Spaces:
Sleeping
Sleeping
| /****************************************************************************** | |
| * Copyright (c) 2023, Tri Dao. | |
| ******************************************************************************/ | |
| template<typename input_t, typename weight_t> | |
| void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream); | |
| template <typename input_t, typename weight_t> | |
| void selective_scan_bwd_cuda(SSMParamsBwd ¶ms, cudaStream_t stream); | |
| void set_ssm_params_fwd(SSMParamsBase ¶ms, | |
| // sizes | |
| const size_t batch, | |
| const size_t dim, | |
| const size_t seqlen, | |
| const size_t dstate, | |
| const size_t n_groups, | |
| const size_t n_chunks, | |
| const bool is_variable_B, | |
| const bool is_variable_C, | |
| // device pointers | |
| const at::Tensor u, | |
| const at::Tensor delta, | |
| const at::Tensor A, | |
| const at::Tensor B, | |
| const at::Tensor C, | |
| const at::Tensor out, | |
| const at::Tensor z, | |
| const at::Tensor out_z, | |
| void* D_ptr, | |
| void* delta_bias_ptr, | |
| void* x_ptr, | |
| bool has_z, | |
| bool delta_softplus) { | |
| // Reset the parameters | |
| memset(¶ms, 0, sizeof(params)); | |
| params.batch = batch; | |
| params.dim = dim; | |
| params.seqlen = seqlen; | |
| params.dstate = dstate; | |
| params.n_groups = n_groups; | |
| params.n_chunks = n_chunks; | |
| params.dim_ngroups_ratio = dim / n_groups; | |
| params.delta_softplus = delta_softplus; | |
| params.is_variable_B = is_variable_B; | |
| params.is_variable_C = is_variable_C; | |
| // Set the pointers and strides. | |
| params.u_ptr = u.data_ptr(); | |
| params.delta_ptr = delta.data_ptr(); | |
| params.A_ptr = A.data_ptr(); | |
| params.B_ptr = B.data_ptr(); | |
| params.C_ptr = C.data_ptr(); | |
| params.D_ptr = D_ptr; | |
| params.delta_bias_ptr = delta_bias_ptr; | |
| params.out_ptr = out.data_ptr(); | |
| params.x_ptr = x_ptr; | |
| params.z_ptr = has_z ? z.data_ptr() : nullptr; | |
| params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr; | |
| // All stride are in elements, not bytes. | |
| params.A_d_stride = A.stride(0); | |
| params.A_dstate_stride = A.stride(1); | |
| if (!is_variable_B) { | |
| params.B_d_stride = B.stride(0); | |
| } else { | |
| params.B_batch_stride = B.stride(0); | |
| params.B_group_stride = B.stride(1); | |
| } | |
| params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2); | |
| if (!is_variable_C) { | |
| params.C_d_stride = C.stride(0); | |
| } else { | |
| params.C_batch_stride = C.stride(0); | |
| params.C_group_stride = C.stride(1); | |
| } | |
| params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2); | |
| params.u_batch_stride = u.stride(0); | |
| params.u_d_stride = u.stride(1); | |
| params.delta_batch_stride = delta.stride(0); | |
| params.delta_d_stride = delta.stride(1); | |
| if (has_z) { | |
| params.z_batch_stride = z.stride(0); | |
| params.z_d_stride = z.stride(1); | |
| params.out_z_batch_stride = out_z.stride(0); | |
| params.out_z_d_stride = out_z.stride(1); | |
| } | |
| params.out_batch_stride = out.stride(0); | |
| params.out_d_stride = out.stride(1); | |
| } | |
| void set_ssm_params_bwd(SSMParamsBwd ¶ms, | |
| // sizes | |
| const size_t batch, | |
| const size_t dim, | |
| const size_t seqlen, | |
| const size_t dstate, | |
| const size_t n_groups, | |
| const size_t n_chunks, | |
| const bool is_variable_B, | |
| const bool is_variable_C, | |
| // device pointers | |
| const at::Tensor u, | |
| const at::Tensor delta, | |
| const at::Tensor A, | |
| const at::Tensor B, | |
| const at::Tensor C, | |
| const at::Tensor z, | |
| const at::Tensor out, | |
| const at::Tensor out_z, | |
| void* D_ptr, | |
| void* delta_bias_ptr, | |
| void* x_ptr, | |
| const at::Tensor dout, | |
| const at::Tensor du, | |
| const at::Tensor ddelta, | |
| const at::Tensor dA, | |
| const at::Tensor dB, | |
| const at::Tensor dC, | |
| const at::Tensor dz, | |
| void* dD_ptr, | |
| void* ddelta_bias_ptr, | |
| bool has_z, | |
| bool delta_softplus, | |
| bool recompute_out_z) { | |
| // Pass in "dout" instead of "out", we're not gonna use "out" unless we have z | |
| set_ssm_params_fwd(params, batch, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C, | |
| u, delta, A, B, C, has_z ? out : dout, | |
| has_z ? z : dout, | |
| // If not recompute_out_z, pass dout instead of out_z. | |
| // This won't be used by the bwd kernel | |
| recompute_out_z ? out_z : dout, | |
| D_ptr, delta_bias_ptr, x_ptr, has_z, delta_softplus); | |
| if (!recompute_out_z) { params.out_z_ptr = nullptr; } | |
| // Set the pointers and strides. | |
| params.dout_ptr = dout.data_ptr(); | |
| params.du_ptr = du.data_ptr(); | |
| params.dA_ptr = dA.data_ptr(); | |
| params.dB_ptr = dB.data_ptr(); | |
| params.dC_ptr = dC.data_ptr(); | |
| params.dD_ptr = dD_ptr; | |
| params.ddelta_ptr = ddelta.data_ptr(); | |
| params.ddelta_bias_ptr = ddelta_bias_ptr; | |
| params.dz_ptr = has_z ? dz.data_ptr() : nullptr; | |
| // All stride are in elements, not bytes. | |
| params.dout_batch_stride = dout.stride(0); | |
| params.dout_d_stride = dout.stride(1); | |
| params.dA_d_stride = dA.stride(0); | |
| params.dA_dstate_stride = dA.stride(1); | |
| if (!is_variable_B) { | |
| params.dB_d_stride = dB.stride(0); | |
| } else { | |
| params.dB_batch_stride = dB.stride(0); | |
| params.dB_group_stride = dB.stride(1); | |
| } | |
| params.dB_dstate_stride = !is_variable_B ? dB.stride(1) : dB.stride(2); | |
| if (!is_variable_C) { | |
| params.dC_d_stride = dC.stride(0); | |
| } else { | |
| params.dC_batch_stride = dC.stride(0); | |
| params.dC_group_stride = dC.stride(1); | |
| } | |
| params.dC_dstate_stride = !is_variable_C ? dC.stride(1) : dC.stride(2); | |
| params.du_batch_stride = du.stride(0); | |
| params.du_d_stride = du.stride(1); | |
| params.ddelta_batch_stride = ddelta.stride(0); | |
| params.ddelta_d_stride = ddelta.stride(1); | |
| if (has_z) { | |
| params.dz_batch_stride = dz.stride(0); | |
| params.dz_d_stride = dz.stride(1); | |
| } | |
| } | |
| std::vector<at::Tensor> | |
| selective_scan_fwd(const at::Tensor &u, const at::Tensor &delta, | |
| const at::Tensor &A, const at::Tensor &B, const at::Tensor &C, | |
| const c10::optional<at::Tensor> &D_, | |
| const c10::optional<at::Tensor> &z_, | |
| const c10::optional<at::Tensor> &delta_bias_, | |
| bool delta_softplus) { | |
| auto input_type = u.scalar_type(); | |
| auto weight_type = A.scalar_type(); | |
| TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16); | |
| TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat); | |
| const bool is_variable_B = B.dim() >= 3; | |
| const bool is_variable_C = C.dim() >= 3; | |
| const bool is_complex = weight_type == at::ScalarType::ComplexFloat; | |
| TORCH_CHECK(delta.scalar_type() == input_type); | |
| TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type)); | |
| TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type)); | |
| TORCH_CHECK(u.is_cuda()); | |
| TORCH_CHECK(delta.is_cuda()); | |
| TORCH_CHECK(A.is_cuda()); | |
| TORCH_CHECK(B.is_cuda()); | |
| TORCH_CHECK(C.is_cuda()); | |
| TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1); | |
| TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1); | |
| const auto sizes = u.sizes(); | |
| const int batch_size = sizes[0]; | |
| const int dim = sizes[1]; | |
| const int seqlen = sizes[2]; | |
| const int dstate = A.size(1); | |
| const int n_groups = is_variable_B ? B.size(1) : 1; | |
| TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256"); | |
| CHECK_SHAPE(u, batch_size, dim, seqlen); | |
| CHECK_SHAPE(delta, batch_size, dim, seqlen); | |
| CHECK_SHAPE(A, dim, dstate); | |
| if (!is_variable_B) { | |
| CHECK_SHAPE(B, dim, dstate); | |
| } else { | |
| CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2); | |
| TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1); | |
| } | |
| if (!is_variable_C) { | |
| CHECK_SHAPE(C, dim, dstate); | |
| } else { | |
| CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2); | |
| TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1); | |
| } | |
| if (D_.has_value()) { | |
| auto D = D_.value(); | |
| TORCH_CHECK(D.scalar_type() == at::ScalarType::Float); | |
| TORCH_CHECK(D.is_cuda()); | |
| TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1); | |
| CHECK_SHAPE(D, dim); | |
| } | |
| if (delta_bias_.has_value()) { | |
| auto delta_bias = delta_bias_.value(); | |
| TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float); | |
| TORCH_CHECK(delta_bias.is_cuda()); | |
| TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1); | |
| CHECK_SHAPE(delta_bias, dim); | |
| } | |
| at::Tensor z, out_z; | |
| const bool has_z = z_.has_value(); | |
| if (has_z) { | |
| z = z_.value(); | |
| TORCH_CHECK(z.scalar_type() == input_type); | |
| TORCH_CHECK(z.is_cuda()); | |
| TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1); | |
| CHECK_SHAPE(z, batch_size, dim, seqlen); | |
| out_z = torch::empty_like(z); | |
| } | |
| const int n_chunks = (seqlen + 2048 - 1) / 2048; | |
| // const int n_chunks = (seqlen + 1024 - 1) / 1024; | |
| // at::Tensor out = torch::empty_like(u); | |
| // Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout | |
| at::Tensor out = torch::empty_like(delta); | |
| at::Tensor x; | |
| x = torch::empty({batch_size, dim, n_chunks, dstate * 2}, u.options().dtype(weight_type)); | |
| SSMParamsBase params; | |
| set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C, | |
| u, delta, A, B, C, out, z, out_z, | |
| D_.has_value() ? D_.value().data_ptr() : nullptr, | |
| delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr, | |
| x.data_ptr(), | |
| has_z, | |
| delta_softplus); | |
| // Otherwise the kernel will be launched from cuda:0 device | |
| // Cast to char to avoid compiler warning about narrowing | |
| at::cuda::CUDAGuard device_guard{(char)u.get_device()}; | |
| auto stream = at::cuda::getCurrentCUDAStream().stream(); | |
| DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] { | |
| DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_fwd", [&] { | |
| selective_scan_fwd_cuda<input_t, weight_t>(params, stream); | |
| }); | |
| }); | |
| std::vector<at::Tensor> result = {out, x}; | |
| if (has_z) { result.push_back(out_z); } | |
| return result; | |
| } | |
| std::vector<at::Tensor> | |
| selective_scan_bwd(const at::Tensor &u, const at::Tensor &delta, | |
| const at::Tensor &A, const at::Tensor &B, const at::Tensor &C, | |
| const c10::optional<at::Tensor> &D_, | |
| const c10::optional<at::Tensor> &z_, | |
| const c10::optional<at::Tensor> &delta_bias_, | |
| const at::Tensor &dout, | |
| const c10::optional<at::Tensor> &x_, | |
| const c10::optional<at::Tensor> &out_, | |
| c10::optional<at::Tensor> &dz_, | |
| bool delta_softplus, | |
| bool recompute_out_z) { | |
| auto input_type = u.scalar_type(); | |
| auto weight_type = A.scalar_type(); | |
| TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16); | |
| TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat); | |
| const bool is_variable_B = B.dim() >= 3; | |
| const bool is_variable_C = C.dim() >= 3; | |
| const bool is_complex = weight_type == at::ScalarType::ComplexFloat; | |
| TORCH_CHECK(delta.scalar_type() == input_type); | |
| TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type)); | |
| TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type)); | |
| TORCH_CHECK(dout.scalar_type() == input_type); | |
| TORCH_CHECK(u.is_cuda()); | |
| TORCH_CHECK(delta.is_cuda()); | |
| TORCH_CHECK(A.is_cuda()); | |
| TORCH_CHECK(B.is_cuda()); | |
| TORCH_CHECK(C.is_cuda()); | |
| TORCH_CHECK(dout.is_cuda()); | |
| TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1); | |
| TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1); | |
| TORCH_CHECK(dout.stride(-1) == 1 || dout.size(-1) == 1); | |
| const auto sizes = u.sizes(); | |
| const int batch_size = sizes[0]; | |
| const int dim = sizes[1]; | |
| const int seqlen = sizes[2]; | |
| const int dstate = A.size(1); | |
| const int n_groups = is_variable_B ? B.size(1) : 1; | |
| TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256"); | |
| CHECK_SHAPE(u, batch_size, dim, seqlen); | |
| CHECK_SHAPE(delta, batch_size, dim, seqlen); | |
| CHECK_SHAPE(A, dim, dstate); | |
| if (!is_variable_B) { | |
| CHECK_SHAPE(B, dim, dstate); | |
| } else { | |
| CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2); | |
| TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1); | |
| } | |
| if (!is_variable_C) { | |
| CHECK_SHAPE(C, dim, dstate); | |
| } else { | |
| CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2); | |
| TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1); | |
| } | |
| CHECK_SHAPE(dout, batch_size, dim, seqlen); | |
| if (D_.has_value()) { | |
| auto D = D_.value(); | |
| TORCH_CHECK(D.scalar_type() == at::ScalarType::Float); | |
| TORCH_CHECK(D.is_cuda()); | |
| TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1); | |
| CHECK_SHAPE(D, dim); | |
| } | |
| if (delta_bias_.has_value()) { | |
| auto delta_bias = delta_bias_.value(); | |
| TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float); | |
| TORCH_CHECK(delta_bias.is_cuda()); | |
| TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1); | |
| CHECK_SHAPE(delta_bias, dim); | |
| } | |
| at::Tensor z, out, dz, out_z; | |
| const bool has_z = z_.has_value(); | |
| if (has_z) { | |
| z = z_.value(); | |
| TORCH_CHECK(z.scalar_type() == input_type); | |
| TORCH_CHECK(z.is_cuda()); | |
| TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1); | |
| CHECK_SHAPE(z, batch_size, dim, seqlen); | |
| TORCH_CHECK(out_.has_value()); | |
| out = out_.value(); | |
| TORCH_CHECK(out.scalar_type() == input_type); | |
| TORCH_CHECK(out.is_cuda()); | |
| TORCH_CHECK(out.stride(-1) == 1 || out.size(-1) == 1); | |
| CHECK_SHAPE(out, batch_size, dim, seqlen); | |
| if (dz_.has_value()) { | |
| dz = dz_.value(); | |
| TORCH_CHECK(dz.scalar_type() == input_type); | |
| TORCH_CHECK(dz.is_cuda()); | |
| TORCH_CHECK(dz.stride(-1) == 1 || dz.size(-1) == 1); | |
| CHECK_SHAPE(dz, batch_size, dim, seqlen); | |
| } else { | |
| dz = torch::empty_like(z); | |
| } | |
| if (recompute_out_z) { | |
| out_z = torch::empty_like(out); | |
| } | |
| } | |
| const int n_chunks = (seqlen + 2048 - 1) / 2048; | |
| // const int n_chunks = (seqlen + 1024 - 1) / 1024; | |
| if (n_chunks > 1) { TORCH_CHECK(x_.has_value()); } | |
| if (x_.has_value()) { | |
| auto x = x_.value(); | |
| TORCH_CHECK(x.scalar_type() == weight_type); | |
| TORCH_CHECK(x.is_cuda()); | |
| TORCH_CHECK(x.is_contiguous()); | |
| CHECK_SHAPE(x, batch_size, dim, n_chunks, 2 * dstate); | |
| } | |
| at::Tensor du = torch::empty_like(u); | |
| at::Tensor ddelta = torch::empty_like(delta); | |
| at::Tensor dA = torch::zeros_like(A); | |
| at::Tensor dB = !is_variable_B ? torch::zeros_like(B) : torch::zeros_like(B, B.options().dtype(torch::kFloat32)); | |
| at::Tensor dC = !is_variable_C ? torch::zeros_like(C) : torch::zeros_like(C, C.options().dtype(torch::kFloat32)); | |
| at::Tensor dD; | |
| if (D_.has_value()) { dD = torch::zeros_like(D_.value()); } | |
| at::Tensor ddelta_bias; | |
| if (delta_bias_.has_value()) { ddelta_bias = torch::zeros_like(delta_bias_.value()); } | |
| SSMParamsBwd params; | |
| set_ssm_params_bwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C, | |
| u, delta, A, B, C, z, out, out_z, | |
| D_.has_value() ? D_.value().data_ptr() : nullptr, | |
| delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr, | |
| x_.has_value() ? x_.value().data_ptr() : nullptr, | |
| dout, du, ddelta, dA, dB, dC, dz, | |
| D_.has_value() ? dD.data_ptr() : nullptr, | |
| delta_bias_.has_value() ? ddelta_bias.data_ptr() : nullptr, | |
| has_z, delta_softplus, recompute_out_z); | |
| // Otherwise the kernel will be launched from cuda:0 device | |
| // Cast to char to avoid compiler warning about narrowing | |
| at::cuda::CUDAGuard device_guard{(char)u.get_device()}; | |
| auto stream = at::cuda::getCurrentCUDAStream().stream(); | |
| DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_bwd", [&] { | |
| DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_bwd", [&] { | |
| selective_scan_bwd_cuda<input_t, weight_t>(params, stream); | |
| }); | |
| }); | |
| std::vector<at::Tensor> result = {du, ddelta, dA, dB.to(B.dtype()), dC.to(C.dtype()), dD, ddelta_bias}; | |
| if (has_z) { result.push_back(dz); } | |
| if (recompute_out_z) { result.push_back(out_z); } | |
| return result; | |
| } | |
| PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | |
| m.def("fwd", &selective_scan_fwd, "Selective scan forward"); | |
| m.def("bwd", &selective_scan_bwd, "Selective scan backward"); | |
| } | |