Sompote commited on
Commit
70ab770
·
verified ·
1 Parent(s): 2a3ef62

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +67 -0
  2. requirements.txt +4 -2
app.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # To run this app, use: streamlit run test.py
2
+ import streamlit as st
3
+ import pandas as pd
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ from sklearn.ensemble import RandomForestClassifier
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.metrics import accuracy_score
9
+
10
+ # Application title and description
11
+ st.title("Machine Learning Model Visualization")
12
+ st.write("This application demonstrates random forest classification on the iris dataset")
13
+
14
+ # Data acquisition and preparation
15
+ @st.cache_data
16
+ def load_data():
17
+ from sklearn.datasets import load_iris
18
+ iris = load_iris()
19
+ df = pd.DataFrame(iris.data, columns=iris.feature_names)
20
+ df['target'] = iris.target
21
+ return df, iris.target_names
22
+
23
+ data, target_names = load_data()
24
+
25
+ # Interactive data exploration
26
+ st.subheader("Dataset Exploration")
27
+ if st.checkbox("Display dataset"):
28
+ st.dataframe(data)
29
+
30
+ # Feature selection interface
31
+ st.subheader("Feature Selection")
32
+ features = st.multiselect(
33
+ "Select features for model training",
34
+ options=data.columns[:-1],
35
+ default=data.columns[0]
36
+ )
37
+
38
+ if len(features) > 0:
39
+ # Model parameters adjustment
40
+ st.subheader("Model Parameters")
41
+ n_estimators = st.slider("Number of trees", 1, 100, 10)
42
+ max_depth = st.slider("Maximum tree depth", 1, 20, 5)
43
+
44
+ # Model training
45
+ if st.button("Train Model"):
46
+ X = data[features]
47
+ y = data['target']
48
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
49
+
50
+ model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
51
+ model.fit(X_train, y_train)
52
+
53
+ # Performance evaluation
54
+ y_pred = model.predict(X_test)
55
+ accuracy = accuracy_score(y_test, y_pred)
56
+
57
+ st.success(f"Model accuracy: {accuracy:.4f}")
58
+
59
+ # Visualization of feature importance
60
+ if len(features) > 1:
61
+ st.subheader("Feature Importance")
62
+ fig, ax = plt.subplots()
63
+ ax.bar(features, model.feature_importances_)
64
+ plt.xticks(rotation=45)
65
+ st.pyplot(fig)
66
+ else:
67
+ st.warning("Please select at least one feature for model training")
requirements.txt CHANGED
@@ -1,3 +1,5 @@
1
- altair
2
  pandas
3
- streamlit
 
 
 
1
+ streamlit
2
  pandas
3
+ numpy
4
+ matplotlib
5
+ scikit-learn