Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import time
|
|
|
4 |
|
5 |
def generate_prompt(instruction, input=""):
|
6 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
@@ -25,10 +26,10 @@ model_path = "models/rwkv-6-world-1b6/" # Path to your local model directory
|
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
model_path,
|
27 |
trust_remote_code=True,
|
28 |
-
use_flash_attention_2=False
|
29 |
).to(torch.float32)
|
30 |
|
31 |
-
|
32 |
tokenizer = AutoTokenizer.from_pretrained(
|
33 |
model_path,
|
34 |
bos_token="</s>",
|
@@ -40,23 +41,41 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
40 |
clean_up_tokenization_spaces=False # Or set to True if you prefer
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import time
|
4 |
+
import gradio as gr
|
5 |
|
6 |
def generate_prompt(instruction, input=""):
|
7 |
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
|
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
model_path,
|
28 |
trust_remote_code=True,
|
29 |
+
use_flash_attention_2=False
|
30 |
).to(torch.float32)
|
31 |
|
32 |
+
# Create a custom tokenizer (make sure to download vocab.json)
|
33 |
tokenizer = AutoTokenizer.from_pretrained(
|
34 |
model_path,
|
35 |
bos_token="</s>",
|
|
|
41 |
clean_up_tokenization_spaces=False # Or set to True if you prefer
|
42 |
)
|
43 |
|
44 |
+
# Function to handle text generation with word-by-word output and stop sequence
|
45 |
+
def generate_text(input_text):
|
46 |
+
prompt = generate_prompt(input_text)
|
47 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
48 |
+
|
49 |
+
generated_text = ""
|
50 |
+
stop_sequence_found = False
|
51 |
+
for i in range(333):
|
52 |
+
output = model.generate(input_ids, max_new_tokens=1, do_sample=True, temperature=1.0, top_p=0.3, top_k=0)
|
53 |
+
new_word = tokenizer.decode(output[0][-1:], skip_special_tokens=True)
|
54 |
+
|
55 |
+
print(new_word, end="", flush=True)
|
56 |
+
generated_text += new_word
|
57 |
+
|
58 |
+
if new_word == '\n' or new_word == '.':
|
59 |
+
stop_sequence_found = True
|
60 |
+
break
|
61 |
+
|
62 |
+
input_ids = output
|
63 |
+
|
64 |
+
if stop_sequence_found:
|
65 |
+
print("\n(Stop sequence found)")
|
66 |
+
print()
|
67 |
+
return generated_text
|
68 |
+
|
69 |
+
# Create the Gradio interface
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=generate_text,
|
72 |
+
inputs="text",
|
73 |
+
outputs="text",
|
74 |
+
title="RWKV Chatbot",
|
75 |
+
description="Enter your prompt below:",
|
76 |
+
)
|
77 |
|
78 |
+
# For local testing:
|
79 |
+
# iface.launch()
|
80 |
|
81 |
+
# Hugging Face Spaces will automatically launch the interface.
|