
|
378 |
+
resnet_time_scale_shift: str = "default",
|
379 |
+
resnet_act_fn: str = "swish",
|
380 |
+
resnet_groups: int = 32,
|
381 |
+
resnet_pre_norm: bool = True,
|
382 |
+
num_attention_heads: int = 1,
|
383 |
+
output_scale_factor: float = 1.0,
|
384 |
+
cross_attention_dim: int = 1280,
|
385 |
+
dual_cross_attention: bool = False,
|
386 |
+
use_linear_projection: bool = False,
|
387 |
+
upcast_attention: bool = False,
|
388 |
+
attention_type: str = "default",
|
389 |
+
):
|
390 |
+
super().__init__()
|
391 |
+
|
392 |
+
self.has_cross_attention = True
|
393 |
+
self.num_attention_heads = num_attention_heads
|
394 |
+
resnet_groups = (
|
395 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
396 |
+
)
|
397 |
+
|
398 |
+
# support for variable transformer layers per block
|
399 |
+
if isinstance(transformer_layers_per_block, int):
|
400 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
401 |
+
|
402 |
+
# there is always at least one resnet
|
403 |
+
resnets = [
|
404 |
+
ResnetBlock2D(
|
405 |
+
in_channels=in_channels,
|
406 |
+
out_channels=in_channels,
|
407 |
+
temb_channels=temb_channels,
|
408 |
+
eps=resnet_eps,
|
409 |
+
groups=resnet_groups,
|
410 |
+
dropout=dropout,
|
411 |
+
time_embedding_norm=resnet_time_scale_shift,
|
412 |
+
non_linearity=resnet_act_fn,
|
413 |
+
output_scale_factor=output_scale_factor,
|
414 |
+
pre_norm=resnet_pre_norm,
|
415 |
+
)
|
416 |
+
]
|
417 |
+
attentions = []
|
418 |
+
|
419 |
+
for i in range(num_layers):
|
420 |
+
if not dual_cross_attention:
|
421 |
+
attentions.append(
|
422 |
+
Transformer2DModel(
|
423 |
+
num_attention_heads,
|
424 |
+
in_channels // num_attention_heads,
|
425 |
+
in_channels=in_channels,
|
426 |
+
num_layers=transformer_layers_per_block[i],
|
427 |
+
cross_attention_dim=cross_attention_dim,
|
428 |
+
norm_num_groups=resnet_groups,
|
429 |
+
use_linear_projection=use_linear_projection,
|
430 |
+
upcast_attention=upcast_attention,
|
431 |
+
attention_type=attention_type,
|
432 |
+
)
|
433 |
+
)
|
434 |
+
else:
|
435 |
+
attentions.append(
|
436 |
+
DualTransformer2DModel(
|
437 |
+
num_attention_heads,
|
438 |
+
in_channels // num_attention_heads,
|
439 |
+
in_channels=in_channels,
|
440 |
+
num_layers=1,
|
441 |
+
cross_attention_dim=cross_attention_dim,
|
442 |
+
norm_num_groups=resnet_groups,
|
443 |
+
)
|
444 |
+
)
|
445 |
+
resnets.append(
|
446 |
+
ResnetBlock2D(
|
447 |
+
in_channels=in_channels,
|
448 |
+
out_channels=in_channels,
|
449 |
+
temb_channels=temb_channels,
|
450 |
+
eps=resnet_eps,
|
451 |
+
groups=resnet_groups,
|
452 |
+
dropout=dropout,
|
453 |
+
time_embedding_norm=resnet_time_scale_shift,
|
454 |
+
non_linearity=resnet_act_fn,
|
455 |
+
output_scale_factor=output_scale_factor,
|
456 |
+
pre_norm=resnet_pre_norm,
|
457 |
+
)
|
458 |
+
)
|
459 |
+
|
460 |
+
self.attentions = nn.ModuleList(attentions)
|
461 |
+
self.resnets = nn.ModuleList(resnets)
|
462 |
+
|
463 |
+
self.gradient_checkpointing = False
|
464 |
+
|
465 |
+
def forward(
|
466 |
+
self,
|
467 |
+
hidden_states: torch.FloatTensor,
|
468 |
+
temb: Optional[torch.FloatTensor] = None,
|
469 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
470 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
471 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
472 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
473 |
+
) -> torch.FloatTensor:
|
474 |
+
lora_scale = (
|
475 |
+
cross_attention_kwargs.get("scale", 1.0)
|
476 |
+
if cross_attention_kwargs is not None
|
477 |
+
else 1.0
|
478 |
+
)
|
479 |
+
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
480 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
481 |
+
if self.training and self.gradient_checkpointing:
|
482 |
+
|
483 |
+
def create_custom_forward(module, return_dict=None):
|
484 |
+
def custom_forward(*inputs):
|
485 |
+
if return_dict is not None:
|
486 |
+
return module(*inputs, return_dict=return_dict)
|
487 |
+
else:
|
488 |
+
return module(*inputs)
|
489 |
+
|
490 |
+
return custom_forward
|
491 |
+
|
492 |
+
ckpt_kwargs: Dict[str, Any] = (
|
493 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
494 |
+
)
|
495 |
+
hidden_states, ref_feature = attn(
|
496 |
+
hidden_states,
|
497 |
+
encoder_hidden_states=encoder_hidden_states,
|
498 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
499 |
+
attention_mask=attention_mask,
|
500 |
+
encoder_attention_mask=encoder_attention_mask,
|
501 |
+
return_dict=False,
|
502 |
+
)
|
503 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
504 |
+
create_custom_forward(resnet),
|
505 |
+
hidden_states,
|
506 |
+
temb,
|
507 |
+
**ckpt_kwargs,
|
508 |
+
)
|
509 |
+
else:
|
510 |
+
hidden_states, ref_feature = attn(
|
511 |
+
hidden_states,
|
512 |
+
encoder_hidden_states=encoder_hidden_states,
|
513 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
514 |
+
attention_mask=attention_mask,
|
515 |
+
encoder_attention_mask=encoder_attention_mask,
|
516 |
+
return_dict=False,
|
517 |
+
)
|
518 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
519 |
+
|
520 |
+
return hidden_states
|
521 |
+
|
522 |
+
|
523 |
+
class CrossAttnDownBlock2D(nn.Module):
|
524 |
+
def __init__(
|
525 |
+
self,
|
526 |
+
in_channels: int,
|
527 |
+
out_channels: int,
|
528 |
+
temb_channels: int,
|
529 |
+
dropout: float = 0.0,
|
530 |
+
num_layers: int = 1,
|
531 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
532 |
+
resnet_eps: float = 1e-6,
|
533 |
+
resnet_time_scale_shift: str = "default",
|
534 |
+
resnet_act_fn: str = "swish",
|
535 |
+
resnet_groups: int = 32,
|
536 |
+
resnet_pre_norm: bool = True,
|
537 |
+
num_attention_heads: int = 1,
|
538 |
+
cross_attention_dim: int = 1280,
|
539 |
+
output_scale_factor: float = 1.0,
|
540 |
+
downsample_padding: int = 1,
|
541 |
+
add_downsample: bool = True,
|
542 |
+
dual_cross_attention: bool = False,
|
543 |
+
use_linear_projection: bool = False,
|
544 |
+
only_cross_attention: bool = False,
|
545 |
+
upcast_attention: bool = False,
|
546 |
+
attention_type: str = "default",
|
547 |
+
):
|
548 |
+
super().__init__()
|
549 |
+
resnets = []
|
550 |
+
attentions = []
|
551 |
+
|
552 |
+
self.has_cross_attention = True
|
553 |
+
self.num_attention_heads = num_attention_heads
|
554 |
+
if isinstance(transformer_layers_per_block, int):
|
555 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
556 |
+
|
557 |
+
for i in range(num_layers):
|
558 |
+
in_channels = in_channels if i == 0 else out_channels
|
559 |
+
resnets.append(
|
560 |
+
ResnetBlock2D(
|
561 |
+
in_channels=in_channels,
|
562 |
+
out_channels=out_channels,
|
563 |
+
temb_channels=temb_channels,
|
564 |
+
eps=resnet_eps,
|
565 |
+
groups=resnet_groups,
|
566 |
+
dropout=dropout,
|
567 |
+
time_embedding_norm=resnet_time_scale_shift,
|
568 |
+
non_linearity=resnet_act_fn,
|
569 |
+
output_scale_factor=output_scale_factor,
|
570 |
+
pre_norm=resnet_pre_norm,
|
571 |
+
)
|
572 |
+
)
|
573 |
+
if not dual_cross_attention:
|
574 |
+
attentions.append(
|
575 |
+
Transformer2DModel(
|
576 |
+
num_attention_heads,
|
577 |
+
out_channels // num_attention_heads,
|
578 |
+
in_channels=out_channels,
|
579 |
+
num_layers=transformer_layers_per_block[i],
|
580 |
+
cross_attention_dim=cross_attention_dim,
|
581 |
+
norm_num_groups=resnet_groups,
|
582 |
+
use_linear_projection=use_linear_projection,
|
583 |
+
only_cross_attention=only_cross_attention,
|
584 |
+
upcast_attention=upcast_attention,
|
585 |
+
attention_type=attention_type,
|
586 |
+
)
|
587 |
+
)
|
588 |
+
else:
|
589 |
+
attentions.append(
|
590 |
+
DualTransformer2DModel(
|
591 |
+
num_attention_heads,
|
592 |
+
out_channels // num_attention_heads,
|
593 |
+
in_channels=out_channels,
|
594 |
+
num_layers=1,
|
595 |
+
cross_attention_dim=cross_attention_dim,
|
596 |
+
norm_num_groups=resnet_groups,
|
597 |
+
)
|
598 |
+
)
|
599 |
+
self.attentions = nn.ModuleList(attentions)
|
600 |
+
self.resnets = nn.ModuleList(resnets)
|
601 |
+
|
602 |
+
if add_downsample:
|
603 |
+
self.downsamplers = nn.ModuleList(
|
604 |
+
[
|
605 |
+
Downsample2D(
|
606 |
+
out_channels,
|
607 |
+
use_conv=True,
|
608 |
+
out_channels=out_channels,
|
609 |
+
padding=downsample_padding,
|
610 |
+
name="op",
|
611 |
+
)
|
612 |
+
]
|
613 |
+
)
|
614 |
+
else:
|
615 |
+
self.downsamplers = None
|
616 |
+
|
617 |
+
self.gradient_checkpointing = False
|
618 |
+
|
619 |
+
def forward(
|
620 |
+
self,
|
621 |
+
hidden_states: torch.FloatTensor,
|
622 |
+
temb: Optional[torch.FloatTensor] = None,
|
623 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
624 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
625 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
626 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
627 |
+
additional_residuals: Optional[torch.FloatTensor] = None,
|
628 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
629 |
+
output_states = ()
|
630 |
+
|
631 |
+
lora_scale = (
|
632 |
+
cross_attention_kwargs.get("scale", 1.0)
|
633 |
+
if cross_attention_kwargs is not None
|
634 |
+
else 1.0
|
635 |
+
)
|
636 |
+
|
637 |
+
blocks = list(zip(self.resnets, self.attentions))
|
638 |
+
|
639 |
+
for i, (resnet, attn) in enumerate(blocks):
|
640 |
+
if self.training and self.gradient_checkpointing:
|
641 |
+
|
642 |
+
def create_custom_forward(module, return_dict=None):
|
643 |
+
def custom_forward(*inputs):
|
644 |
+
if return_dict is not None:
|
645 |
+
return module(*inputs, return_dict=return_dict)
|
646 |
+
else:
|
647 |
+
return module(*inputs)
|
648 |
+
|
649 |
+
return custom_forward
|
650 |
+
|
651 |
+
ckpt_kwargs: Dict[str, Any] = (
|
652 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
653 |
+
)
|
654 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
655 |
+
create_custom_forward(resnet),
|
656 |
+
hidden_states,
|
657 |
+
temb,
|
658 |
+
**ckpt_kwargs,
|
659 |
+
)
|
660 |
+
hidden_states, ref_feature = attn(
|
661 |
+
hidden_states,
|
662 |
+
encoder_hidden_states=encoder_hidden_states,
|
663 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
664 |
+
attention_mask=attention_mask,
|
665 |
+
encoder_attention_mask=encoder_attention_mask,
|
666 |
+
return_dict=False,
|
667 |
+
)
|
668 |
+
else:
|
669 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
670 |
+
hidden_states, ref_feature = attn(
|
671 |
+
hidden_states,
|
672 |
+
encoder_hidden_states=encoder_hidden_states,
|
673 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
674 |
+
attention_mask=attention_mask,
|
675 |
+
encoder_attention_mask=encoder_attention_mask,
|
676 |
+
return_dict=False,
|
677 |
+
)
|
678 |
+
|
679 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
680 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
681 |
+
hidden_states = hidden_states + additional_residuals
|
682 |
+
|
683 |
+
output_states = output_states + (hidden_states,)
|
684 |
+
|
685 |
+
if self.downsamplers is not None:
|
686 |
+
for downsampler in self.downsamplers:
|
687 |
+
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
688 |
+
|
689 |
+
output_states = output_states + (hidden_states,)
|
690 |
+
|
691 |
+
return hidden_states, output_states
|
692 |
+
|
693 |
+
|
694 |
+
class DownBlock2D(nn.Module):
|
695 |
+
def __init__(
|
696 |
+
self,
|
697 |
+
in_channels: int,
|
698 |
+
out_channels: int,
|
699 |
+
temb_channels: int,
|
700 |
+
dropout: float = 0.0,
|
701 |
+
num_layers: int = 1,
|
702 |
+
resnet_eps: float = 1e-6,
|
703 |
+
resnet_time_scale_shift: str = "default",
|
704 |
+
resnet_act_fn: str = "swish",
|
705 |
+
resnet_groups: int = 32,
|
706 |
+
resnet_pre_norm: bool = True,
|
707 |
+
output_scale_factor: float = 1.0,
|
708 |
+
add_downsample: bool = True,
|
709 |
+
downsample_padding: int = 1,
|
710 |
+
):
|
711 |
+
super().__init__()
|
712 |
+
resnets = []
|
713 |
+
|
714 |
+
for i in range(num_layers):
|
715 |
+
in_channels = in_channels if i == 0 else out_channels
|
716 |
+
resnets.append(
|
717 |
+
ResnetBlock2D(
|
718 |
+
in_channels=in_channels,
|
719 |
+
out_channels=out_channels,
|
720 |
+
temb_channels=temb_channels,
|
721 |
+
eps=resnet_eps,
|
722 |
+
groups=resnet_groups,
|
723 |
+
dropout=dropout,
|
724 |
+
time_embedding_norm=resnet_time_scale_shift,
|
725 |
+
non_linearity=resnet_act_fn,
|
726 |
+
output_scale_factor=output_scale_factor,
|
727 |
+
pre_norm=resnet_pre_norm,
|
728 |
+
)
|
729 |
+
)
|
730 |
+
|
731 |
+
self.resnets = nn.ModuleList(resnets)
|
732 |
+
|
733 |
+
if add_downsample:
|
734 |
+
self.downsamplers = nn.ModuleList(
|
735 |
+
[
|
736 |
+
Downsample2D(
|
737 |
+
out_channels,
|
738 |
+
use_conv=True,
|
739 |
+
out_channels=out_channels,
|
740 |
+
padding=downsample_padding,
|
741 |
+
name="op",
|
742 |
+
)
|
743 |
+
]
|
744 |
+
)
|
745 |
+
else:
|
746 |
+
self.downsamplers = None
|
747 |
+
|
748 |
+
self.gradient_checkpointing = False
|
749 |
+
|
750 |
+
def forward(
|
751 |
+
self,
|
752 |
+
hidden_states: torch.FloatTensor,
|
753 |
+
temb: Optional[torch.FloatTensor] = None,
|
754 |
+
scale: float = 1.0,
|
755 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
756 |
+
output_states = ()
|
757 |
+
|
758 |
+
for resnet in self.resnets:
|
759 |
+
if self.training and self.gradient_checkpointing:
|
760 |
+
|
761 |
+
def create_custom_forward(module):
|
762 |
+
def custom_forward(*inputs):
|
763 |
+
return module(*inputs)
|
764 |
+
|
765 |
+
return custom_forward
|
766 |
+
|
767 |
+
if is_torch_version(">=", "1.11.0"):
|
768 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
769 |
+
create_custom_forward(resnet),
|
770 |
+
hidden_states,
|
771 |
+
temb,
|
772 |
+
use_reentrant=False,
|
773 |
+
)
|
774 |
+
else:
|
775 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
776 |
+
create_custom_forward(resnet), hidden_states, temb
|
777 |
+
)
|
778 |
+
else:
|
779 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
780 |
+
|
781 |
+
output_states = output_states + (hidden_states,)
|
782 |
+
|
783 |
+
if self.downsamplers is not None:
|
784 |
+
for downsampler in self.downsamplers:
|
785 |
+
hidden_states = downsampler(hidden_states, scale=scale)
|
786 |
+
|
787 |
+
output_states = output_states + (hidden_states,)
|
788 |
+
|
789 |
+
return hidden_states, output_states
|
790 |
+
|
791 |
+
|
792 |
+
class CrossAttnUpBlock2D(nn.Module):
|
793 |
+
def __init__(
|
794 |
+
self,
|
795 |
+
in_channels: int,
|
796 |
+
out_channels: int,
|
797 |
+
prev_output_channel: int,
|
798 |
+
temb_channels: int,
|
799 |
+
resolution_idx: Optional[int] = None,
|
800 |
+
dropout: float = 0.0,
|
801 |
+
num_layers: int = 1,
|
802 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
803 |
+
resnet_eps: float = 1e-6,
|
804 |
+
resnet_time_scale_shift: str = "default",
|
805 |
+
resnet_act_fn: str = "swish",
|
806 |
+
resnet_groups: int = 32,
|
807 |
+
resnet_pre_norm: bool = True,
|
808 |
+
num_attention_heads: int = 1,
|
809 |
+
cross_attention_dim: int = 1280,
|
810 |
+
output_scale_factor: float = 1.0,
|
811 |
+
add_upsample: bool = True,
|
812 |
+
dual_cross_attention: bool = False,
|
813 |
+
use_linear_projection: bool = False,
|
814 |
+
only_cross_attention: bool = False,
|
815 |
+
upcast_attention: bool = False,
|
816 |
+
attention_type: str = "default",
|
817 |
+
):
|
818 |
+
super().__init__()
|
819 |
+
resnets = []
|
820 |
+
attentions = []
|
821 |
+
|
822 |
+
self.has_cross_attention = True
|
823 |
+
self.num_attention_heads = num_attention_heads
|
824 |
+
|
825 |
+
if isinstance(transformer_layers_per_block, int):
|
826 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
827 |
+
|
828 |
+
for i in range(num_layers):
|
829 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
830 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
831 |
+
|
832 |
+
resnets.append(
|
833 |
+
ResnetBlock2D(
|
834 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
835 |
+
out_channels=out_channels,
|
836 |
+
temb_channels=temb_channels,
|
837 |
+
eps=resnet_eps,
|
838 |
+
groups=resnet_groups,
|
839 |
+
dropout=dropout,
|
840 |
+
time_embedding_norm=resnet_time_scale_shift,
|
841 |
+
non_linearity=resnet_act_fn,
|
842 |
+
output_scale_factor=output_scale_factor,
|
843 |
+
pre_norm=resnet_pre_norm,
|
844 |
+
)
|
845 |
+
)
|
846 |
+
if not dual_cross_attention:
|
847 |
+
attentions.append(
|
848 |
+
Transformer2DModel(
|
849 |
+
num_attention_heads,
|
850 |
+
out_channels // num_attention_heads,
|
851 |
+
in_channels=out_channels,
|
852 |
+
num_layers=transformer_layers_per_block[i],
|
853 |
+
cross_attention_dim=cross_attention_dim,
|
854 |
+
norm_num_groups=resnet_groups,
|
855 |
+
use_linear_projection=use_linear_projection,
|
856 |
+
only_cross_attention=only_cross_attention,
|
857 |
+
upcast_attention=upcast_attention,
|
858 |
+
attention_type=attention_type,
|
859 |
+
)
|
860 |
+
)
|
861 |
+
else:
|
862 |
+
attentions.append(
|
863 |
+
DualTransformer2DModel(
|
864 |
+
num_attention_heads,
|
865 |
+
out_channels // num_attention_heads,
|
866 |
+
in_channels=out_channels,
|
867 |
+
num_layers=1,
|
868 |
+
cross_attention_dim=cross_attention_dim,
|
869 |
+
norm_num_groups=resnet_groups,
|
870 |
+
)
|
871 |
+
)
|
872 |
+
self.attentions = nn.ModuleList(attentions)
|
873 |
+
self.resnets = nn.ModuleList(resnets)
|
874 |
+
|
875 |
+
if add_upsample:
|
876 |
+
self.upsamplers = nn.ModuleList(
|
877 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
878 |
+
)
|
879 |
+
else:
|
880 |
+
self.upsamplers = None
|
881 |
+
|
882 |
+
self.gradient_checkpointing = False
|
883 |
+
self.resolution_idx = resolution_idx
|
884 |
+
|
885 |
+
def forward(
|
886 |
+
self,
|
887 |
+
hidden_states: torch.FloatTensor,
|
888 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
889 |
+
temb: Optional[torch.FloatTensor] = None,
|
890 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
891 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
892 |
+
upsample_size: Optional[int] = None,
|
893 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
894 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
895 |
+
) -> torch.FloatTensor:
|
896 |
+
lora_scale = (
|
897 |
+
cross_attention_kwargs.get("scale", 1.0)
|
898 |
+
if cross_attention_kwargs is not None
|
899 |
+
else 1.0
|
900 |
+
)
|
901 |
+
is_freeu_enabled = (
|
902 |
+
getattr(self, "s1", None)
|
903 |
+
and getattr(self, "s2", None)
|
904 |
+
and getattr(self, "b1", None)
|
905 |
+
and getattr(self, "b2", None)
|
906 |
+
)
|
907 |
+
|
908 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
909 |
+
# pop res hidden states
|
910 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
911 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
912 |
+
|
913 |
+
# FreeU: Only operate on the first two stages
|
914 |
+
if is_freeu_enabled:
|
915 |
+
hidden_states, res_hidden_states = apply_freeu(
|
916 |
+
self.resolution_idx,
|
917 |
+
hidden_states,
|
918 |
+
res_hidden_states,
|
919 |
+
s1=self.s1,
|
920 |
+
s2=self.s2,
|
921 |
+
b1=self.b1,
|
922 |
+
b2=self.b2,
|
923 |
+
)
|
924 |
+
|
925 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
926 |
+
|
927 |
+
if self.training and self.gradient_checkpointing:
|
928 |
+
|
929 |
+
def create_custom_forward(module, return_dict=None):
|
930 |
+
def custom_forward(*inputs):
|
931 |
+
if return_dict is not None:
|
932 |
+
return module(*inputs, return_dict=return_dict)
|
933 |
+
else:
|
934 |
+
return module(*inputs)
|
935 |
+
|
936 |
+
return custom_forward
|
937 |
+
|
938 |
+
ckpt_kwargs: Dict[str, Any] = (
|
939 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
940 |
+
)
|
941 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
942 |
+
create_custom_forward(resnet),
|
943 |
+
hidden_states,
|
944 |
+
temb,
|
945 |
+
**ckpt_kwargs,
|
946 |
+
)
|
947 |
+
hidden_states, ref_feature = attn(
|
948 |
+
hidden_states,
|
949 |
+
encoder_hidden_states=encoder_hidden_states,
|
950 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
951 |
+
attention_mask=attention_mask,
|
952 |
+
encoder_attention_mask=encoder_attention_mask,
|
953 |
+
return_dict=False,
|
954 |
+
)
|
955 |
+
else:
|
956 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
957 |
+
hidden_states, ref_feature = attn(
|
958 |
+
hidden_states,
|
959 |
+
encoder_hidden_states=encoder_hidden_states,
|
960 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
961 |
+
attention_mask=attention_mask,
|
962 |
+
encoder_attention_mask=encoder_attention_mask,
|
963 |
+
return_dict=False,
|
964 |
+
)
|
965 |
+
|
966 |
+
if self.upsamplers is not None:
|
967 |
+
for upsampler in self.upsamplers:
|
968 |
+
hidden_states = upsampler(
|
969 |
+
hidden_states, upsample_size, scale=lora_scale
|
970 |
+
)
|
971 |
+
|
972 |
+
return hidden_states
|
973 |
+
|
974 |
+
|
975 |
+
class UpBlock2D(nn.Module):
|
976 |
+
def __init__(
|
977 |
+
self,
|
978 |
+
in_channels: int,
|
979 |
+
prev_output_channel: int,
|
980 |
+
out_channels: int,
|
981 |
+
temb_channels: int,
|
982 |
+
resolution_idx: Optional[int] = None,
|
983 |
+
dropout: float = 0.0,
|
984 |
+
num_layers: int = 1,
|
985 |
+
resnet_eps: float = 1e-6,
|
986 |
+
resnet_time_scale_shift: str = "default",
|
987 |
+
resnet_act_fn: str = "swish",
|
988 |
+
resnet_groups: int = 32,
|
989 |
+
resnet_pre_norm: bool = True,
|
990 |
+
output_scale_factor: float = 1.0,
|
991 |
+
add_upsample: bool = True,
|
992 |
+
):
|
993 |
+
super().__init__()
|
994 |
+
resnets = []
|
995 |
+
|
996 |
+
for i in range(num_layers):
|
997 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
998 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
999 |
+
|
1000 |
+
resnets.append(
|
1001 |
+
ResnetBlock2D(
|
1002 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
1003 |
+
out_channels=out_channels,
|
1004 |
+
temb_channels=temb_channels,
|
1005 |
+
eps=resnet_eps,
|
1006 |
+
groups=resnet_groups,
|
1007 |
+
dropout=dropout,
|
1008 |
+
time_embedding_norm=resnet_time_scale_shift,
|
1009 |
+
non_linearity=resnet_act_fn,
|
1010 |
+
output_scale_factor=output_scale_factor,
|
1011 |
+
pre_norm=resnet_pre_norm,
|
1012 |
+
)
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
self.resnets = nn.ModuleList(resnets)
|
1016 |
+
|
1017 |
+
if add_upsample:
|
1018 |
+
self.upsamplers = nn.ModuleList(
|
1019 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
1020 |
+
)
|
1021 |
+
else:
|
1022 |
+
self.upsamplers = None
|
1023 |
+
|
1024 |
+
self.gradient_checkpointing = False
|
1025 |
+
self.resolution_idx = resolution_idx
|
1026 |
+
|
1027 |
+
def forward(
|
1028 |
+
self,
|
1029 |
+
hidden_states: torch.FloatTensor,
|
1030 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1031 |
+
temb: Optional[torch.FloatTensor] = None,
|
1032 |
+
upsample_size: Optional[int] = None,
|
1033 |
+
scale: float = 1.0,
|
1034 |
+
) -> torch.FloatTensor:
|
1035 |
+
is_freeu_enabled = (
|
1036 |
+
getattr(self, "s1", None)
|
1037 |
+
and getattr(self, "s2", None)
|
1038 |
+
and getattr(self, "b1", None)
|
1039 |
+
and getattr(self, "b2", None)
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
for resnet in self.resnets:
|
1043 |
+
# pop res hidden states
|
1044 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1045 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1046 |
+
|
1047 |
+
# FreeU: Only operate on the first two stages
|
1048 |
+
if is_freeu_enabled:
|
1049 |
+
hidden_states, res_hidden_states = apply_freeu(
|
1050 |
+
self.resolution_idx,
|
1051 |
+
hidden_states,
|
1052 |
+
res_hidden_states,
|
1053 |
+
s1=self.s1,
|
1054 |
+
s2=self.s2,
|
1055 |
+
b1=self.b1,
|
1056 |
+
b2=self.b2,
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1060 |
+
|
1061 |
+
if self.training and self.gradient_checkpointing:
|
1062 |
+
|
1063 |
+
def create_custom_forward(module):
|
1064 |
+
def custom_forward(*inputs):
|
1065 |
+
return module(*inputs)
|
1066 |
+
|
1067 |
+
return custom_forward
|
1068 |
+
|
1069 |
+
if is_torch_version(">=", "1.11.0"):
|
1070 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1071 |
+
create_custom_forward(resnet),
|
1072 |
+
hidden_states,
|
1073 |
+
temb,
|
1074 |
+
use_reentrant=False,
|
1075 |
+
)
|
1076 |
+
else:
|
1077 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1078 |
+
create_custom_forward(resnet), hidden_states, temb
|
1079 |
+
)
|
1080 |
+
else:
|
1081 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
1082 |
+
|
1083 |
+
if self.upsamplers is not None:
|
1084 |
+
for upsampler in self.upsamplers:
|
1085 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
1086 |
+
|
1087 |
+
return hidden_states
|
genwarp/models/unet_2d_condition.py
ADDED
@@ -0,0 +1,1324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# Diffusers
|
9 |
+
# Apache License, Version 2.0
|
10 |
+
# Copyright (c) Hugging Face Inc.
|
11 |
+
# https://github.com/huggingface/diffusers
|
12 |
+
# ==============================================================================
|
13 |
+
|
14 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.models.activations import get_activation
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
AttentionProcessor,
|
28 |
+
AttnAddedKVProcessor,
|
29 |
+
AttnProcessor,
|
30 |
+
)
|
31 |
+
from diffusers.models.embeddings import (
|
32 |
+
GaussianFourierProjection,
|
33 |
+
ImageHintTimeEmbedding,
|
34 |
+
ImageProjection,
|
35 |
+
ImageTimeEmbedding,
|
36 |
+
# PositionNet,
|
37 |
+
TextImageProjection,
|
38 |
+
TextImageTimeEmbedding,
|
39 |
+
TextTimeEmbedding,
|
40 |
+
TimestepEmbedding,
|
41 |
+
Timesteps,
|
42 |
+
)
|
43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
44 |
+
from diffusers.utils import (
|
45 |
+
USE_PEFT_BACKEND,
|
46 |
+
BaseOutput,
|
47 |
+
deprecate,
|
48 |
+
logging,
|
49 |
+
scale_lora_layers,
|
50 |
+
unscale_lora_layers,
|
51 |
+
)
|
52 |
+
|
53 |
+
from .unet_2d_blocks import (
|
54 |
+
UNetMidBlock2D,
|
55 |
+
UNetMidBlock2DCrossAttn,
|
56 |
+
get_down_block,
|
57 |
+
get_up_block,
|
58 |
+
)
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
61 |
+
|
62 |
+
|
63 |
+
@dataclass
|
64 |
+
class UNet2DConditionOutput(BaseOutput):
|
65 |
+
"""
|
66 |
+
The output of [`UNet2DConditionModel`].
|
67 |
+
|
68 |
+
Args:
|
69 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
70 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
71 |
+
"""
|
72 |
+
|
73 |
+
sample: torch.FloatTensor = None
|
74 |
+
ref_features: Tuple[torch.FloatTensor] = None
|
75 |
+
|
76 |
+
|
77 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
78 |
+
r"""
|
79 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
80 |
+
shaped output.
|
81 |
+
|
82 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
83 |
+
for all models (such as downloading or saving).
|
84 |
+
|
85 |
+
Parameters:
|
86 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
87 |
+
Height and width of input/output sample.
|
88 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
89 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
90 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
91 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether to flip the sin to cos in the time embedding.
|
93 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
94 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
95 |
+
The tuple of downsample blocks to use.
|
96 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
97 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
98 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
99 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
100 |
+
The tuple of upsample blocks to use.
|
101 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
102 |
+
Whether to include self-attention in the basic transformer blocks, see
|
103 |
+
[`~models.attention.BasicTransformerBlock`].
|
104 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
105 |
+
The tuple of output channels for each block.
|
106 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
107 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
108 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
109 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
110 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
111 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
112 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
113 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
114 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
115 |
+
The dimension of the cross attention features.
|
116 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
117 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
118 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
119 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
120 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
121 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
122 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
123 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
124 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
125 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
126 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
127 |
+
dimension to `cross_attention_dim`.
|
128 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
129 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
130 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
131 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
132 |
+
num_attention_heads (`int`, *optional*):
|
133 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
134 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
135 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
136 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
137 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
138 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
139 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
140 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
141 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
142 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
143 |
+
Dimension for the timestep embeddings.
|
144 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
145 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
146 |
+
class conditioning with `class_embed_type` equal to `None`.
|
147 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
148 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
149 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
150 |
+
An optional override for the dimension of the projected time embedding.
|
151 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
152 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
153 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
154 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
155 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
156 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
157 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
158 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
159 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
160 |
+
*optional*): The dimension of the `class_labels` input when
|
161 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
162 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
163 |
+
embeddings with the class embeddings.
|
164 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
165 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
166 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
167 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
168 |
+
otherwise.
|
169 |
+
"""
|
170 |
+
|
171 |
+
_supports_gradient_checkpointing = True
|
172 |
+
|
173 |
+
@register_to_config
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
sample_size: Optional[int] = None,
|
177 |
+
in_channels: int = 4,
|
178 |
+
out_channels: int = 4,
|
179 |
+
center_input_sample: bool = False,
|
180 |
+
flip_sin_to_cos: bool = True,
|
181 |
+
freq_shift: int = 0,
|
182 |
+
down_block_types: Tuple[str] = (
|
183 |
+
"CrossAttnDownBlock2D",
|
184 |
+
"CrossAttnDownBlock2D",
|
185 |
+
"CrossAttnDownBlock2D",
|
186 |
+
"DownBlock2D",
|
187 |
+
),
|
188 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
189 |
+
up_block_types: Tuple[str] = (
|
190 |
+
"UpBlock2D",
|
191 |
+
"CrossAttnUpBlock2D",
|
192 |
+
"CrossAttnUpBlock2D",
|
193 |
+
"CrossAttnUpBlock2D",
|
194 |
+
),
|
195 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
196 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
197 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
198 |
+
downsample_padding: int = 1,
|
199 |
+
mid_block_scale_factor: float = 1,
|
200 |
+
dropout: float = 0.0,
|
201 |
+
act_fn: str = "silu",
|
202 |
+
norm_num_groups: Optional[int] = 32,
|
203 |
+
norm_eps: float = 1e-5,
|
204 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
205 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
206 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
207 |
+
encoder_hid_dim: Optional[int] = None,
|
208 |
+
encoder_hid_dim_type: Optional[str] = None,
|
209 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
210 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
211 |
+
dual_cross_attention: bool = False,
|
212 |
+
use_linear_projection: bool = False,
|
213 |
+
class_embed_type: Optional[str] = None,
|
214 |
+
addition_embed_type: Optional[str] = None,
|
215 |
+
addition_time_embed_dim: Optional[int] = None,
|
216 |
+
num_class_embeds: Optional[int] = None,
|
217 |
+
upcast_attention: bool = False,
|
218 |
+
resnet_time_scale_shift: str = "default",
|
219 |
+
resnet_skip_time_act: bool = False,
|
220 |
+
resnet_out_scale_factor: int = 1.0,
|
221 |
+
time_embedding_type: str = "positional",
|
222 |
+
time_embedding_dim: Optional[int] = None,
|
223 |
+
time_embedding_act_fn: Optional[str] = None,
|
224 |
+
timestep_post_act: Optional[str] = None,
|
225 |
+
time_cond_proj_dim: Optional[int] = None,
|
226 |
+
conv_in_kernel: int = 3,
|
227 |
+
conv_out_kernel: int = 3,
|
228 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
229 |
+
attention_type: str = "default",
|
230 |
+
class_embeddings_concat: bool = False,
|
231 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
232 |
+
cross_attention_norm: Optional[str] = None,
|
233 |
+
addition_embed_type_num_heads=64,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
self.sample_size = sample_size
|
238 |
+
|
239 |
+
if num_attention_heads is not None:
|
240 |
+
raise ValueError(
|
241 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
242 |
+
)
|
243 |
+
|
244 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
245 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
246 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
247 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
248 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
249 |
+
# which is why we correct for the naming here.
|
250 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
251 |
+
|
252 |
+
# Check inputs
|
253 |
+
if len(down_block_types) != len(up_block_types):
|
254 |
+
raise ValueError(
|
255 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
256 |
+
)
|
257 |
+
|
258 |
+
if len(block_out_channels) != len(down_block_types):
|
259 |
+
raise ValueError(
|
260 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
261 |
+
)
|
262 |
+
|
263 |
+
if not isinstance(only_cross_attention, bool) and len(
|
264 |
+
only_cross_attention
|
265 |
+
) != len(down_block_types):
|
266 |
+
raise ValueError(
|
267 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
268 |
+
)
|
269 |
+
|
270 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
271 |
+
down_block_types
|
272 |
+
):
|
273 |
+
raise ValueError(
|
274 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
275 |
+
)
|
276 |
+
|
277 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(
|
278 |
+
down_block_types
|
279 |
+
):
|
280 |
+
raise ValueError(
|
281 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
282 |
+
)
|
283 |
+
|
284 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(
|
285 |
+
down_block_types
|
286 |
+
):
|
287 |
+
raise ValueError(
|
288 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
289 |
+
)
|
290 |
+
|
291 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(
|
292 |
+
down_block_types
|
293 |
+
):
|
294 |
+
raise ValueError(
|
295 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
296 |
+
)
|
297 |
+
if (
|
298 |
+
isinstance(transformer_layers_per_block, list)
|
299 |
+
and reverse_transformer_layers_per_block is None
|
300 |
+
):
|
301 |
+
for layer_number_per_block in transformer_layers_per_block:
|
302 |
+
if isinstance(layer_number_per_block, list):
|
303 |
+
raise ValueError(
|
304 |
+
"Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet."
|
305 |
+
)
|
306 |
+
|
307 |
+
# input
|
308 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
309 |
+
self.conv_in = nn.Conv2d(
|
310 |
+
in_channels,
|
311 |
+
block_out_channels[0],
|
312 |
+
kernel_size=conv_in_kernel,
|
313 |
+
padding=conv_in_padding,
|
314 |
+
)
|
315 |
+
|
316 |
+
# time
|
317 |
+
if time_embedding_type == "fourier":
|
318 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
319 |
+
if time_embed_dim % 2 != 0:
|
320 |
+
raise ValueError(
|
321 |
+
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
|
322 |
+
)
|
323 |
+
self.time_proj = GaussianFourierProjection(
|
324 |
+
time_embed_dim // 2,
|
325 |
+
set_W_to_weight=False,
|
326 |
+
log=False,
|
327 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
328 |
+
)
|
329 |
+
timestep_input_dim = time_embed_dim
|
330 |
+
elif time_embedding_type == "positional":
|
331 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
332 |
+
|
333 |
+
self.time_proj = Timesteps(
|
334 |
+
block_out_channels[0], flip_sin_to_cos, freq_shift
|
335 |
+
)
|
336 |
+
timestep_input_dim = block_out_channels[0]
|
337 |
+
else:
|
338 |
+
raise ValueError(
|
339 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
340 |
+
)
|
341 |
+
|
342 |
+
self.time_embedding = TimestepEmbedding(
|
343 |
+
timestep_input_dim,
|
344 |
+
time_embed_dim,
|
345 |
+
act_fn=act_fn,
|
346 |
+
post_act_fn=timestep_post_act,
|
347 |
+
cond_proj_dim=time_cond_proj_dim,
|
348 |
+
)
|
349 |
+
|
350 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
351 |
+
encoder_hid_dim_type = "text_proj"
|
352 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
353 |
+
logger.info(
|
354 |
+
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
|
355 |
+
)
|
356 |
+
|
357 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
358 |
+
raise ValueError(
|
359 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
360 |
+
)
|
361 |
+
|
362 |
+
if encoder_hid_dim_type == "text_proj":
|
363 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
364 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
365 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
366 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
367 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
368 |
+
self.encoder_hid_proj = TextImageProjection(
|
369 |
+
text_embed_dim=encoder_hid_dim,
|
370 |
+
image_embed_dim=cross_attention_dim,
|
371 |
+
cross_attention_dim=cross_attention_dim,
|
372 |
+
)
|
373 |
+
elif encoder_hid_dim_type == "image_proj":
|
374 |
+
# Kandinsky 2.2
|
375 |
+
self.encoder_hid_proj = ImageProjection(
|
376 |
+
image_embed_dim=encoder_hid_dim,
|
377 |
+
cross_attention_dim=cross_attention_dim,
|
378 |
+
)
|
379 |
+
elif encoder_hid_dim_type is not None:
|
380 |
+
raise ValueError(
|
381 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
382 |
+
)
|
383 |
+
else:
|
384 |
+
self.encoder_hid_proj = None
|
385 |
+
|
386 |
+
# class embedding
|
387 |
+
if class_embed_type is None and num_class_embeds is not None:
|
388 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
389 |
+
elif class_embed_type == "timestep":
|
390 |
+
self.class_embedding = TimestepEmbedding(
|
391 |
+
timestep_input_dim, time_embed_dim, act_fn=act_fn
|
392 |
+
)
|
393 |
+
elif class_embed_type == "identity":
|
394 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
395 |
+
elif class_embed_type == "projection":
|
396 |
+
if projection_class_embeddings_input_dim is None:
|
397 |
+
raise ValueError(
|
398 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
399 |
+
)
|
400 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
401 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
402 |
+
# 2. it projects from an arbitrary input dimension.
|
403 |
+
#
|
404 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
405 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
406 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
407 |
+
self.class_embedding = TimestepEmbedding(
|
408 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
409 |
+
)
|
410 |
+
elif class_embed_type == "simple_projection":
|
411 |
+
if projection_class_embeddings_input_dim is None:
|
412 |
+
raise ValueError(
|
413 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
414 |
+
)
|
415 |
+
self.class_embedding = nn.Linear(
|
416 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
417 |
+
)
|
418 |
+
else:
|
419 |
+
self.class_embedding = None
|
420 |
+
|
421 |
+
if addition_embed_type == "text":
|
422 |
+
if encoder_hid_dim is not None:
|
423 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
424 |
+
else:
|
425 |
+
text_time_embedding_from_dim = cross_attention_dim
|
426 |
+
|
427 |
+
self.add_embedding = TextTimeEmbedding(
|
428 |
+
text_time_embedding_from_dim,
|
429 |
+
time_embed_dim,
|
430 |
+
num_heads=addition_embed_type_num_heads,
|
431 |
+
)
|
432 |
+
elif addition_embed_type == "text_image":
|
433 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
434 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
435 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
436 |
+
self.add_embedding = TextImageTimeEmbedding(
|
437 |
+
text_embed_dim=cross_attention_dim,
|
438 |
+
image_embed_dim=cross_attention_dim,
|
439 |
+
time_embed_dim=time_embed_dim,
|
440 |
+
)
|
441 |
+
elif addition_embed_type == "text_time":
|
442 |
+
self.add_time_proj = Timesteps(
|
443 |
+
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
444 |
+
)
|
445 |
+
self.add_embedding = TimestepEmbedding(
|
446 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
447 |
+
)
|
448 |
+
elif addition_embed_type == "image":
|
449 |
+
# Kandinsky 2.2
|
450 |
+
self.add_embedding = ImageTimeEmbedding(
|
451 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
452 |
+
)
|
453 |
+
elif addition_embed_type == "image_hint":
|
454 |
+
# Kandinsky 2.2 ControlNet
|
455 |
+
self.add_embedding = ImageHintTimeEmbedding(
|
456 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
457 |
+
)
|
458 |
+
elif addition_embed_type is not None:
|
459 |
+
raise ValueError(
|
460 |
+
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
|
461 |
+
)
|
462 |
+
|
463 |
+
if time_embedding_act_fn is None:
|
464 |
+
self.time_embed_act = None
|
465 |
+
else:
|
466 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
467 |
+
|
468 |
+
self.down_blocks = nn.ModuleList([])
|
469 |
+
self.up_blocks = nn.ModuleList([])
|
470 |
+
|
471 |
+
if isinstance(only_cross_attention, bool):
|
472 |
+
if mid_block_only_cross_attention is None:
|
473 |
+
mid_block_only_cross_attention = only_cross_attention
|
474 |
+
|
475 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
476 |
+
|
477 |
+
if mid_block_only_cross_attention is None:
|
478 |
+
mid_block_only_cross_attention = False
|
479 |
+
|
480 |
+
if isinstance(num_attention_heads, int):
|
481 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
482 |
+
|
483 |
+
if isinstance(attention_head_dim, int):
|
484 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
485 |
+
|
486 |
+
if isinstance(cross_attention_dim, int):
|
487 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
488 |
+
|
489 |
+
if isinstance(layers_per_block, int):
|
490 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
491 |
+
|
492 |
+
if isinstance(transformer_layers_per_block, int):
|
493 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
494 |
+
down_block_types
|
495 |
+
)
|
496 |
+
|
497 |
+
if class_embeddings_concat:
|
498 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
499 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
500 |
+
# regular time embeddings
|
501 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
502 |
+
else:
|
503 |
+
blocks_time_embed_dim = time_embed_dim
|
504 |
+
|
505 |
+
# down
|
506 |
+
output_channel = block_out_channels[0]
|
507 |
+
for i, down_block_type in enumerate(down_block_types):
|
508 |
+
input_channel = output_channel
|
509 |
+
output_channel = block_out_channels[i]
|
510 |
+
is_final_block = i == len(block_out_channels) - 1
|
511 |
+
|
512 |
+
down_block = get_down_block(
|
513 |
+
down_block_type,
|
514 |
+
num_layers=layers_per_block[i],
|
515 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
516 |
+
in_channels=input_channel,
|
517 |
+
out_channels=output_channel,
|
518 |
+
temb_channels=blocks_time_embed_dim,
|
519 |
+
add_downsample=not is_final_block,
|
520 |
+
resnet_eps=norm_eps,
|
521 |
+
resnet_act_fn=act_fn,
|
522 |
+
resnet_groups=norm_num_groups,
|
523 |
+
cross_attention_dim=cross_attention_dim[i],
|
524 |
+
num_attention_heads=num_attention_heads[i],
|
525 |
+
downsample_padding=downsample_padding,
|
526 |
+
dual_cross_attention=dual_cross_attention,
|
527 |
+
use_linear_projection=use_linear_projection,
|
528 |
+
only_cross_attention=only_cross_attention[i],
|
529 |
+
upcast_attention=upcast_attention,
|
530 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
531 |
+
attention_type=attention_type,
|
532 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
533 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
534 |
+
cross_attention_norm=cross_attention_norm,
|
535 |
+
attention_head_dim=attention_head_dim[i]
|
536 |
+
if attention_head_dim[i] is not None
|
537 |
+
else output_channel,
|
538 |
+
dropout=dropout,
|
539 |
+
)
|
540 |
+
self.down_blocks.append(down_block)
|
541 |
+
|
542 |
+
# mid
|
543 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
544 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
545 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
546 |
+
in_channels=block_out_channels[-1],
|
547 |
+
temb_channels=blocks_time_embed_dim,
|
548 |
+
dropout=dropout,
|
549 |
+
resnet_eps=norm_eps,
|
550 |
+
resnet_act_fn=act_fn,
|
551 |
+
output_scale_factor=mid_block_scale_factor,
|
552 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
553 |
+
cross_attention_dim=cross_attention_dim[-1],
|
554 |
+
num_attention_heads=num_attention_heads[-1],
|
555 |
+
resnet_groups=norm_num_groups,
|
556 |
+
dual_cross_attention=dual_cross_attention,
|
557 |
+
use_linear_projection=use_linear_projection,
|
558 |
+
upcast_attention=upcast_attention,
|
559 |
+
attention_type=attention_type,
|
560 |
+
)
|
561 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
562 |
+
raise NotImplementedError(f"Unsupport mid_block_type: {mid_block_type}")
|
563 |
+
elif mid_block_type == "UNetMidBlock2D":
|
564 |
+
self.mid_block = UNetMidBlock2D(
|
565 |
+
in_channels=block_out_channels[-1],
|
566 |
+
temb_channels=blocks_time_embed_dim,
|
567 |
+
dropout=dropout,
|
568 |
+
num_layers=0,
|
569 |
+
resnet_eps=norm_eps,
|
570 |
+
resnet_act_fn=act_fn,
|
571 |
+
output_scale_factor=mid_block_scale_factor,
|
572 |
+
resnet_groups=norm_num_groups,
|
573 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
574 |
+
add_attention=False,
|
575 |
+
)
|
576 |
+
elif mid_block_type is None:
|
577 |
+
self.mid_block = None
|
578 |
+
else:
|
579 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
580 |
+
|
581 |
+
# count how many layers upsample the images
|
582 |
+
self.num_upsamplers = 0
|
583 |
+
|
584 |
+
# up
|
585 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
586 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
587 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
588 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
589 |
+
reversed_transformer_layers_per_block = (
|
590 |
+
list(reversed(transformer_layers_per_block))
|
591 |
+
if reverse_transformer_layers_per_block is None
|
592 |
+
else reverse_transformer_layers_per_block
|
593 |
+
)
|
594 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
595 |
+
|
596 |
+
output_channel = reversed_block_out_channels[0]
|
597 |
+
for i, up_block_type in enumerate(up_block_types):
|
598 |
+
is_final_block = i == len(block_out_channels) - 1
|
599 |
+
|
600 |
+
prev_output_channel = output_channel
|
601 |
+
output_channel = reversed_block_out_channels[i]
|
602 |
+
input_channel = reversed_block_out_channels[
|
603 |
+
min(i + 1, len(block_out_channels) - 1)
|
604 |
+
]
|
605 |
+
|
606 |
+
# add upsample block for all BUT final layer
|
607 |
+
if not is_final_block:
|
608 |
+
add_upsample = True
|
609 |
+
self.num_upsamplers += 1
|
610 |
+
else:
|
611 |
+
add_upsample = False
|
612 |
+
|
613 |
+
up_block = get_up_block(
|
614 |
+
up_block_type,
|
615 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
616 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
617 |
+
in_channels=input_channel,
|
618 |
+
out_channels=output_channel,
|
619 |
+
prev_output_channel=prev_output_channel,
|
620 |
+
temb_channels=blocks_time_embed_dim,
|
621 |
+
add_upsample=add_upsample,
|
622 |
+
resnet_eps=norm_eps,
|
623 |
+
resnet_act_fn=act_fn,
|
624 |
+
resolution_idx=i,
|
625 |
+
resnet_groups=norm_num_groups,
|
626 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
627 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
628 |
+
dual_cross_attention=dual_cross_attention,
|
629 |
+
use_linear_projection=use_linear_projection,
|
630 |
+
only_cross_attention=only_cross_attention[i],
|
631 |
+
upcast_attention=upcast_attention,
|
632 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
633 |
+
attention_type=attention_type,
|
634 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
635 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
636 |
+
cross_attention_norm=cross_attention_norm,
|
637 |
+
attention_head_dim=attention_head_dim[i]
|
638 |
+
if attention_head_dim[i] is not None
|
639 |
+
else output_channel,
|
640 |
+
dropout=dropout,
|
641 |
+
)
|
642 |
+
self.up_blocks.append(up_block)
|
643 |
+
prev_output_channel = output_channel
|
644 |
+
|
645 |
+
# out
|
646 |
+
if norm_num_groups is not None:
|
647 |
+
self.conv_norm_out = nn.GroupNorm(
|
648 |
+
num_channels=block_out_channels[0],
|
649 |
+
num_groups=norm_num_groups,
|
650 |
+
eps=norm_eps,
|
651 |
+
)
|
652 |
+
|
653 |
+
self.conv_act = get_activation(act_fn)
|
654 |
+
|
655 |
+
else:
|
656 |
+
self.conv_norm_out = None
|
657 |
+
self.conv_act = None
|
658 |
+
self.conv_norm_out = None
|
659 |
+
|
660 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
661 |
+
# self.conv_out = nn.Conv2d(
|
662 |
+
# block_out_channels[0],
|
663 |
+
# out_channels,
|
664 |
+
# kernel_size=conv_out_kernel,
|
665 |
+
# padding=conv_out_padding,
|
666 |
+
# )
|
667 |
+
|
668 |
+
if attention_type in ["gated", "gated-text-image"]:
|
669 |
+
positive_len = 768
|
670 |
+
if isinstance(cross_attention_dim, int):
|
671 |
+
positive_len = cross_attention_dim
|
672 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(
|
673 |
+
cross_attention_dim, list
|
674 |
+
):
|
675 |
+
positive_len = cross_attention_dim[0]
|
676 |
+
|
677 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
678 |
+
# self.position_net = PositionNet(
|
679 |
+
# positive_len=positive_len,
|
680 |
+
# out_dim=cross_attention_dim,
|
681 |
+
# feature_type=feature_type,
|
682 |
+
# )
|
683 |
+
|
684 |
+
@property
|
685 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
686 |
+
r"""
|
687 |
+
Returns:
|
688 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
689 |
+
indexed by its weight name.
|
690 |
+
"""
|
691 |
+
# set recursively
|
692 |
+
processors = {}
|
693 |
+
|
694 |
+
def fn_recursive_add_processors(
|
695 |
+
name: str,
|
696 |
+
module: torch.nn.Module,
|
697 |
+
processors: Dict[str, AttentionProcessor],
|
698 |
+
):
|
699 |
+
if hasattr(module, "get_processor"):
|
700 |
+
processors[f"{name}.processor"] = module.get_processor(
|
701 |
+
return_deprecated_lora=True
|
702 |
+
)
|
703 |
+
|
704 |
+
for sub_name, child in module.named_children():
|
705 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
706 |
+
|
707 |
+
return processors
|
708 |
+
|
709 |
+
for name, module in self.named_children():
|
710 |
+
fn_recursive_add_processors(name, module, processors)
|
711 |
+
|
712 |
+
return processors
|
713 |
+
|
714 |
+
def set_attn_processor(
|
715 |
+
self,
|
716 |
+
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
717 |
+
_remove_lora=False,
|
718 |
+
):
|
719 |
+
r"""
|
720 |
+
Sets the attention processor to use to compute attention.
|
721 |
+
|
722 |
+
Parameters:
|
723 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
724 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
725 |
+
for **all** `Attention` layers.
|
726 |
+
|
727 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
728 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
729 |
+
|
730 |
+
"""
|
731 |
+
count = len(self.attn_processors.keys())
|
732 |
+
|
733 |
+
if isinstance(processor, dict) and len(processor) != count:
|
734 |
+
raise ValueError(
|
735 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
736 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
737 |
+
)
|
738 |
+
|
739 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
740 |
+
if hasattr(module, "set_processor"):
|
741 |
+
if not isinstance(processor, dict):
|
742 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
743 |
+
else:
|
744 |
+
module.set_processor(
|
745 |
+
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
|
746 |
+
)
|
747 |
+
|
748 |
+
for sub_name, child in module.named_children():
|
749 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
750 |
+
|
751 |
+
for name, module in self.named_children():
|
752 |
+
fn_recursive_attn_processor(name, module, processor)
|
753 |
+
|
754 |
+
def set_default_attn_processor(self):
|
755 |
+
"""
|
756 |
+
Disables custom attention processors and sets the default attention implementation.
|
757 |
+
"""
|
758 |
+
if all(
|
759 |
+
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
|
760 |
+
for proc in self.attn_processors.values()
|
761 |
+
):
|
762 |
+
processor = AttnAddedKVProcessor()
|
763 |
+
elif all(
|
764 |
+
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
765 |
+
for proc in self.attn_processors.values()
|
766 |
+
):
|
767 |
+
processor = AttnProcessor()
|
768 |
+
else:
|
769 |
+
raise ValueError(
|
770 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
771 |
+
)
|
772 |
+
|
773 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
774 |
+
|
775 |
+
def set_attention_slice(self, slice_size):
|
776 |
+
r"""
|
777 |
+
Enable sliced attention computation.
|
778 |
+
|
779 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
780 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
781 |
+
|
782 |
+
Args:
|
783 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
784 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
785 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
786 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
787 |
+
must be a multiple of `slice_size`.
|
788 |
+
"""
|
789 |
+
sliceable_head_dims = []
|
790 |
+
|
791 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
792 |
+
if hasattr(module, "set_attention_slice"):
|
793 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
794 |
+
|
795 |
+
for child in module.children():
|
796 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
797 |
+
|
798 |
+
# retrieve number of attention layers
|
799 |
+
for module in self.children():
|
800 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
801 |
+
|
802 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
803 |
+
|
804 |
+
if slice_size == "auto":
|
805 |
+
# half the attention head size is usually a good trade-off between
|
806 |
+
# speed and memory
|
807 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
808 |
+
elif slice_size == "max":
|
809 |
+
# make smallest slice possible
|
810 |
+
slice_size = num_sliceable_layers * [1]
|
811 |
+
|
812 |
+
slice_size = (
|
813 |
+
num_sliceable_layers * [slice_size]
|
814 |
+
if not isinstance(slice_size, list)
|
815 |
+
else slice_size
|
816 |
+
)
|
817 |
+
|
818 |
+
if len(slice_size) != len(sliceable_head_dims):
|
819 |
+
raise ValueError(
|
820 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
821 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
822 |
+
)
|
823 |
+
|
824 |
+
for i in range(len(slice_size)):
|
825 |
+
size = slice_size[i]
|
826 |
+
dim = sliceable_head_dims[i]
|
827 |
+
if size is not None and size > dim:
|
828 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
829 |
+
|
830 |
+
# Recursively walk through all the children.
|
831 |
+
# Any children which exposes the set_attention_slice method
|
832 |
+
# gets the message
|
833 |
+
def fn_recursive_set_attention_slice(
|
834 |
+
module: torch.nn.Module, slice_size: List[int]
|
835 |
+
):
|
836 |
+
if hasattr(module, "set_attention_slice"):
|
837 |
+
module.set_attention_slice(slice_size.pop())
|
838 |
+
|
839 |
+
for child in module.children():
|
840 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
841 |
+
|
842 |
+
reversed_slice_size = list(reversed(slice_size))
|
843 |
+
for module in self.children():
|
844 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
845 |
+
|
846 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
847 |
+
if hasattr(module, "gradient_checkpointing"):
|
848 |
+
module.gradient_checkpointing = value
|
849 |
+
|
850 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
851 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
852 |
+
|
853 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
854 |
+
|
855 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
856 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
857 |
+
|
858 |
+
Args:
|
859 |
+
s1 (`float`):
|
860 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
861 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
862 |
+
s2 (`float`):
|
863 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
864 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
865 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
866 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
867 |
+
"""
|
868 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
869 |
+
setattr(upsample_block, "s1", s1)
|
870 |
+
setattr(upsample_block, "s2", s2)
|
871 |
+
setattr(upsample_block, "b1", b1)
|
872 |
+
setattr(upsample_block, "b2", b2)
|
873 |
+
|
874 |
+
def disable_freeu(self):
|
875 |
+
"""Disables the FreeU mechanism."""
|
876 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
877 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
878 |
+
for k in freeu_keys:
|
879 |
+
if (
|
880 |
+
hasattr(upsample_block, k)
|
881 |
+
or getattr(upsample_block, k, None) is not None
|
882 |
+
):
|
883 |
+
setattr(upsample_block, k, None)
|
884 |
+
|
885 |
+
def forward(
|
886 |
+
self,
|
887 |
+
sample: torch.FloatTensor,
|
888 |
+
timestep: Union[torch.Tensor, float, int],
|
889 |
+
encoder_hidden_states: torch.Tensor,
|
890 |
+
class_labels: Optional[torch.Tensor] = None,
|
891 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
892 |
+
attention_mask: Optional[torch.Tensor] = None,
|
893 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
894 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
895 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
896 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
897 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
898 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
899 |
+
pose_cond_fea: Optional[torch.Tensor] = None,
|
900 |
+
return_dict: bool = True,
|
901 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
902 |
+
r"""
|
903 |
+
The [`UNet2DConditionModel`] forward method.
|
904 |
+
|
905 |
+
Args:
|
906 |
+
sample (`torch.FloatTensor`):
|
907 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
908 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
909 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
910 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
911 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
912 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
913 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
914 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
915 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
916 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
917 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
918 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
919 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
920 |
+
cross_attention_kwargs (`dict`, *optional*):
|
921 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
922 |
+
`self.processor` in
|
923 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
924 |
+
added_cond_kwargs: (`dict`, *optional*):
|
925 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
926 |
+
are passed along to the UNet blocks.
|
927 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
928 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
929 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
930 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
931 |
+
encoder_attention_mask (`torch.Tensor`):
|
932 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
933 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
934 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
935 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
936 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
937 |
+
tuple.
|
938 |
+
cross_attention_kwargs (`dict`, *optional*):
|
939 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
940 |
+
added_cond_kwargs: (`dict`, *optional*):
|
941 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
942 |
+
are passed along to the UNet blocks.
|
943 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
944 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
945 |
+
example from ControlNet side model(s)
|
946 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
947 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
948 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
949 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
950 |
+
|
951 |
+
Returns:
|
952 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
953 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
954 |
+
a `tuple` is returned where the first element is the sample tensor.
|
955 |
+
"""
|
956 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
957 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
958 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
959 |
+
# on the fly if necessary.
|
960 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
961 |
+
|
962 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
963 |
+
forward_upsample_size = False
|
964 |
+
upsample_size = None
|
965 |
+
|
966 |
+
for dim in sample.shape[-2:]:
|
967 |
+
if dim % default_overall_up_factor != 0:
|
968 |
+
# Forward upsample size to force interpolation output size.
|
969 |
+
forward_upsample_size = True
|
970 |
+
break
|
971 |
+
|
972 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
973 |
+
# expects mask of shape:
|
974 |
+
# [batch, key_tokens]
|
975 |
+
# adds singleton query_tokens dimension:
|
976 |
+
# [batch, 1, key_tokens]
|
977 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
978 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
979 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
980 |
+
if attention_mask is not None:
|
981 |
+
# assume that mask is expressed as:
|
982 |
+
# (1 = keep, 0 = discard)
|
983 |
+
# convert mask into a bias that can be added to attention scores:
|
984 |
+
# (keep = +0, discard = -10000.0)
|
985 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
986 |
+
attention_mask = attention_mask.unsqueeze(1)
|
987 |
+
|
988 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
989 |
+
if encoder_attention_mask is not None:
|
990 |
+
encoder_attention_mask = (
|
991 |
+
1 - encoder_attention_mask.to(sample.dtype)
|
992 |
+
) * -10000.0
|
993 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
994 |
+
|
995 |
+
# 0. center input if necessary
|
996 |
+
if self.config.center_input_sample:
|
997 |
+
sample = 2 * sample - 1.0
|
998 |
+
|
999 |
+
# 1. time
|
1000 |
+
timesteps = timestep
|
1001 |
+
if not torch.is_tensor(timesteps):
|
1002 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
1003 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
1004 |
+
is_mps = sample.device.type == "mps"
|
1005 |
+
if isinstance(timestep, float):
|
1006 |
+
dtype = torch.float32 if is_mps else torch.float64
|
1007 |
+
else:
|
1008 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1009 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1010 |
+
elif len(timesteps.shape) == 0:
|
1011 |
+
timesteps = timesteps[None].to(sample.device)
|
1012 |
+
|
1013 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1014 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1015 |
+
|
1016 |
+
t_emb = self.time_proj(timesteps)
|
1017 |
+
|
1018 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1019 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1020 |
+
# there might be better ways to encapsulate this.
|
1021 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1022 |
+
|
1023 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1024 |
+
aug_emb = None
|
1025 |
+
|
1026 |
+
if self.class_embedding is not None:
|
1027 |
+
if class_labels is None:
|
1028 |
+
raise ValueError(
|
1029 |
+
"class_labels should be provided when num_class_embeds > 0"
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
if self.config.class_embed_type == "timestep":
|
1033 |
+
class_labels = self.time_proj(class_labels)
|
1034 |
+
|
1035 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1036 |
+
# there might be better ways to encapsulate this.
|
1037 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1038 |
+
|
1039 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1040 |
+
|
1041 |
+
if self.config.class_embeddings_concat:
|
1042 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1043 |
+
else:
|
1044 |
+
emb = emb + class_emb
|
1045 |
+
|
1046 |
+
if self.config.addition_embed_type == "text":
|
1047 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1048 |
+
elif self.config.addition_embed_type == "text_image":
|
1049 |
+
# Kandinsky 2.1 - style
|
1050 |
+
if "image_embeds" not in added_cond_kwargs:
|
1051 |
+
raise ValueError(
|
1052 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1056 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1057 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1058 |
+
elif self.config.addition_embed_type == "text_time":
|
1059 |
+
# SDXL - style
|
1060 |
+
if "text_embeds" not in added_cond_kwargs:
|
1061 |
+
raise ValueError(
|
1062 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1063 |
+
)
|
1064 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1065 |
+
if "time_ids" not in added_cond_kwargs:
|
1066 |
+
raise ValueError(
|
1067 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1068 |
+
)
|
1069 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1070 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1071 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1072 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1073 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1074 |
+
aug_emb = self.add_embedding(add_embeds)
|
1075 |
+
elif self.config.addition_embed_type == "image":
|
1076 |
+
# Kandinsky 2.2 - style
|
1077 |
+
if "image_embeds" not in added_cond_kwargs:
|
1078 |
+
raise ValueError(
|
1079 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1080 |
+
)
|
1081 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1082 |
+
aug_emb = self.add_embedding(image_embs)
|
1083 |
+
elif self.config.addition_embed_type == "image_hint":
|
1084 |
+
# Kandinsky 2.2 - style
|
1085 |
+
if (
|
1086 |
+
"image_embeds" not in added_cond_kwargs
|
1087 |
+
or "hint" not in added_cond_kwargs
|
1088 |
+
):
|
1089 |
+
raise ValueError(
|
1090 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1091 |
+
)
|
1092 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1093 |
+
hint = added_cond_kwargs.get("hint")
|
1094 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1095 |
+
sample = torch.cat([sample, hint], dim=1)
|
1096 |
+
|
1097 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1098 |
+
|
1099 |
+
if self.time_embed_act is not None:
|
1100 |
+
emb = self.time_embed_act(emb)
|
1101 |
+
|
1102 |
+
if (
|
1103 |
+
self.encoder_hid_proj is not None
|
1104 |
+
and self.config.encoder_hid_dim_type == "text_proj"
|
1105 |
+
):
|
1106 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1107 |
+
elif (
|
1108 |
+
self.encoder_hid_proj is not None
|
1109 |
+
and self.config.encoder_hid_dim_type == "text_image_proj"
|
1110 |
+
):
|
1111 |
+
# Kadinsky 2.1 - style
|
1112 |
+
if "image_embeds" not in added_cond_kwargs:
|
1113 |
+
raise ValueError(
|
1114 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1115 |
+
)
|
1116 |
+
|
1117 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1118 |
+
encoder_hidden_states = self.encoder_hid_proj(
|
1119 |
+
encoder_hidden_states, image_embeds
|
1120 |
+
)
|
1121 |
+
elif (
|
1122 |
+
self.encoder_hid_proj is not None
|
1123 |
+
and self.config.encoder_hid_dim_type == "image_proj"
|
1124 |
+
):
|
1125 |
+
# Kandinsky 2.2 - style
|
1126 |
+
if "image_embeds" not in added_cond_kwargs:
|
1127 |
+
raise ValueError(
|
1128 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1129 |
+
)
|
1130 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1131 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1132 |
+
elif (
|
1133 |
+
self.encoder_hid_proj is not None
|
1134 |
+
and self.config.encoder_hid_dim_type == "ip_image_proj"
|
1135 |
+
):
|
1136 |
+
if "image_embeds" not in added_cond_kwargs:
|
1137 |
+
raise ValueError(
|
1138 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1139 |
+
)
|
1140 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1141 |
+
image_embeds = self.encoder_hid_proj(image_embeds).to(
|
1142 |
+
encoder_hidden_states.dtype
|
1143 |
+
)
|
1144 |
+
encoder_hidden_states = torch.cat(
|
1145 |
+
[encoder_hidden_states, image_embeds], dim=1
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
# 2. pre-process
|
1149 |
+
sample = self.conv_in(sample)
|
1150 |
+
if pose_cond_fea is not None:
|
1151 |
+
sample = sample + pose_cond_fea
|
1152 |
+
|
1153 |
+
# 2.5 GLIGEN position net
|
1154 |
+
# if (
|
1155 |
+
# cross_attention_kwargs is not None
|
1156 |
+
# and cross_attention_kwargs.get("gligen", None) is not None
|
1157 |
+
# ):
|
1158 |
+
# cross_attention_kwargs = cross_attention_kwargs.copy()
|
1159 |
+
# gligen_args = cross_attention_kwargs.pop("gligen")
|
1160 |
+
# cross_attention_kwargs["gligen"] = {
|
1161 |
+
# "objs": self.position_net(**gligen_args)
|
1162 |
+
# }
|
1163 |
+
|
1164 |
+
# 3. down
|
1165 |
+
lora_scale = (
|
1166 |
+
cross_attention_kwargs.get("scale", 1.0)
|
1167 |
+
if cross_attention_kwargs is not None
|
1168 |
+
else 1.0
|
1169 |
+
)
|
1170 |
+
if USE_PEFT_BACKEND:
|
1171 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1172 |
+
scale_lora_layers(self, lora_scale)
|
1173 |
+
|
1174 |
+
is_controlnet = (
|
1175 |
+
mid_block_additional_residual is not None
|
1176 |
+
and down_block_additional_residuals is not None
|
1177 |
+
)
|
1178 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1179 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1180 |
+
# maintain backward compatibility for legacy usage, where
|
1181 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1182 |
+
# but can only use one or the other
|
1183 |
+
if (
|
1184 |
+
not is_adapter
|
1185 |
+
and mid_block_additional_residual is None
|
1186 |
+
and down_block_additional_residuals is not None
|
1187 |
+
):
|
1188 |
+
deprecate(
|
1189 |
+
"T2I should not use down_block_additional_residuals",
|
1190 |
+
"1.3.0",
|
1191 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1192 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1193 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1194 |
+
standard_warn=False,
|
1195 |
+
)
|
1196 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1197 |
+
is_adapter = True
|
1198 |
+
|
1199 |
+
down_block_res_samples = (sample,)
|
1200 |
+
tot_referece_features = ()
|
1201 |
+
for downsample_block in self.down_blocks:
|
1202 |
+
if (
|
1203 |
+
hasattr(downsample_block, "has_cross_attention")
|
1204 |
+
and downsample_block.has_cross_attention
|
1205 |
+
):
|
1206 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1207 |
+
additional_residuals = {}
|
1208 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1209 |
+
additional_residuals[
|
1210 |
+
"additional_residuals"
|
1211 |
+
] = down_intrablock_additional_residuals.pop(0)
|
1212 |
+
|
1213 |
+
sample, res_samples = downsample_block(
|
1214 |
+
hidden_states=sample,
|
1215 |
+
temb=emb,
|
1216 |
+
encoder_hidden_states=encoder_hidden_states,
|
1217 |
+
attention_mask=attention_mask,
|
1218 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1219 |
+
encoder_attention_mask=encoder_attention_mask,
|
1220 |
+
**additional_residuals,
|
1221 |
+
)
|
1222 |
+
else:
|
1223 |
+
sample, res_samples = downsample_block(
|
1224 |
+
hidden_states=sample, temb=emb, scale=lora_scale
|
1225 |
+
)
|
1226 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1227 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1228 |
+
|
1229 |
+
down_block_res_samples += res_samples
|
1230 |
+
|
1231 |
+
if is_controlnet:
|
1232 |
+
new_down_block_res_samples = ()
|
1233 |
+
|
1234 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1235 |
+
down_block_res_samples, down_block_additional_residuals
|
1236 |
+
):
|
1237 |
+
down_block_res_sample = (
|
1238 |
+
down_block_res_sample + down_block_additional_residual
|
1239 |
+
)
|
1240 |
+
new_down_block_res_samples = new_down_block_res_samples + (
|
1241 |
+
down_block_res_sample,
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
down_block_res_samples = new_down_block_res_samples
|
1245 |
+
|
1246 |
+
# 4. mid
|
1247 |
+
if self.mid_block is not None:
|
1248 |
+
if (
|
1249 |
+
hasattr(self.mid_block, "has_cross_attention")
|
1250 |
+
and self.mid_block.has_cross_attention
|
1251 |
+
):
|
1252 |
+
sample = self.mid_block(
|
1253 |
+
sample,
|
1254 |
+
emb,
|
1255 |
+
encoder_hidden_states=encoder_hidden_states,
|
1256 |
+
attention_mask=attention_mask,
|
1257 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1258 |
+
encoder_attention_mask=encoder_attention_mask,
|
1259 |
+
)
|
1260 |
+
else:
|
1261 |
+
sample = self.mid_block(sample, emb)
|
1262 |
+
|
1263 |
+
# To support T2I-Adapter-XL
|
1264 |
+
if (
|
1265 |
+
is_adapter
|
1266 |
+
and len(down_intrablock_additional_residuals) > 0
|
1267 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1268 |
+
):
|
1269 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1270 |
+
|
1271 |
+
if is_controlnet:
|
1272 |
+
sample = sample + mid_block_additional_residual
|
1273 |
+
|
1274 |
+
# 5. up
|
1275 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1276 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1277 |
+
|
1278 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1279 |
+
down_block_res_samples = down_block_res_samples[
|
1280 |
+
: -len(upsample_block.resnets)
|
1281 |
+
]
|
1282 |
+
|
1283 |
+
# if we have not reached the final block and need to forward the
|
1284 |
+
# upsample size, we do it here
|
1285 |
+
if not is_final_block and forward_upsample_size:
|
1286 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1287 |
+
|
1288 |
+
if (
|
1289 |
+
hasattr(upsample_block, "has_cross_attention")
|
1290 |
+
and upsample_block.has_cross_attention
|
1291 |
+
):
|
1292 |
+
sample = upsample_block(
|
1293 |
+
hidden_states=sample,
|
1294 |
+
temb=emb,
|
1295 |
+
res_hidden_states_tuple=res_samples,
|
1296 |
+
encoder_hidden_states=encoder_hidden_states,
|
1297 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1298 |
+
upsample_size=upsample_size,
|
1299 |
+
attention_mask=attention_mask,
|
1300 |
+
encoder_attention_mask=encoder_attention_mask,
|
1301 |
+
)
|
1302 |
+
else:
|
1303 |
+
sample = upsample_block(
|
1304 |
+
hidden_states=sample,
|
1305 |
+
temb=emb,
|
1306 |
+
res_hidden_states_tuple=res_samples,
|
1307 |
+
upsample_size=upsample_size,
|
1308 |
+
scale=lora_scale,
|
1309 |
+
)
|
1310 |
+
|
1311 |
+
# 6. post-process
|
1312 |
+
# if self.conv_norm_out:
|
1313 |
+
# sample = self.conv_norm_out(sample)
|
1314 |
+
# sample = self.conv_act(sample)
|
1315 |
+
# sample = self.conv_out(sample)
|
1316 |
+
|
1317 |
+
if USE_PEFT_BACKEND:
|
1318 |
+
# remove `lora_scale` from each PEFT layer
|
1319 |
+
unscale_lora_layers(self, lora_scale)
|
1320 |
+
|
1321 |
+
if not return_dict:
|
1322 |
+
return (sample,)
|
1323 |
+
|
1324 |
+
return UNet2DConditionOutput(sample=sample)
|
genwarp/models/unet_3d.py
ADDED
@@ -0,0 +1,645 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# AnimateDiff
|
9 |
+
# Apache License, Version 2.0
|
10 |
+
# https://github.com/guoyww/AnimateDiff
|
11 |
+
# ==============================================================================
|
12 |
+
|
13 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
|
14 |
+
|
15 |
+
from collections import OrderedDict
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from os import PathLike
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
26 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
27 |
+
from diffusers.models.modeling_utils import ModelMixin
|
28 |
+
from diffusers.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, BaseOutput, logging
|
29 |
+
from safetensors.torch import load_file
|
30 |
+
|
31 |
+
from .resnet import InflatedConv3d, InflatedGroupNorm
|
32 |
+
from .unet_3d_blocks import UNetMidBlock3DCrossAttn, get_down_block, get_up_block
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class UNet3DConditionOutput(BaseOutput):
|
39 |
+
sample: torch.FloatTensor
|
40 |
+
|
41 |
+
|
42 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
43 |
+
_supports_gradient_checkpointing = True
|
44 |
+
|
45 |
+
@register_to_config
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
sample_size: Optional[int] = None,
|
49 |
+
in_channels: int = 4,
|
50 |
+
out_channels: int = 4,
|
51 |
+
center_input_sample: bool = False,
|
52 |
+
flip_sin_to_cos: bool = True,
|
53 |
+
freq_shift: int = 0,
|
54 |
+
down_block_types: Tuple[str] = (
|
55 |
+
"CrossAttnDownBlock3D",
|
56 |
+
"CrossAttnDownBlock3D",
|
57 |
+
"CrossAttnDownBlock3D",
|
58 |
+
"DownBlock3D",
|
59 |
+
),
|
60 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
61 |
+
up_block_types: Tuple[str] = (
|
62 |
+
"UpBlock3D",
|
63 |
+
"CrossAttnUpBlock3D",
|
64 |
+
"CrossAttnUpBlock3D",
|
65 |
+
"CrossAttnUpBlock3D",
|
66 |
+
),
|
67 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
68 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
69 |
+
layers_per_block: int = 2,
|
70 |
+
downsample_padding: int = 1,
|
71 |
+
mid_block_scale_factor: float = 1,
|
72 |
+
act_fn: str = "silu",
|
73 |
+
norm_num_groups: int = 32,
|
74 |
+
norm_eps: float = 1e-5,
|
75 |
+
cross_attention_dim: int = 1280,
|
76 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
77 |
+
dual_cross_attention: bool = False,
|
78 |
+
use_linear_projection: bool = False,
|
79 |
+
class_embed_type: Optional[str] = None,
|
80 |
+
num_class_embeds: Optional[int] = None,
|
81 |
+
upcast_attention: bool = False,
|
82 |
+
resnet_time_scale_shift: str = "default",
|
83 |
+
use_inflated_groupnorm=False,
|
84 |
+
# Additional
|
85 |
+
use_motion_module=False,
|
86 |
+
motion_module_resolutions=(1, 2, 4, 8),
|
87 |
+
motion_module_mid_block=False,
|
88 |
+
motion_module_decoder_only=False,
|
89 |
+
motion_module_type=None,
|
90 |
+
motion_module_kwargs={},
|
91 |
+
unet_use_cross_frame_attention=None,
|
92 |
+
unet_use_temporal_attention=None,
|
93 |
+
use_zero_convs=False,
|
94 |
+
):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.sample_size = sample_size
|
98 |
+
time_embed_dim = block_out_channels[0] * 4
|
99 |
+
|
100 |
+
# input
|
101 |
+
self.conv_in = InflatedConv3d(
|
102 |
+
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
|
103 |
+
)
|
104 |
+
|
105 |
+
# time
|
106 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
107 |
+
timestep_input_dim = block_out_channels[0]
|
108 |
+
|
109 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
110 |
+
|
111 |
+
# class embedding
|
112 |
+
if class_embed_type is None and num_class_embeds is not None:
|
113 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
114 |
+
elif class_embed_type == "timestep":
|
115 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
116 |
+
elif class_embed_type == "identity":
|
117 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
118 |
+
else:
|
119 |
+
self.class_embedding = None
|
120 |
+
|
121 |
+
self.down_blocks = nn.ModuleList([])
|
122 |
+
self.mid_block = None
|
123 |
+
self.up_blocks = nn.ModuleList([])
|
124 |
+
|
125 |
+
if isinstance(only_cross_attention, bool):
|
126 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
127 |
+
|
128 |
+
if isinstance(attention_head_dim, int):
|
129 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
130 |
+
|
131 |
+
# down
|
132 |
+
output_channel = block_out_channels[0]
|
133 |
+
for i, down_block_type in enumerate(down_block_types):
|
134 |
+
res = 2**i
|
135 |
+
input_channel = output_channel
|
136 |
+
output_channel = block_out_channels[i]
|
137 |
+
is_final_block = i == len(block_out_channels) - 1
|
138 |
+
|
139 |
+
down_block = get_down_block(
|
140 |
+
down_block_type,
|
141 |
+
num_layers=layers_per_block,
|
142 |
+
in_channels=input_channel,
|
143 |
+
out_channels=output_channel,
|
144 |
+
temb_channels=time_embed_dim,
|
145 |
+
add_downsample=not is_final_block,
|
146 |
+
resnet_eps=norm_eps,
|
147 |
+
resnet_act_fn=act_fn,
|
148 |
+
resnet_groups=norm_num_groups,
|
149 |
+
cross_attention_dim=cross_attention_dim,
|
150 |
+
attn_num_head_channels=attention_head_dim[i],
|
151 |
+
downsample_padding=downsample_padding,
|
152 |
+
dual_cross_attention=dual_cross_attention,
|
153 |
+
use_linear_projection=use_linear_projection,
|
154 |
+
only_cross_attention=only_cross_attention[i],
|
155 |
+
upcast_attention=upcast_attention,
|
156 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
157 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
158 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
159 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
160 |
+
use_motion_module=use_motion_module
|
161 |
+
and (res in motion_module_resolutions)
|
162 |
+
and (not motion_module_decoder_only),
|
163 |
+
motion_module_type=motion_module_type,
|
164 |
+
motion_module_kwargs=motion_module_kwargs,
|
165 |
+
use_zero_convs=use_zero_convs,
|
166 |
+
)
|
167 |
+
self.down_blocks.append(down_block)
|
168 |
+
|
169 |
+
# mid
|
170 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
171 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
172 |
+
in_channels=block_out_channels[-1],
|
173 |
+
temb_channels=time_embed_dim,
|
174 |
+
resnet_eps=norm_eps,
|
175 |
+
resnet_act_fn=act_fn,
|
176 |
+
output_scale_factor=mid_block_scale_factor,
|
177 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
178 |
+
cross_attention_dim=cross_attention_dim,
|
179 |
+
attn_num_head_channels=attention_head_dim[-1],
|
180 |
+
resnet_groups=norm_num_groups,
|
181 |
+
dual_cross_attention=dual_cross_attention,
|
182 |
+
use_linear_projection=use_linear_projection,
|
183 |
+
upcast_attention=upcast_attention,
|
184 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
185 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
186 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
187 |
+
use_motion_module=use_motion_module and motion_module_mid_block,
|
188 |
+
motion_module_type=motion_module_type,
|
189 |
+
motion_module_kwargs=motion_module_kwargs,
|
190 |
+
use_zero_convs=use_zero_convs,
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
194 |
+
|
195 |
+
# count how many layers upsample the videos
|
196 |
+
self.num_upsamplers = 0
|
197 |
+
|
198 |
+
# up
|
199 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
200 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
201 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
202 |
+
output_channel = reversed_block_out_channels[0]
|
203 |
+
for i, up_block_type in enumerate(up_block_types):
|
204 |
+
res = 2 ** (3 - i)
|
205 |
+
is_final_block = i == len(block_out_channels) - 1
|
206 |
+
|
207 |
+
prev_output_channel = output_channel
|
208 |
+
output_channel = reversed_block_out_channels[i]
|
209 |
+
input_channel = reversed_block_out_channels[
|
210 |
+
min(i + 1, len(block_out_channels) - 1)
|
211 |
+
]
|
212 |
+
|
213 |
+
# add upsample block for all BUT final layer
|
214 |
+
if not is_final_block:
|
215 |
+
add_upsample = True
|
216 |
+
self.num_upsamplers += 1
|
217 |
+
else:
|
218 |
+
add_upsample = False
|
219 |
+
|
220 |
+
up_block = get_up_block(
|
221 |
+
up_block_type,
|
222 |
+
num_layers=layers_per_block + 1,
|
223 |
+
in_channels=input_channel,
|
224 |
+
out_channels=output_channel,
|
225 |
+
prev_output_channel=prev_output_channel,
|
226 |
+
temb_channels=time_embed_dim,
|
227 |
+
add_upsample=add_upsample,
|
228 |
+
resnet_eps=norm_eps,
|
229 |
+
resnet_act_fn=act_fn,
|
230 |
+
resnet_groups=norm_num_groups,
|
231 |
+
cross_attention_dim=cross_attention_dim,
|
232 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
233 |
+
dual_cross_attention=dual_cross_attention,
|
234 |
+
use_linear_projection=use_linear_projection,
|
235 |
+
only_cross_attention=only_cross_attention[i],
|
236 |
+
upcast_attention=upcast_attention,
|
237 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
238 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
239 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
240 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
241 |
+
use_motion_module=use_motion_module
|
242 |
+
and (res in motion_module_resolutions),
|
243 |
+
motion_module_type=motion_module_type,
|
244 |
+
motion_module_kwargs=motion_module_kwargs,
|
245 |
+
use_zero_convs=use_zero_convs,
|
246 |
+
)
|
247 |
+
self.up_blocks.append(up_block)
|
248 |
+
prev_output_channel = output_channel
|
249 |
+
|
250 |
+
# out
|
251 |
+
if use_inflated_groupnorm:
|
252 |
+
self.conv_norm_out = InflatedGroupNorm(
|
253 |
+
num_channels=block_out_channels[0],
|
254 |
+
num_groups=norm_num_groups,
|
255 |
+
eps=norm_eps,
|
256 |
+
)
|
257 |
+
else:
|
258 |
+
self.conv_norm_out = nn.GroupNorm(
|
259 |
+
num_channels=block_out_channels[0],
|
260 |
+
num_groups=norm_num_groups,
|
261 |
+
eps=norm_eps,
|
262 |
+
)
|
263 |
+
self.conv_act = nn.SiLU()
|
264 |
+
self.conv_out = InflatedConv3d(
|
265 |
+
block_out_channels[0], out_channels, kernel_size=3, padding=1
|
266 |
+
)
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
@property
|
271 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
272 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
273 |
+
r"""
|
274 |
+
Returns:
|
275 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
276 |
+
indexed by its weight name.
|
277 |
+
"""
|
278 |
+
# set recursively
|
279 |
+
processors = {}
|
280 |
+
|
281 |
+
def fn_recursive_add_processors(
|
282 |
+
name: str,
|
283 |
+
module: torch.nn.Module,
|
284 |
+
processors: Dict[str, AttentionProcessor],
|
285 |
+
):
|
286 |
+
if hasattr(module, "set_processor"):
|
287 |
+
processors[f"{name}.processor"] = module.processor
|
288 |
+
|
289 |
+
for sub_name, child in module.named_children():
|
290 |
+
if "temporal_transformer" not in sub_name:
|
291 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
292 |
+
|
293 |
+
return processors
|
294 |
+
|
295 |
+
for name, module in self.named_children():
|
296 |
+
if "temporal_transformer" not in name:
|
297 |
+
fn_recursive_add_processors(name, module, processors)
|
298 |
+
|
299 |
+
return processors
|
300 |
+
|
301 |
+
def set_attention_slice(self, slice_size):
|
302 |
+
r"""
|
303 |
+
Enable sliced attention computation.
|
304 |
+
|
305 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
306 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
310 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
311 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
312 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
313 |
+
must be a multiple of `slice_size`.
|
314 |
+
"""
|
315 |
+
sliceable_head_dims = []
|
316 |
+
|
317 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
318 |
+
if hasattr(module, "set_attention_slice"):
|
319 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
320 |
+
|
321 |
+
for child in module.children():
|
322 |
+
fn_recursive_retrieve_slicable_dims(child)
|
323 |
+
|
324 |
+
# retrieve number of attention layers
|
325 |
+
for module in self.children():
|
326 |
+
fn_recursive_retrieve_slicable_dims(module)
|
327 |
+
|
328 |
+
num_slicable_layers = len(sliceable_head_dims)
|
329 |
+
|
330 |
+
if slice_size == "auto":
|
331 |
+
# half the attention head size is usually a good trade-off between
|
332 |
+
# speed and memory
|
333 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
334 |
+
elif slice_size == "max":
|
335 |
+
# make smallest slice possible
|
336 |
+
slice_size = num_slicable_layers * [1]
|
337 |
+
|
338 |
+
slice_size = (
|
339 |
+
num_slicable_layers * [slice_size]
|
340 |
+
if not isinstance(slice_size, list)
|
341 |
+
else slice_size
|
342 |
+
)
|
343 |
+
|
344 |
+
if len(slice_size) != len(sliceable_head_dims):
|
345 |
+
raise ValueError(
|
346 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
347 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
348 |
+
)
|
349 |
+
|
350 |
+
for i in range(len(slice_size)):
|
351 |
+
size = slice_size[i]
|
352 |
+
dim = sliceable_head_dims[i]
|
353 |
+
if size is not None and size > dim:
|
354 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
355 |
+
|
356 |
+
# Recursively walk through all the children.
|
357 |
+
# Any children which exposes the set_attention_slice method
|
358 |
+
# gets the message
|
359 |
+
def fn_recursive_set_attention_slice(
|
360 |
+
module: torch.nn.Module, slice_size: List[int]
|
361 |
+
):
|
362 |
+
if hasattr(module, "set_attention_slice"):
|
363 |
+
module.set_attention_slice(slice_size.pop())
|
364 |
+
|
365 |
+
for child in module.children():
|
366 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
367 |
+
|
368 |
+
reversed_slice_size = list(reversed(slice_size))
|
369 |
+
for module in self.children():
|
370 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
371 |
+
|
372 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
373 |
+
if hasattr(module, "gradient_checkpointing"):
|
374 |
+
module.gradient_checkpointing = value
|
375 |
+
|
376 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
377 |
+
def set_attn_processor(
|
378 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
379 |
+
):
|
380 |
+
r"""
|
381 |
+
Sets the attention processor to use to compute attention.
|
382 |
+
|
383 |
+
Parameters:
|
384 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
385 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
386 |
+
for **all** `Attention` layers.
|
387 |
+
|
388 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
389 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
390 |
+
|
391 |
+
"""
|
392 |
+
count = len(self.attn_processors.keys())
|
393 |
+
|
394 |
+
if isinstance(processor, dict) and len(processor) != count:
|
395 |
+
raise ValueError(
|
396 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
397 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
398 |
+
)
|
399 |
+
|
400 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
401 |
+
if hasattr(module, "set_processor"):
|
402 |
+
if not isinstance(processor, dict):
|
403 |
+
module.set_processor(processor)
|
404 |
+
else:
|
405 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
406 |
+
|
407 |
+
for sub_name, child in module.named_children():
|
408 |
+
if "temporal_transformer" not in sub_name:
|
409 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
410 |
+
|
411 |
+
for name, module in self.named_children():
|
412 |
+
if "temporal_transformer" not in name:
|
413 |
+
fn_recursive_attn_processor(name, module, processor)
|
414 |
+
|
415 |
+
def forward(
|
416 |
+
self,
|
417 |
+
sample: torch.FloatTensor,
|
418 |
+
timestep: Union[torch.Tensor, float, int],
|
419 |
+
encoder_hidden_states: torch.Tensor,
|
420 |
+
class_labels: Optional[torch.Tensor] = None,
|
421 |
+
pose_cond_fea: Optional[torch.Tensor] = None,
|
422 |
+
attention_mask: Optional[torch.Tensor] = None,
|
423 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
424 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
425 |
+
return_dict: bool = True,
|
426 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
427 |
+
r"""
|
428 |
+
Args:
|
429 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
430 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
431 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
432 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
433 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
434 |
+
|
435 |
+
Returns:
|
436 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
437 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
438 |
+
returning a tuple, the first element is the sample tensor.
|
439 |
+
"""
|
440 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
441 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
442 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
443 |
+
# on the fly if necessary.
|
444 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
445 |
+
|
446 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
447 |
+
forward_upsample_size = False
|
448 |
+
upsample_size = None
|
449 |
+
|
450 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
451 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
452 |
+
forward_upsample_size = True
|
453 |
+
|
454 |
+
# prepare attention_mask
|
455 |
+
if attention_mask is not None:
|
456 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
457 |
+
attention_mask = attention_mask.unsqueeze(1)
|
458 |
+
|
459 |
+
# center input if necessary
|
460 |
+
if self.config.center_input_sample:
|
461 |
+
sample = 2 * sample - 1.0
|
462 |
+
|
463 |
+
# time
|
464 |
+
timesteps = timestep
|
465 |
+
if not torch.is_tensor(timesteps):
|
466 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
467 |
+
is_mps = sample.device.type == "mps"
|
468 |
+
if isinstance(timestep, float):
|
469 |
+
dtype = torch.float32 if is_mps else torch.float64
|
470 |
+
else:
|
471 |
+
dtype = torch.int32 if is_mps else torch.int64
|
472 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
473 |
+
elif len(timesteps.shape) == 0:
|
474 |
+
timesteps = timesteps[None].to(sample.device)
|
475 |
+
|
476 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
477 |
+
timesteps = timesteps.expand(sample.shape[0])
|
478 |
+
|
479 |
+
t_emb = self.time_proj(timesteps)
|
480 |
+
|
481 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
482 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
483 |
+
# there might be better ways to encapsulate this.
|
484 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
485 |
+
emb = self.time_embedding(t_emb)
|
486 |
+
|
487 |
+
if self.class_embedding is not None:
|
488 |
+
if class_labels is None:
|
489 |
+
raise ValueError(
|
490 |
+
"class_labels should be provided when num_class_embeds > 0"
|
491 |
+
)
|
492 |
+
|
493 |
+
if self.config.class_embed_type == "timestep":
|
494 |
+
class_labels = self.time_proj(class_labels)
|
495 |
+
|
496 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
497 |
+
emb = emb + class_emb
|
498 |
+
|
499 |
+
# pre-process
|
500 |
+
sample = self.conv_in(sample)
|
501 |
+
if pose_cond_fea is not None:
|
502 |
+
sample = sample + pose_cond_fea
|
503 |
+
|
504 |
+
# down
|
505 |
+
down_block_res_samples = (sample,)
|
506 |
+
for downsample_block in self.down_blocks:
|
507 |
+
if (
|
508 |
+
hasattr(downsample_block, "has_cross_attention")
|
509 |
+
and downsample_block.has_cross_attention
|
510 |
+
):
|
511 |
+
sample, res_samples = downsample_block(
|
512 |
+
hidden_states=sample,
|
513 |
+
temb=emb,
|
514 |
+
encoder_hidden_states=encoder_hidden_states,
|
515 |
+
attention_mask=attention_mask,
|
516 |
+
)
|
517 |
+
else:
|
518 |
+
sample, res_samples = downsample_block(
|
519 |
+
hidden_states=sample,
|
520 |
+
temb=emb,
|
521 |
+
encoder_hidden_states=encoder_hidden_states,
|
522 |
+
)
|
523 |
+
|
524 |
+
down_block_res_samples += res_samples
|
525 |
+
|
526 |
+
if down_block_additional_residuals is not None:
|
527 |
+
new_down_block_res_samples = ()
|
528 |
+
|
529 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
530 |
+
down_block_res_samples, down_block_additional_residuals
|
531 |
+
):
|
532 |
+
down_block_res_sample = (
|
533 |
+
down_block_res_sample + down_block_additional_residual
|
534 |
+
)
|
535 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
536 |
+
|
537 |
+
down_block_res_samples = new_down_block_res_samples
|
538 |
+
|
539 |
+
# mid
|
540 |
+
sample = self.mid_block(
|
541 |
+
sample,
|
542 |
+
emb,
|
543 |
+
encoder_hidden_states=encoder_hidden_states,
|
544 |
+
attention_mask=attention_mask,
|
545 |
+
)
|
546 |
+
|
547 |
+
if mid_block_additional_residual is not None:
|
548 |
+
sample = sample + mid_block_additional_residual
|
549 |
+
|
550 |
+
# up
|
551 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
552 |
+
is_final_block = i == len(self.up_blocks) - 1
|
553 |
+
|
554 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
555 |
+
down_block_res_samples = down_block_res_samples[
|
556 |
+
: -len(upsample_block.resnets)
|
557 |
+
]
|
558 |
+
|
559 |
+
# if we have not reached the final block and need to forward the
|
560 |
+
# upsample size, we do it here
|
561 |
+
if not is_final_block and forward_upsample_size:
|
562 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
563 |
+
|
564 |
+
if (
|
565 |
+
hasattr(upsample_block, "has_cross_attention")
|
566 |
+
and upsample_block.has_cross_attention
|
567 |
+
):
|
568 |
+
sample = upsample_block(
|
569 |
+
hidden_states=sample,
|
570 |
+
temb=emb,
|
571 |
+
res_hidden_states_tuple=res_samples,
|
572 |
+
encoder_hidden_states=encoder_hidden_states,
|
573 |
+
upsample_size=upsample_size,
|
574 |
+
attention_mask=attention_mask,
|
575 |
+
)
|
576 |
+
else:
|
577 |
+
sample = upsample_block(
|
578 |
+
hidden_states=sample,
|
579 |
+
temb=emb,
|
580 |
+
res_hidden_states_tuple=res_samples,
|
581 |
+
upsample_size=upsample_size,
|
582 |
+
encoder_hidden_states=encoder_hidden_states,
|
583 |
+
)
|
584 |
+
|
585 |
+
# post-process
|
586 |
+
sample = self.conv_norm_out(sample)
|
587 |
+
sample = self.conv_act(sample)
|
588 |
+
sample = self.conv_out(sample)
|
589 |
+
|
590 |
+
if not return_dict:
|
591 |
+
return (sample,)
|
592 |
+
|
593 |
+
return UNet3DConditionOutput(sample=sample)
|
594 |
+
|
595 |
+
@classmethod
|
596 |
+
def from_pretrained_2d(
|
597 |
+
cls,
|
598 |
+
config_file: PathLike,
|
599 |
+
ckpt_file: PathLike
|
600 |
+
):
|
601 |
+
unet_additional_kwargs={
|
602 |
+
"use_motion_module": False,
|
603 |
+
"unet_use_temporal_attention": False,
|
604 |
+
"use_zero_convs": False
|
605 |
+
}
|
606 |
+
|
607 |
+
config_file = Path(config_file)
|
608 |
+
ckpt_file = Path(ckpt_file)
|
609 |
+
|
610 |
+
if not (config_file.exists() and config_file.is_file()):
|
611 |
+
raise RuntimeError(f"{config_file} does not exist or is not a file")
|
612 |
+
if not (config_file.exists() and config_file.is_file()):
|
613 |
+
raise RuntimeError(f"{ckpt_file} does not exist or is not a file")
|
614 |
+
|
615 |
+
unet_config = cls.load_config(config_file)
|
616 |
+
unet_config["_class_name"] = cls.__name__
|
617 |
+
unet_config["down_block_types"] = [
|
618 |
+
"CrossAttnDownBlock3D",
|
619 |
+
"CrossAttnDownBlock3D",
|
620 |
+
"CrossAttnDownBlock3D",
|
621 |
+
"DownBlock3D",
|
622 |
+
]
|
623 |
+
unet_config["up_block_types"] = [
|
624 |
+
"UpBlock3D",
|
625 |
+
"CrossAttnUpBlock3D",
|
626 |
+
"CrossAttnUpBlock3D",
|
627 |
+
"CrossAttnUpBlock3D",
|
628 |
+
]
|
629 |
+
unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
|
630 |
+
|
631 |
+
model = cls.from_config(unet_config, **unet_additional_kwargs)
|
632 |
+
state_dict = torch.load(
|
633 |
+
ckpt_file, map_location="cpu", weights_only=True,
|
634 |
+
)
|
635 |
+
|
636 |
+
# load the weights into the model
|
637 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
638 |
+
logger.debug(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
639 |
+
|
640 |
+
params = [
|
641 |
+
p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()
|
642 |
+
]
|
643 |
+
logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module")
|
644 |
+
|
645 |
+
return model
|
genwarp/models/unet_3d_blocks.py
ADDED
@@ -0,0 +1,885 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is adapted from below and then modified.
|
2 |
+
# -----------------------------------------------------------------------------
|
3 |
+
# Moore-AnimateAnyone
|
4 |
+
# Apache License, Version 2.0
|
5 |
+
# Copyright @2023-2024 Moore Threads Technology Co., Ltd.
|
6 |
+
# https://github.com/MooreThreads/Moore-AnimateAnyone
|
7 |
+
# -----------------------------------------------------------------------------
|
8 |
+
# Diffusers
|
9 |
+
# Apache License, Version 2.0
|
10 |
+
# Copyright (c) Hugging Face Inc.
|
11 |
+
# https://github.com/huggingface/diffusers
|
12 |
+
# ==============================================================================
|
13 |
+
|
14 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
15 |
+
|
16 |
+
import pdb
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from .motion_module import get_motion_module
|
22 |
+
|
23 |
+
# from .motion_module import get_motion_module
|
24 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
25 |
+
from .transformer_3d import Transformer3DModel
|
26 |
+
|
27 |
+
|
28 |
+
def get_down_block(
|
29 |
+
down_block_type,
|
30 |
+
num_layers,
|
31 |
+
in_channels,
|
32 |
+
out_channels,
|
33 |
+
temb_channels,
|
34 |
+
add_downsample,
|
35 |
+
resnet_eps,
|
36 |
+
resnet_act_fn,
|
37 |
+
attn_num_head_channels,
|
38 |
+
resnet_groups=None,
|
39 |
+
cross_attention_dim=None,
|
40 |
+
downsample_padding=None,
|
41 |
+
dual_cross_attention=False,
|
42 |
+
use_linear_projection=False,
|
43 |
+
only_cross_attention=False,
|
44 |
+
upcast_attention=False,
|
45 |
+
resnet_time_scale_shift="default",
|
46 |
+
unet_use_cross_frame_attention=None,
|
47 |
+
unet_use_temporal_attention=None,
|
48 |
+
use_inflated_groupnorm=None,
|
49 |
+
use_motion_module=None,
|
50 |
+
motion_module_type=None,
|
51 |
+
motion_module_kwargs=None,
|
52 |
+
use_zero_convs=False,
|
53 |
+
):
|
54 |
+
down_block_type = (
|
55 |
+
down_block_type[7:]
|
56 |
+
if down_block_type.startswith("UNetRes")
|
57 |
+
else down_block_type
|
58 |
+
)
|
59 |
+
if down_block_type == "DownBlock3D":
|
60 |
+
return DownBlock3D(
|
61 |
+
num_layers=num_layers,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=out_channels,
|
64 |
+
temb_channels=temb_channels,
|
65 |
+
add_downsample=add_downsample,
|
66 |
+
resnet_eps=resnet_eps,
|
67 |
+
resnet_act_fn=resnet_act_fn,
|
68 |
+
resnet_groups=resnet_groups,
|
69 |
+
downsample_padding=downsample_padding,
|
70 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
71 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
72 |
+
use_motion_module=use_motion_module,
|
73 |
+
motion_module_type=motion_module_type,
|
74 |
+
motion_module_kwargs=motion_module_kwargs,
|
75 |
+
)
|
76 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
77 |
+
if cross_attention_dim is None:
|
78 |
+
raise ValueError(
|
79 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock3D"
|
80 |
+
)
|
81 |
+
return CrossAttnDownBlock3D(
|
82 |
+
num_layers=num_layers,
|
83 |
+
in_channels=in_channels,
|
84 |
+
out_channels=out_channels,
|
85 |
+
temb_channels=temb_channels,
|
86 |
+
add_downsample=add_downsample,
|
87 |
+
resnet_eps=resnet_eps,
|
88 |
+
resnet_act_fn=resnet_act_fn,
|
89 |
+
resnet_groups=resnet_groups,
|
90 |
+
downsample_padding=downsample_padding,
|
91 |
+
cross_attention_dim=cross_attention_dim,
|
92 |
+
attn_num_head_channels=attn_num_head_channels,
|
93 |
+
dual_cross_attention=dual_cross_attention,
|
94 |
+
use_linear_projection=use_linear_projection,
|
95 |
+
only_cross_attention=only_cross_attention,
|
96 |
+
upcast_attention=upcast_attention,
|
97 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
98 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
99 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
100 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
101 |
+
use_motion_module=use_motion_module,
|
102 |
+
motion_module_type=motion_module_type,
|
103 |
+
motion_module_kwargs=motion_module_kwargs,
|
104 |
+
use_zero_convs=use_zero_convs,
|
105 |
+
)
|
106 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
107 |
+
|
108 |
+
|
109 |
+
def get_up_block(
|
110 |
+
up_block_type,
|
111 |
+
num_layers,
|
112 |
+
in_channels,
|
113 |
+
out_channels,
|
114 |
+
prev_output_channel,
|
115 |
+
temb_channels,
|
116 |
+
add_upsample,
|
117 |
+
resnet_eps,
|
118 |
+
resnet_act_fn,
|
119 |
+
attn_num_head_channels,
|
120 |
+
resnet_groups=None,
|
121 |
+
cross_attention_dim=None,
|
122 |
+
dual_cross_attention=False,
|
123 |
+
use_linear_projection=False,
|
124 |
+
only_cross_attention=False,
|
125 |
+
upcast_attention=False,
|
126 |
+
resnet_time_scale_shift="default",
|
127 |
+
unet_use_cross_frame_attention=None,
|
128 |
+
unet_use_temporal_attention=None,
|
129 |
+
use_inflated_groupnorm=None,
|
130 |
+
use_motion_module=None,
|
131 |
+
motion_module_type=None,
|
132 |
+
motion_module_kwargs=None,
|
133 |
+
use_zero_convs=False,
|
134 |
+
):
|
135 |
+
up_block_type = (
|
136 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
137 |
+
)
|
138 |
+
if up_block_type == "UpBlock3D":
|
139 |
+
return UpBlock3D(
|
140 |
+
num_layers=num_layers,
|
141 |
+
in_channels=in_channels,
|
142 |
+
out_channels=out_channels,
|
143 |
+
prev_output_channel=prev_output_channel,
|
144 |
+
temb_channels=temb_channels,
|
145 |
+
add_upsample=add_upsample,
|
146 |
+
resnet_eps=resnet_eps,
|
147 |
+
resnet_act_fn=resnet_act_fn,
|
148 |
+
resnet_groups=resnet_groups,
|
149 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
150 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
151 |
+
use_motion_module=use_motion_module,
|
152 |
+
motion_module_type=motion_module_type,
|
153 |
+
motion_module_kwargs=motion_module_kwargs,
|
154 |
+
)
|
155 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
156 |
+
if cross_attention_dim is None:
|
157 |
+
raise ValueError(
|
158 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock3D"
|
159 |
+
)
|
160 |
+
return CrossAttnUpBlock3D(
|
161 |
+
num_layers=num_layers,
|
162 |
+
in_channels=in_channels,
|
163 |
+
out_channels=out_channels,
|
164 |
+
prev_output_channel=prev_output_channel,
|
165 |
+
temb_channels=temb_channels,
|
166 |
+
add_upsample=add_upsample,
|
167 |
+
resnet_eps=resnet_eps,
|
168 |
+
resnet_act_fn=resnet_act_fn,
|
169 |
+
resnet_groups=resnet_groups,
|
170 |
+
cross_attention_dim=cross_attention_dim,
|
171 |
+
attn_num_head_channels=attn_num_head_channels,
|
172 |
+
dual_cross_attention=dual_cross_attention,
|
173 |
+
use_linear_projection=use_linear_projection,
|
174 |
+
only_cross_attention=only_cross_attention,
|
175 |
+
upcast_attention=upcast_attention,
|
176 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
177 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
178 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
179 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
180 |
+
use_motion_module=use_motion_module,
|
181 |
+
motion_module_type=motion_module_type,
|
182 |
+
motion_module_kwargs=motion_module_kwargs,
|
183 |
+
use_zero_convs=use_zero_convs,
|
184 |
+
)
|
185 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
186 |
+
|
187 |
+
|
188 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
in_channels: int,
|
192 |
+
temb_channels: int,
|
193 |
+
dropout: float = 0.0,
|
194 |
+
num_layers: int = 1,
|
195 |
+
resnet_eps: float = 1e-6,
|
196 |
+
resnet_time_scale_shift: str = "default",
|
197 |
+
resnet_act_fn: str = "swish",
|
198 |
+
resnet_groups: int = 32,
|
199 |
+
resnet_pre_norm: bool = True,
|
200 |
+
attn_num_head_channels=1,
|
201 |
+
output_scale_factor=1.0,
|
202 |
+
cross_attention_dim=1280,
|
203 |
+
dual_cross_attention=False,
|
204 |
+
use_linear_projection=False,
|
205 |
+
upcast_attention=False,
|
206 |
+
unet_use_cross_frame_attention=None,
|
207 |
+
unet_use_temporal_attention=None,
|
208 |
+
use_inflated_groupnorm=None,
|
209 |
+
use_motion_module=None,
|
210 |
+
motion_module_type=None,
|
211 |
+
motion_module_kwargs=None,
|
212 |
+
use_zero_convs=False,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
|
216 |
+
self.has_cross_attention = True
|
217 |
+
self.attn_num_head_channels = attn_num_head_channels
|
218 |
+
resnet_groups = (
|
219 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
220 |
+
)
|
221 |
+
|
222 |
+
# there is always at least one resnet
|
223 |
+
resnets = [
|
224 |
+
ResnetBlock3D(
|
225 |
+
in_channels=in_channels,
|
226 |
+
out_channels=in_channels,
|
227 |
+
temb_channels=temb_channels,
|
228 |
+
eps=resnet_eps,
|
229 |
+
groups=resnet_groups,
|
230 |
+
dropout=dropout,
|
231 |
+
time_embedding_norm=resnet_time_scale_shift,
|
232 |
+
non_linearity=resnet_act_fn,
|
233 |
+
output_scale_factor=output_scale_factor,
|
234 |
+
pre_norm=resnet_pre_norm,
|
235 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
236 |
+
)
|
237 |
+
]
|
238 |
+
attentions = []
|
239 |
+
motion_modules = []
|
240 |
+
|
241 |
+
for _ in range(num_layers):
|
242 |
+
if dual_cross_attention:
|
243 |
+
raise NotImplementedError
|
244 |
+
attentions.append(
|
245 |
+
Transformer3DModel(
|
246 |
+
attn_num_head_channels,
|
247 |
+
in_channels // attn_num_head_channels,
|
248 |
+
in_channels=in_channels,
|
249 |
+
num_layers=1,
|
250 |
+
cross_attention_dim=cross_attention_dim,
|
251 |
+
norm_num_groups=resnet_groups,
|
252 |
+
use_linear_projection=use_linear_projection,
|
253 |
+
upcast_attention=upcast_attention,
|
254 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
255 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
256 |
+
use_zero_convs=use_zero_convs,
|
257 |
+
)
|
258 |
+
)
|
259 |
+
motion_modules.append(
|
260 |
+
get_motion_module(
|
261 |
+
in_channels=in_channels,
|
262 |
+
motion_module_type=motion_module_type,
|
263 |
+
motion_module_kwargs=motion_module_kwargs,
|
264 |
+
)
|
265 |
+
if use_motion_module
|
266 |
+
else None
|
267 |
+
)
|
268 |
+
resnets.append(
|
269 |
+
ResnetBlock3D(
|
270 |
+
in_channels=in_channels,
|
271 |
+
out_channels=in_channels,
|
272 |
+
temb_channels=temb_channels,
|
273 |
+
eps=resnet_eps,
|
274 |
+
groups=resnet_groups,
|
275 |
+
dropout=dropout,
|
276 |
+
time_embedding_norm=resnet_time_scale_shift,
|
277 |
+
non_linearity=resnet_act_fn,
|
278 |
+
output_scale_factor=output_scale_factor,
|
279 |
+
pre_norm=resnet_pre_norm,
|
280 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
self.attentions = nn.ModuleList(attentions)
|
285 |
+
self.resnets = nn.ModuleList(resnets)
|
286 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
287 |
+
|
288 |
+
def forward(
|
289 |
+
self,
|
290 |
+
hidden_states,
|
291 |
+
temb=None,
|
292 |
+
encoder_hidden_states=None,
|
293 |
+
attention_mask=None,
|
294 |
+
):
|
295 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
296 |
+
for attn, resnet, motion_module in zip(
|
297 |
+
self.attentions, self.resnets[1:], self.motion_modules
|
298 |
+
):
|
299 |
+
hidden_states = attn(
|
300 |
+
hidden_states,
|
301 |
+
encoder_hidden_states=encoder_hidden_states,
|
302 |
+
).sample
|
303 |
+
hidden_states = (
|
304 |
+
motion_module(
|
305 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
306 |
+
)
|
307 |
+
if motion_module is not None
|
308 |
+
else hidden_states
|
309 |
+
)
|
310 |
+
hidden_states = resnet(hidden_states, temb)
|
311 |
+
|
312 |
+
return hidden_states
|
313 |
+
|
314 |
+
|
315 |
+
class CrossAttnDownBlock3D(nn.Module):
|
316 |
+
def __init__(
|
317 |
+
self,
|
318 |
+
in_channels: int,
|
319 |
+
out_channels: int,
|
320 |
+
temb_channels: int,
|
321 |
+
dropout: float = 0.0,
|
322 |
+
num_layers: int = 1,
|
323 |
+
resnet_eps: float = 1e-6,
|
324 |
+
resnet_time_scale_shift: str = "default",
|
325 |
+
resnet_act_fn: str = "swish",
|
326 |
+
resnet_groups: int = 32,
|
327 |
+
resnet_pre_norm: bool = True,
|
328 |
+
attn_num_head_channels=1,
|
329 |
+
cross_attention_dim=1280,
|
330 |
+
output_scale_factor=1.0,
|
331 |
+
downsample_padding=1,
|
332 |
+
add_downsample=True,
|
333 |
+
dual_cross_attention=False,
|
334 |
+
use_linear_projection=False,
|
335 |
+
only_cross_attention=False,
|
336 |
+
upcast_attention=False,
|
337 |
+
unet_use_cross_frame_attention=None,
|
338 |
+
unet_use_temporal_attention=None,
|
339 |
+
use_inflated_groupnorm=None,
|
340 |
+
use_motion_module=None,
|
341 |
+
motion_module_type=None,
|
342 |
+
motion_module_kwargs=None,
|
343 |
+
use_zero_convs=False,
|
344 |
+
):
|
345 |
+
super().__init__()
|
346 |
+
resnets = []
|
347 |
+
attentions = []
|
348 |
+
motion_modules = []
|
349 |
+
|
350 |
+
self.has_cross_attention = True
|
351 |
+
self.attn_num_head_channels = attn_num_head_channels
|
352 |
+
|
353 |
+
for i in range(num_layers):
|
354 |
+
in_channels = in_channels if i == 0 else out_channels
|
355 |
+
resnets.append(
|
356 |
+
ResnetBlock3D(
|
357 |
+
in_channels=in_channels,
|
358 |
+
out_channels=out_channels,
|
359 |
+
temb_channels=temb_channels,
|
360 |
+
eps=resnet_eps,
|
361 |
+
groups=resnet_groups,
|
362 |
+
dropout=dropout,
|
363 |
+
time_embedding_norm=resnet_time_scale_shift,
|
364 |
+
non_linearity=resnet_act_fn,
|
365 |
+
output_scale_factor=output_scale_factor,
|
366 |
+
pre_norm=resnet_pre_norm,
|
367 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
368 |
+
)
|
369 |
+
)
|
370 |
+
if dual_cross_attention:
|
371 |
+
raise NotImplementedError
|
372 |
+
attentions.append(
|
373 |
+
Transformer3DModel(
|
374 |
+
attn_num_head_channels,
|
375 |
+
out_channels // attn_num_head_channels,
|
376 |
+
in_channels=out_channels,
|
377 |
+
num_layers=1,
|
378 |
+
cross_attention_dim=cross_attention_dim,
|
379 |
+
norm_num_groups=resnet_groups,
|
380 |
+
use_linear_projection=use_linear_projection,
|
381 |
+
only_cross_attention=only_cross_attention,
|
382 |
+
upcast_attention=upcast_attention,
|
383 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
384 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
385 |
+
use_zero_convs=use_zero_convs,
|
386 |
+
)
|
387 |
+
)
|
388 |
+
motion_modules.append(
|
389 |
+
get_motion_module(
|
390 |
+
in_channels=out_channels,
|
391 |
+
motion_module_type=motion_module_type,
|
392 |
+
motion_module_kwargs=motion_module_kwargs,
|
393 |
+
)
|
394 |
+
if use_motion_module
|
395 |
+
else None
|
396 |
+
)
|
397 |
+
|
398 |
+
self.attentions = nn.ModuleList(attentions)
|
399 |
+
self.resnets = nn.ModuleList(resnets)
|
400 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
401 |
+
|
402 |
+
if add_downsample:
|
403 |
+
self.downsamplers = nn.ModuleList(
|
404 |
+
[
|
405 |
+
Downsample3D(
|
406 |
+
out_channels,
|
407 |
+
use_conv=True,
|
408 |
+
out_channels=out_channels,
|
409 |
+
padding=downsample_padding,
|
410 |
+
name="op",
|
411 |
+
)
|
412 |
+
]
|
413 |
+
)
|
414 |
+
else:
|
415 |
+
self.downsamplers = None
|
416 |
+
|
417 |
+
self.gradient_checkpointing = False
|
418 |
+
|
419 |
+
def forward(
|
420 |
+
self,
|
421 |
+
hidden_states,
|
422 |
+
temb=None,
|
423 |
+
encoder_hidden_states=None,
|
424 |
+
attention_mask=None,
|
425 |
+
):
|
426 |
+
output_states = ()
|
427 |
+
|
428 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
429 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
430 |
+
):
|
431 |
+
# self.gradient_checkpointing = False
|
432 |
+
if self.training and self.gradient_checkpointing:
|
433 |
+
|
434 |
+
def create_custom_forward(module, return_dict=None):
|
435 |
+
def custom_forward(*inputs):
|
436 |
+
if return_dict is not None:
|
437 |
+
return module(*inputs, return_dict=return_dict)
|
438 |
+
else:
|
439 |
+
return module(*inputs)
|
440 |
+
|
441 |
+
return custom_forward
|
442 |
+
|
443 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
444 |
+
create_custom_forward(resnet), hidden_states, temb
|
445 |
+
)
|
446 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
447 |
+
create_custom_forward(attn, return_dict=False),
|
448 |
+
hidden_states,
|
449 |
+
encoder_hidden_states,
|
450 |
+
)[0]
|
451 |
+
|
452 |
+
# add motion module
|
453 |
+
hidden_states = (
|
454 |
+
motion_module(
|
455 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
456 |
+
)
|
457 |
+
if motion_module is not None
|
458 |
+
else hidden_states
|
459 |
+
)
|
460 |
+
|
461 |
+
else:
|
462 |
+
hidden_states = resnet(hidden_states, temb)
|
463 |
+
hidden_states = attn(
|
464 |
+
hidden_states,
|
465 |
+
encoder_hidden_states=encoder_hidden_states,
|
466 |
+
).sample
|
467 |
+
|
468 |
+
# add motion module
|
469 |
+
hidden_states = (
|
470 |
+
motion_module(
|
471 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
472 |
+
)
|
473 |
+
if motion_module is not None
|
474 |
+
else hidden_states
|
475 |
+
)
|
476 |
+
|
477 |
+
output_states += (hidden_states,)
|
478 |
+
|
479 |
+
if self.downsamplers is not None:
|
480 |
+
for downsampler in self.downsamplers:
|
481 |
+
hidden_states = downsampler(hidden_states)
|
482 |
+
|
483 |
+
output_states += (hidden_states,)
|
484 |
+
|
485 |
+
return hidden_states, output_states
|
486 |
+
|
487 |
+
|
488 |
+
class DownBlock3D(nn.Module):
|
489 |
+
def __init__(
|
490 |
+
self,
|
491 |
+
in_channels: int,
|
492 |
+
out_channels: int,
|
493 |
+
temb_channels: int,
|
494 |
+
dropout: float = 0.0,
|
495 |
+
num_layers: int = 1,
|
496 |
+
resnet_eps: float = 1e-6,
|
497 |
+
resnet_time_scale_shift: str = "default",
|
498 |
+
resnet_act_fn: str = "swish",
|
499 |
+
resnet_groups: int = 32,
|
500 |
+
resnet_pre_norm: bool = True,
|
501 |
+
output_scale_factor=1.0,
|
502 |
+
add_downsample=True,
|
503 |
+
downsample_padding=1,
|
504 |
+
use_inflated_groupnorm=None,
|
505 |
+
use_motion_module=None,
|
506 |
+
motion_module_type=None,
|
507 |
+
motion_module_kwargs=None,
|
508 |
+
):
|
509 |
+
super().__init__()
|
510 |
+
resnets = []
|
511 |
+
motion_modules = []
|
512 |
+
|
513 |
+
# use_motion_module = False
|
514 |
+
for i in range(num_layers):
|
515 |
+
in_channels = in_channels if i == 0 else out_channels
|
516 |
+
resnets.append(
|
517 |
+
ResnetBlock3D(
|
518 |
+
in_channels=in_channels,
|
519 |
+
out_channels=out_channels,
|
520 |
+
temb_channels=temb_channels,
|
521 |
+
eps=resnet_eps,
|
522 |
+
groups=resnet_groups,
|
523 |
+
dropout=dropout,
|
524 |
+
time_embedding_norm=resnet_time_scale_shift,
|
525 |
+
non_linearity=resnet_act_fn,
|
526 |
+
output_scale_factor=output_scale_factor,
|
527 |
+
pre_norm=resnet_pre_norm,
|
528 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
529 |
+
)
|
530 |
+
)
|
531 |
+
motion_modules.append(
|
532 |
+
get_motion_module(
|
533 |
+
in_channels=out_channels,
|
534 |
+
motion_module_type=motion_module_type,
|
535 |
+
motion_module_kwargs=motion_module_kwargs,
|
536 |
+
)
|
537 |
+
if use_motion_module
|
538 |
+
else None
|
539 |
+
)
|
540 |
+
|
541 |
+
self.resnets = nn.ModuleList(resnets)
|
542 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
543 |
+
|
544 |
+
if add_downsample:
|
545 |
+
self.downsamplers = nn.ModuleList(
|
546 |
+
[
|
547 |
+
Downsample3D(
|
548 |
+
out_channels,
|
549 |
+
use_conv=True,
|
550 |
+
out_channels=out_channels,
|
551 |
+
padding=downsample_padding,
|
552 |
+
name="op",
|
553 |
+
)
|
554 |
+
]
|
555 |
+
)
|
556 |
+
else:
|
557 |
+
self.downsamplers = None
|
558 |
+
|
559 |
+
self.gradient_checkpointing = False
|
560 |
+
|
561 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
562 |
+
output_states = ()
|
563 |
+
|
564 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
565 |
+
# print(f"DownBlock3D {self.gradient_checkpointing = }")
|
566 |
+
if self.training and self.gradient_checkpointing:
|
567 |
+
|
568 |
+
def create_custom_forward(module):
|
569 |
+
def custom_forward(*inputs):
|
570 |
+
return module(*inputs)
|
571 |
+
|
572 |
+
return custom_forward
|
573 |
+
|
574 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
575 |
+
create_custom_forward(resnet), hidden_states, temb
|
576 |
+
)
|
577 |
+
if motion_module is not None:
|
578 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
579 |
+
create_custom_forward(motion_module),
|
580 |
+
hidden_states.requires_grad_(),
|
581 |
+
temb,
|
582 |
+
encoder_hidden_states,
|
583 |
+
)
|
584 |
+
else:
|
585 |
+
hidden_states = resnet(hidden_states, temb)
|
586 |
+
|
587 |
+
# add motion module
|
588 |
+
hidden_states = (
|
589 |
+
motion_module(
|
590 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
591 |
+
)
|
592 |
+
if motion_module is not None
|
593 |
+
else hidden_states
|
594 |
+
)
|
595 |
+
|
596 |
+
output_states += (hidden_states,)
|
597 |
+
|
598 |
+
if self.downsamplers is not None:
|
599 |
+
for downsampler in self.downsamplers:
|
600 |
+
hidden_states = downsampler(hidden_states)
|
601 |
+
|
602 |
+
output_states += (hidden_states,)
|
603 |
+
|
604 |
+
return hidden_states, output_states
|
605 |
+
|
606 |
+
|
607 |
+
class CrossAttnUpBlock3D(nn.Module):
|
608 |
+
def __init__(
|
609 |
+
self,
|
610 |
+
in_channels: int,
|
611 |
+
out_channels: int,
|
612 |
+
prev_output_channel: int,
|
613 |
+
temb_channels: int,
|
614 |
+
dropout: float = 0.0,
|
615 |
+
num_layers: int = 1,
|
616 |
+
resnet_eps: float = 1e-6,
|
617 |
+
resnet_time_scale_shift: str = "default",
|
618 |
+
resnet_act_fn: str = "swish",
|
619 |
+
resnet_groups: int = 32,
|
620 |
+
resnet_pre_norm: bool = True,
|
621 |
+
attn_num_head_channels=1,
|
622 |
+
cross_attention_dim=1280,
|
623 |
+
output_scale_factor=1.0,
|
624 |
+
add_upsample=True,
|
625 |
+
dual_cross_attention=False,
|
626 |
+
use_linear_projection=False,
|
627 |
+
only_cross_attention=False,
|
628 |
+
upcast_attention=False,
|
629 |
+
unet_use_cross_frame_attention=None,
|
630 |
+
unet_use_temporal_attention=None,
|
631 |
+
use_motion_module=None,
|
632 |
+
use_inflated_groupnorm=None,
|
633 |
+
motion_module_type=None,
|
634 |
+
motion_module_kwargs=None,
|
635 |
+
use_zero_convs=False,
|
636 |
+
):
|
637 |
+
super().__init__()
|
638 |
+
resnets = []
|
639 |
+
attentions = []
|
640 |
+
motion_modules = []
|
641 |
+
|
642 |
+
self.has_cross_attention = True
|
643 |
+
self.attn_num_head_channels = attn_num_head_channels
|
644 |
+
|
645 |
+
for i in range(num_layers):
|
646 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
647 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
648 |
+
|
649 |
+
resnets.append(
|
650 |
+
ResnetBlock3D(
|
651 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
652 |
+
out_channels=out_channels,
|
653 |
+
temb_channels=temb_channels,
|
654 |
+
eps=resnet_eps,
|
655 |
+
groups=resnet_groups,
|
656 |
+
dropout=dropout,
|
657 |
+
time_embedding_norm=resnet_time_scale_shift,
|
658 |
+
non_linearity=resnet_act_fn,
|
659 |
+
output_scale_factor=output_scale_factor,
|
660 |
+
pre_norm=resnet_pre_norm,
|
661 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
662 |
+
)
|
663 |
+
)
|
664 |
+
if dual_cross_attention:
|
665 |
+
raise NotImplementedError
|
666 |
+
attentions.append(
|
667 |
+
Transformer3DModel(
|
668 |
+
attn_num_head_channels,
|
669 |
+
out_channels // attn_num_head_channels,
|
670 |
+
in_channels=out_channels,
|
671 |
+
num_layers=1,
|
672 |
+
cross_attention_dim=cross_attention_dim,
|
673 |
+
norm_num_groups=resnet_groups,
|
674 |
+
use_linear_projection=use_linear_projection,
|
675 |
+
only_cross_attention=only_cross_attention,
|
676 |
+
upcast_attention=upcast_attention,
|
677 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
678 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
679 |
+
use_zero_convs=use_zero_convs,
|
680 |
+
)
|
681 |
+
)
|
682 |
+
motion_modules.append(
|
683 |
+
get_motion_module(
|
684 |
+
in_channels=out_channels,
|
685 |
+
motion_module_type=motion_module_type,
|
686 |
+
motion_module_kwargs=motion_module_kwargs,
|
687 |
+
)
|
688 |
+
if use_motion_module
|
689 |
+
else None
|
690 |
+
)
|
691 |
+
|
692 |
+
self.attentions = nn.ModuleList(attentions)
|
693 |
+
self.resnets = nn.ModuleList(resnets)
|
694 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
695 |
+
|
696 |
+
if add_upsample:
|
697 |
+
self.upsamplers = nn.ModuleList(
|
698 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
699 |
+
)
|
700 |
+
else:
|
701 |
+
self.upsamplers = None
|
702 |
+
|
703 |
+
self.gradient_checkpointing = False
|
704 |
+
|
705 |
+
def forward(
|
706 |
+
self,
|
707 |
+
hidden_states,
|
708 |
+
res_hidden_states_tuple,
|
709 |
+
temb=None,
|
710 |
+
encoder_hidden_states=None,
|
711 |
+
upsample_size=None,
|
712 |
+
attention_mask=None,
|
713 |
+
):
|
714 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
715 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
716 |
+
):
|
717 |
+
# pop res hidden states
|
718 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
719 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
720 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
721 |
+
|
722 |
+
if self.training and self.gradient_checkpointing:
|
723 |
+
|
724 |
+
def create_custom_forward(module, return_dict=None):
|
725 |
+
def custom_forward(*inputs):
|
726 |
+
if return_dict is not None:
|
727 |
+
return module(*inputs, return_dict=return_dict)
|
728 |
+
else:
|
729 |
+
return module(*inputs)
|
730 |
+
|
731 |
+
return custom_forward
|
732 |
+
|
733 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
734 |
+
create_custom_forward(resnet), hidden_states, temb
|
735 |
+
)
|
736 |
+
hidden_states = attn(
|
737 |
+
hidden_states,
|
738 |
+
encoder_hidden_states=encoder_hidden_states,
|
739 |
+
).sample
|
740 |
+
if motion_module is not None:
|
741 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
742 |
+
create_custom_forward(motion_module),
|
743 |
+
hidden_states.requires_grad_(),
|
744 |
+
temb,
|
745 |
+
encoder_hidden_states,
|
746 |
+
)
|
747 |
+
|
748 |
+
else:
|
749 |
+
hidden_states = resnet(hidden_states, temb)
|
750 |
+
hidden_states = attn(
|
751 |
+
hidden_states,
|
752 |
+
encoder_hidden_states=encoder_hidden_states,
|
753 |
+
).sample
|
754 |
+
|
755 |
+
# add motion module
|
756 |
+
hidden_states = (
|
757 |
+
motion_module(
|
758 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
759 |
+
)
|
760 |
+
if motion_module is not None
|
761 |
+
else hidden_states
|
762 |
+
)
|
763 |
+
|
764 |
+
if self.upsamplers is not None:
|
765 |
+
for upsampler in self.upsamplers:
|
766 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
767 |
+
|
768 |
+
return hidden_states
|
769 |
+
|
770 |
+
|
771 |
+
class UpBlock3D(nn.Module):
|
772 |
+
def __init__(
|
773 |
+
self,
|
774 |
+
in_channels: int,
|
775 |
+
prev_output_channel: int,
|
776 |
+
out_channels: int,
|
777 |
+
temb_channels: int,
|
778 |
+
dropout: float = 0.0,
|
779 |
+
num_layers: int = 1,
|
780 |
+
resnet_eps: float = 1e-6,
|
781 |
+
resnet_time_scale_shift: str = "default",
|
782 |
+
resnet_act_fn: str = "swish",
|
783 |
+
resnet_groups: int = 32,
|
784 |
+
resnet_pre_norm: bool = True,
|
785 |
+
output_scale_factor=1.0,
|
786 |
+
add_upsample=True,
|
787 |
+
use_inflated_groupnorm=None,
|
788 |
+
use_motion_module=None,
|
789 |
+
motion_module_type=None,
|
790 |
+
motion_module_kwargs=None,
|
791 |
+
):
|
792 |
+
super().__init__()
|
793 |
+
resnets = []
|
794 |
+
motion_modules = []
|
795 |
+
|
796 |
+
# use_motion_module = False
|
797 |
+
for i in range(num_layers):
|
798 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
799 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
800 |
+
|
801 |
+
resnets.append(
|
802 |
+
ResnetBlock3D(
|
803 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
804 |
+
out_channels=out_channels,
|
805 |
+
temb_channels=temb_channels,
|
806 |
+
eps=resnet_eps,
|
807 |
+
groups=resnet_groups,
|
808 |
+
dropout=dropout,
|
809 |
+
time_embedding_norm=resnet_time_scale_shift,
|
810 |
+
non_linearity=resnet_act_fn,
|
811 |
+
output_scale_factor=output_scale_factor,
|
812 |
+
pre_norm=resnet_pre_norm,
|
813 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
814 |
+
)
|
815 |
+
)
|
816 |
+
motion_modules.append(
|
817 |
+
get_motion_module(
|
818 |
+
in_channels=out_channels,
|
819 |
+
motion_module_type=motion_module_type,
|
820 |
+
motion_module_kwargs=motion_module_kwargs,
|
821 |
+
)
|
822 |
+
if use_motion_module
|
823 |
+
else None
|
824 |
+
)
|
825 |
+
|
826 |
+
self.resnets = nn.ModuleList(resnets)
|
827 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
828 |
+
|
829 |
+
if add_upsample:
|
830 |
+
self.upsamplers = nn.ModuleList(
|
831 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
832 |
+
)
|
833 |
+
else:
|
834 |
+
self.upsamplers = None
|
835 |
+
|
836 |
+
self.gradient_checkpointing = False
|
837 |
+
|
838 |
+
def forward(
|
839 |
+
self,
|
840 |
+
hidden_states,
|
841 |
+
res_hidden_states_tuple,
|
842 |
+
temb=None,
|
843 |
+
upsample_size=None,
|
844 |
+
encoder_hidden_states=None,
|
845 |
+
):
|
846 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
847 |
+
# pop res hidden states
|
848 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
849 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
850 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
851 |
+
|
852 |
+
# print(f"UpBlock3D {self.gradient_checkpointing = }")
|
853 |
+
if self.training and self.gradient_checkpointing:
|
854 |
+
|
855 |
+
def create_custom_forward(module):
|
856 |
+
def custom_forward(*inputs):
|
857 |
+
return module(*inputs)
|
858 |
+
|
859 |
+
return custom_forward
|
860 |
+
|
861 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
862 |
+
create_custom_forward(resnet), hidden_states, temb
|
863 |
+
)
|
864 |
+
if motion_module is not None:
|
865 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
866 |
+
create_custom_forward(motion_module),
|
867 |
+
hidden_states.requires_grad_(),
|
868 |
+
temb,
|
869 |
+
encoder_hidden_states,
|
870 |
+
)
|
871 |
+
else:
|
872 |
+
hidden_states = resnet(hidden_states, temb)
|
873 |
+
hidden_states = (
|
874 |
+
motion_module(
|
875 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
876 |
+
)
|
877 |
+
if motion_module is not None
|
878 |
+
else hidden_states
|
879 |
+
)
|
880 |
+
|
881 |
+
if self.upsamplers is not None:
|
882 |
+
for upsampler in self.upsamplers:
|
883 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
884 |
+
|
885 |
+
return hidden_states
|
genwarp/ops.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
from jaxtyping import Float
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch import Tensor
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from einops import rearrange
|
10 |
+
from splatting import splatting_function
|
11 |
+
|
12 |
+
def sph2cart(
|
13 |
+
azi: Float[Tensor, 'B'],
|
14 |
+
ele: Float[Tensor, 'B'],
|
15 |
+
r: Float[Tensor, 'B']
|
16 |
+
) -> Float[Tensor, 'B 3']:
|
17 |
+
# z-up, y-right, x-back
|
18 |
+
rcos = r * torch.cos(ele)
|
19 |
+
pos_cart = torch.stack([
|
20 |
+
rcos * torch.cos(azi),
|
21 |
+
rcos * torch.sin(azi),
|
22 |
+
r * torch.sin(ele)
|
23 |
+
], dim=1)
|
24 |
+
|
25 |
+
return pos_cart
|
26 |
+
|
27 |
+
def get_viewport_matrix(
|
28 |
+
width: int,
|
29 |
+
height: int,
|
30 |
+
batch_size: int=1,
|
31 |
+
device: torch.device=None,
|
32 |
+
) -> Float[Tensor, 'B 4 4']:
|
33 |
+
N = torch.tensor(
|
34 |
+
[[width/2, 0, 0, width/2],
|
35 |
+
[0, height/2, 0, height/2],
|
36 |
+
[0, 0, 1/2, 1/2],
|
37 |
+
[0, 0, 0, 1]],
|
38 |
+
dtype=torch.float32,
|
39 |
+
device=device
|
40 |
+
)[None].repeat(batch_size, 1, 1)
|
41 |
+
return N
|
42 |
+
|
43 |
+
def get_projection_matrix(
|
44 |
+
fovy: Float[Tensor, 'B'],
|
45 |
+
aspect_wh: float,
|
46 |
+
near: float,
|
47 |
+
far: float
|
48 |
+
) -> Float[Tensor, 'B 4 4']:
|
49 |
+
batch_size = fovy.shape[0]
|
50 |
+
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
|
51 |
+
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
|
52 |
+
proj_mtx[:, 1, 1] = -1.0 / torch.tan(
|
53 |
+
fovy / 2.0
|
54 |
+
) # add a negative sign here as the y axis is flipped in nvdiffrast output
|
55 |
+
proj_mtx[:, 2, 2] = -(far + near) / (far - near)
|
56 |
+
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
|
57 |
+
proj_mtx[:, 3, 2] = -1.0
|
58 |
+
return proj_mtx
|
59 |
+
|
60 |
+
def camera_lookat(
|
61 |
+
eye: Float[Tensor, 'B 3'],
|
62 |
+
target: Float[Tensor, 'B 3'],
|
63 |
+
up: Float[Tensor, 'B 3']
|
64 |
+
) -> Float[Tensor, 'B 4 4']:
|
65 |
+
B = eye.shape[0]
|
66 |
+
f = F.normalize(eye - target)
|
67 |
+
l = F.normalize(torch.linalg.cross(up, f))
|
68 |
+
u = F.normalize(torch.linalg.cross(f, l))
|
69 |
+
|
70 |
+
R = torch.stack((l, u, f), dim=1) # B 3 3
|
71 |
+
M_R = torch.eye(4, dtype=torch.float32)[None].repeat((B, 1, 1))
|
72 |
+
M_R[..., :3, :3] = R
|
73 |
+
|
74 |
+
T = - eye
|
75 |
+
M_T = torch.eye(4, dtype=torch.float32)[None].repeat((B, 1, 1))
|
76 |
+
M_T[..., :3, 3] = T
|
77 |
+
|
78 |
+
return (M_R @ M_T).to(dtype=torch.float32)
|
79 |
+
|
80 |
+
def focal_length_to_fov(
|
81 |
+
focal_length: float,
|
82 |
+
censor_length: float = 24.
|
83 |
+
) -> float:
|
84 |
+
return 2 * np.arctan(censor_length / focal_length / 2.)
|
85 |
+
|
86 |
+
def forward_warper(
|
87 |
+
image: Float[Tensor, 'B C H W'],
|
88 |
+
screen: Float[Tensor, 'B (H W) 2'],
|
89 |
+
pcd: Float[Tensor, 'B (H W) 4'],
|
90 |
+
mvp_mtx: Float[Tensor, 'B 4 4'],
|
91 |
+
viewport_mtx: Float[Tensor, 'B 4 4'],
|
92 |
+
alpha: float = 0.5
|
93 |
+
) -> Dict[str, Tensor]:
|
94 |
+
H, W = image.shape[2:4]
|
95 |
+
|
96 |
+
# Projection.
|
97 |
+
points_c = pcd @ mvp_mtx.mT
|
98 |
+
points_ndc = points_c / points_c[..., 3:4]
|
99 |
+
# To screen.
|
100 |
+
coords_new = points_ndc @ viewport_mtx.mT
|
101 |
+
|
102 |
+
# Masking invalid pixels.
|
103 |
+
invalid = coords_new[..., 2] <= 0
|
104 |
+
coords_new[invalid] = -1000000 if coords_new.dtype == torch.float32 else -1e+4
|
105 |
+
|
106 |
+
# Calculate flow and importance for splatting.
|
107 |
+
new_z = points_c[..., 2:3]
|
108 |
+
flow = coords_new[..., :2] - screen[..., :2]
|
109 |
+
## Importance.
|
110 |
+
importance = alpha / new_z
|
111 |
+
importance -= importance.amin((1, 2), keepdim=True)
|
112 |
+
importance /= importance.amax((1, 2), keepdim=True) + 1e-6
|
113 |
+
importance = importance * 10 - 10
|
114 |
+
## Rearrange.
|
115 |
+
importance = rearrange(importance, 'b (h w) c -> b c h w', h=H, w=W)
|
116 |
+
flow = rearrange(flow, 'b (h w) c -> b c h w', h=H, w=W)
|
117 |
+
|
118 |
+
# Splatting.
|
119 |
+
warped = splatting_function('softmax', image, flow, importance, eps=1e-6)
|
120 |
+
## mask is 1 where there is no splat
|
121 |
+
mask = (warped == 0.).all(dim=1, keepdim=True).to(image.dtype)
|
122 |
+
flow2 = rearrange(coords_new[..., :2], 'b (h w) c -> b c h w', h=H, w=W)
|
123 |
+
|
124 |
+
output = dict(
|
125 |
+
warped=warped,
|
126 |
+
mask=mask,
|
127 |
+
correspondence=flow2
|
128 |
+
)
|
129 |
+
|
130 |
+
return output
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.1
|
2 |
+
torchvision==0.15.2
|
3 |
+
diffusers
|
4 |
+
accelerate
|
5 |
+
transformers
|
6 |
+
scipy
|
7 |
+
opencv-python
|
8 |
+
omegaconf
|
9 |
+
einops
|
10 |
+
roma
|
11 |
+
jaxtyping
|
12 |
+
timm==0.6.7
|
13 |
+
matplotlib==3.6.2
|
14 |
+
gradio_model3dgscamera
|