Spaces:
Running
Running
import torch | |
from torch import nn | |
from torch.utils.data import Dataset | |
class SentencePairDataset(Dataset): | |
def __init__(self, sentence_pairs, labels, tokenizer, max_length): | |
self.sentence_pairs = sentence_pairs | |
self.labels = labels | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
def __len__(self): | |
return len(self.sentence_pairs) | |
def __getitem__(self, idx): | |
sentence1, sentence2 = self.sentence_pairs[idx] | |
label = self.labels[idx] | |
encoding = self.tokenizer.encode_plus( | |
sentence1, | |
text_pair=sentence2, | |
add_special_tokens=True, | |
max_length=self.max_length, | |
return_token_type_ids=False, | |
padding="max_length", | |
return_attention_mask=True, | |
return_tensors="pt", | |
truncation=True, | |
) | |
return { | |
"input_ids": encoding["input_ids"].flatten(), | |
"attention_mask": encoding["attention_mask"].flatten(), | |
"label": torch.tensor(label, dtype=torch.long), | |
} | |
class MBERTClassifier(nn.Module): | |
def __init__(self, mbert, num_classes): | |
super(MBERTClassifier, self).__init__() | |
self.mbert = mbert | |
self.layer_norm = nn.LayerNorm(self.mbert.config.hidden_size) | |
self.dropout = nn.Dropout(0.2) | |
self.batch_norm = nn.BatchNorm1d(self.mbert.config.hidden_size) | |
self.linear = nn.LazyLinear(num_classes) | |
self.activation = nn.ELU() | |
def forward(self, input_ids, attention_mask): | |
_, pooled_output = self.mbert(input_ids=input_ids, attention_mask=attention_mask, return_dict=False) | |
norm_output = self.layer_norm(pooled_output) | |
batch_norm_output = self.batch_norm(norm_output) | |
logits = self.linear(batch_norm_output) | |
activated_output = self.activation(logits) | |
dropout_output = self.dropout(activated_output) | |
return dropout_output | |
def predict_proba(self, input_ids, attention_mask): | |
logits = self.forward(input_ids, attention_mask) | |
probabilities = torch.softmax(logits, dim=-1) | |
return probabilities |