2024.07.04 update app.py
Browse files- .ipynb_checkpoints/app-checkpoint.py +82 -0
- app.py +1 -1
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 객체검출 -> 삭제 체크박스 적용본
|
2 |
+
import torch
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
5 |
+
from diffusers import StableDiffusionInpaintPipeline
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# 모델 로드
|
9 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
10 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
11 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16)
|
12 |
+
pipe = pipe.to("cpu")
|
13 |
+
|
14 |
+
def detect_objects(image):
|
15 |
+
# 객체 검출
|
16 |
+
inputs = processor(images=image, return_tensors="pt")
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
# 결과 후처리```````
|
20 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
21 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
22 |
+
|
23 |
+
# 검출된 객체 정보 추출
|
24 |
+
detected_objects = []
|
25 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
26 |
+
if score > 0.9:
|
27 |
+
box = [round(i) for i in box.tolist()]
|
28 |
+
detected_objects.append({"label": model.config.id2label[label.item()], "box": box})
|
29 |
+
|
30 |
+
return detected_objects
|
31 |
+
|
32 |
+
def display_detected_objects(image):
|
33 |
+
detected_objects = detect_objects(image)
|
34 |
+
labeled_image = image.copy()
|
35 |
+
draw = ImageDraw.Draw(labeled_image)
|
36 |
+
object_labels = []
|
37 |
+
for obj in detected_objects:
|
38 |
+
box = obj["box"]
|
39 |
+
label = obj["label"]
|
40 |
+
draw.rectangle(box, outline="red", width=3)
|
41 |
+
draw.text((box[0], box[1]), label, fill="red")
|
42 |
+
object_labels.append(f"{label} at {box}")
|
43 |
+
return labeled_image, gr.update(choices=object_labels)
|
44 |
+
|
45 |
+
def inpaint_image(image, selected_objects):
|
46 |
+
detected_objects = detect_objects(image)
|
47 |
+
|
48 |
+
# 마스크 생성
|
49 |
+
mask = Image.new("L", image.size, 0)
|
50 |
+
draw = ImageDraw.Draw(mask)
|
51 |
+
for obj in detected_objects:
|
52 |
+
object_label = f"{obj['label']} at {obj['box']}"
|
53 |
+
if object_label in selected_objects:
|
54 |
+
box = obj["box"]
|
55 |
+
draw.rectangle(box, fill=255)
|
56 |
+
|
57 |
+
# Inpainting 수행
|
58 |
+
image = image.convert("RGB")
|
59 |
+
mask = mask.convert("RGB")
|
60 |
+
output = pipe(prompt="a modern interior", image=image, mask_image=mask).images[0]
|
61 |
+
# output = pipe(prompt="remove", image=image, mask_image=mask).images[0]
|
62 |
+
|
63 |
+
|
64 |
+
return output
|
65 |
+
|
66 |
+
# Gradio 인터페이스 설정
|
67 |
+
with gr.Blocks() as interface:
|
68 |
+
with gr.Row():
|
69 |
+
image_input = gr.Image(type="pil", label="Input Image")
|
70 |
+
objects_list = gr.CheckboxGroup(label="Detected Objects")
|
71 |
+
|
72 |
+
labeled_image_output = gr.Image(label="Labeled Image")
|
73 |
+
final_output = gr.Image(label="Output Image")
|
74 |
+
|
75 |
+
detect_button = gr.Button("Detect Objects")
|
76 |
+
inpaint_button = gr.Button("Remove Selected Objects")
|
77 |
+
|
78 |
+
detect_button.click(fn=display_detected_objects, inputs=image_input, outputs=[labeled_image_output, objects_list])
|
79 |
+
inpaint_button.click(fn=inpaint_image, inputs=[image_input, objects_list], outputs=final_output)
|
80 |
+
|
81 |
+
# Gradio 인터페이스 실행
|
82 |
+
interface.launch()
|
app.py
CHANGED
@@ -8,7 +8,7 @@ import gradio as gr
|
|
8 |
# 모델 로드
|
9 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
11 |
-
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.
|
12 |
pipe = pipe.to("cpu")
|
13 |
|
14 |
def detect_objects(image):
|
|
|
8 |
# 모델 로드
|
9 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
11 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16)
|
12 |
pipe = pipe.to("cpu")
|
13 |
|
14 |
def detect_objects(image):
|