Upload 2 files
Browse files- app.py +67 -0
- requirements.txt +4 -2
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# To run this app, use: streamlit run test.py
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.metrics import accuracy_score
|
9 |
+
|
10 |
+
# Application title and description
|
11 |
+
st.title("Machine Learning Model Visualization")
|
12 |
+
st.write("This application demonstrates random forest classification on the iris dataset")
|
13 |
+
|
14 |
+
# Data acquisition and preparation
|
15 |
+
@st.cache_data
|
16 |
+
def load_data():
|
17 |
+
from sklearn.datasets import load_iris
|
18 |
+
iris = load_iris()
|
19 |
+
df = pd.DataFrame(iris.data, columns=iris.feature_names)
|
20 |
+
df['target'] = iris.target
|
21 |
+
return df, iris.target_names
|
22 |
+
|
23 |
+
data, target_names = load_data()
|
24 |
+
|
25 |
+
# Interactive data exploration
|
26 |
+
st.subheader("Dataset Exploration")
|
27 |
+
if st.checkbox("Display dataset"):
|
28 |
+
st.dataframe(data)
|
29 |
+
|
30 |
+
# Feature selection interface
|
31 |
+
st.subheader("Feature Selection")
|
32 |
+
features = st.multiselect(
|
33 |
+
"Select features for model training",
|
34 |
+
options=data.columns[:-1],
|
35 |
+
default=data.columns[0]
|
36 |
+
)
|
37 |
+
|
38 |
+
if len(features) > 0:
|
39 |
+
# Model parameters adjustment
|
40 |
+
st.subheader("Model Parameters")
|
41 |
+
n_estimators = st.slider("Number of trees", 1, 100, 10)
|
42 |
+
max_depth = st.slider("Maximum tree depth", 1, 20, 5)
|
43 |
+
|
44 |
+
# Model training
|
45 |
+
if st.button("Train Model"):
|
46 |
+
X = data[features]
|
47 |
+
y = data['target']
|
48 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
49 |
+
|
50 |
+
model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
|
51 |
+
model.fit(X_train, y_train)
|
52 |
+
|
53 |
+
# Performance evaluation
|
54 |
+
y_pred = model.predict(X_test)
|
55 |
+
accuracy = accuracy_score(y_test, y_pred)
|
56 |
+
|
57 |
+
st.success(f"Model accuracy: {accuracy:.4f}")
|
58 |
+
|
59 |
+
# Visualization of feature importance
|
60 |
+
if len(features) > 1:
|
61 |
+
st.subheader("Feature Importance")
|
62 |
+
fig, ax = plt.subplots()
|
63 |
+
ax.bar(features, model.feature_importances_)
|
64 |
+
plt.xticks(rotation=45)
|
65 |
+
st.pyplot(fig)
|
66 |
+
else:
|
67 |
+
st.warning("Please select at least one feature for model training")
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
-
|
2 |
pandas
|
3 |
-
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
pandas
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
scikit-learn
|