soil_profile / llm_client.py
Sompote's picture
Upload 17 files
2c200f8 verified
import openai
import json
import streamlit as st
from config import LLM_PROVIDERS, AVAILABLE_MODELS, get_default_provider_and_model
from soil_calculations import SoilCalculations
class LLMClient:
def __init__(self, model=None, api_key=None, provider=None):
# Get defaults if not provided
if not provider or not model:
default_provider, default_model = get_default_provider_and_model()
self.provider = provider or default_provider
self.model = model or default_model
else:
self.provider = provider
self.model = model
self.api_key = api_key
# Only create client if we have API key and provider
if not self.api_key or not self.provider:
self.client = None
self.calculator = SoilCalculations()
return
# Get provider configuration
provider_config = LLM_PROVIDERS.get(self.provider, {})
base_url = provider_config.get("base_url", "https://openrouter.ai/api/v1")
self.client = openai.OpenAI(
base_url=base_url,
api_key=self.api_key,
)
self.calculator = SoilCalculations()
def _supports_images(self) -> bool:
"""Check if the current model supports image inputs"""
model_info = AVAILABLE_MODELS.get(self.model, {})
return model_info.get('supports_images', False)
def analyze_soil_boring_log(self, text_content=None, image_base64=None):
"""Analyze soil boring log using LLM"""
# Standardize units in text content before analysis
if text_content:
text_content, unit_conversions = self.calculator.standardize_units(text_content)
if unit_conversions:
st.info(f"πŸ“ Converted units: {', '.join([f'{k}β†’{v}' for k, v in unit_conversions.items()])}")
system_prompt = """You are an expert geotechnical engineer specializing in soil boring log interpretation.
IMPORTANT: You must respond with ONLY valid JSON data. Do not include any text before or after the JSON.
SAMPLE TYPE IDENTIFICATION (CRITICAL - FOLLOW EXACT ORDER):
**STEP 1 - FIRST COLUMN STRATIFICATION SYMBOLS (ABSOLUTE HIGHEST PRIORITY):**
ALWAYS look at the FIRST COLUMN of each layer for stratification symbols:
- **SS-1, SS-2, SS-18, SS18, SS-5** β†’ SS (Split Spoon) sample
- **ST-1, ST-2, ST-5, ST5, ST-12** β†’ ST (Shelby Tube) sample
- **SS1, SS2, SS3** (without dash) β†’ SS sample
- **ST1, ST2, ST3** (without dash) β†’ ST sample
- **Look for pattern: [SS|ST][-]?[0-9]+** in first column
**EXAMPLES of First Column Recognition:**
```
SS-18 | Brown clay, N=8 β†’ sample_type="SS" (SS-18 in first column)
ST-5 | Gray clay, Su=45 kPa β†’ sample_type="ST" (ST-5 in first column)
SS12 | Sandy clay, SPT test β†’ sample_type="SS" (SS12 in first column)
ST3 | Soft clay, unconfined β†’ sample_type="ST" (ST3 in first column)
```
**STEP 2 - If NO first column symbols, then check description keywords:**
- SS indicators: "split spoon", "SPT", "standard penetration", "disturbed"
- ST indicators: "shelby", "tube", "undisturbed", "UT", "unconfined compression"
**STEP 3 - If still unclear, use strength parameter type:**
- SPT-N values present β†’ likely SS sample
- Su values from unconfined test β†’ likely ST sample
CRITICAL SOIL CLASSIFICATION RULES (MANDATORY):
**SAND LAYER CLASSIFICATION REQUIREMENTS:**
1. **Sand layers MUST have sieve analysis evidence** - Look for:
- "Sieve #200: X% passing" or "#200 passing: X%"
- "Fines content: X%" (same as sieve #200)
- "Particle size analysis" or "gradation test"
- "% passing 0.075mm" (equivalent to #200 sieve)
2. **Classification Rules**:
- Sieve #200 >50% passing β†’ CLAY (fine-grained)
- Sieve #200 <50% passing β†’ SAND/GRAVEL (coarse-grained)
3. **NO SIEVE ANALYSIS = ASSUME CLAY (MANDATORY)**:
- If no sieve analysis data found β†’ ALWAYS classify as CLAY
- Include note: "Assumed clay - no sieve analysis data available"
- Set sieve_200_passing: null (not a number)
**CRITICAL**: Never classify as sand/silt without explicit sieve analysis evidence
**CRITICAL**: Always look for sieve #200 data before classifying as sand
CRITICAL SS/ST SAMPLE RULES (MUST FOLLOW):
FOR SS (Split Spoon) SAMPLES:
1. ALWAYS use RAW N-VALUE (not N-corrected, N-correction, or adjusted N)
2. Look for: "N = 15", "SPT-N = 8", "raw N = 20", "field N = 12"
3. IGNORE: "N-corrected = 25", "N-correction = 18", "adjusted N = 30"
4. For clay: Use SPT-N parameter (will be converted to Su using Su=5*N)
5. For sand/silt: Use SPT-N parameter (will be converted to friction angle)
6. NEVER use unconfined compression Su values for SS samples - ONLY use N values
FOR ST (Shelby Tube) SAMPLES:
1. ALWAYS USE DIRECT Su values from unconfined compression test
2. If ST sample has Su value (e.g., "Su = 25 kPa"), use that EXACT value
3. NEVER convert SPT-N to Su for ST samples when direct Su is available
4. Priority: Direct Su measurement > any other value
EXTRACTION PRIORITY FOR SS SAMPLES:
1. Raw N, Field N, Measured N (highest priority)
2. N-value without "corrected" or "correction" terms
3. General SPT-N value (lowest priority)
4. NEVER use Su from unconfined compression for SS samples
CRITICAL UNIT CONVERSION REQUIREMENTS (MUST APPLY):
**MANDATORY SU UNIT CONVERSION - READ FROM IMAGE/FILE:**
When extracting Su values from images or text, you MUST convert to kPa BEFORE using the value:
1. **ksc or kg/cmΒ²**: Su_kPa = Su_ksc Γ— 98.0
Example: "Su = 2.5 ksc" β†’ strength_value: 245 (not 2.5)
2. **t/mΒ² (tonnes/mΒ²)**: Su_kPa = Su_tonnes Γ— 9.81
Example: "Su = 3.0 t/mΒ²" β†’ strength_value: 29.43 (not 3.0)
3. **psi**: Su_kPa = Su_psi Γ— 6.895
Example: "Su = 50 psi" β†’ strength_value: 344.75 (not 50)
4. **psf**: Su_kPa = Su_psf Γ— 0.048
Example: "Su = 1000 psf" β†’ strength_value: 48 (not 1000)
5. **kPa**: Use directly (no conversion needed)
Example: "Su = 75 kPa" β†’ strength_value: 75
6. **MPa**: Su_kPa = Su_MPa Γ— 1000
Example: "Su = 0.1 MPa" β†’ strength_value: 100 (not 0.1)
**IMPORTANT**: Always include original unit in description for verification
**SPT-N values**: Keep as-is (no unit conversion needed)
CRITICAL SU-WATER CONTENT VALIDATION (MANDATORY):
**EXTRACT WATER CONTENT WHEN AVAILABLE:**
Always extract water content (w%) when mentioned in the description:
- \"water content = 25%\" β†’ water_content: 25
- \"w = 30%\" β†’ water_content: 30
- \"moisture content 35%\" β†’ water_content: 35
**VALIDATE SU-WATER CONTENT CORRELATION:**
For clay layers, Su and water content should correlate reasonably:
- Very soft clay: Su < 25 kPa, w% > 40%
- Soft clay: Su 25-50 kPa, w% 30-40%
- Medium clay: Su 50-100 kPa, w% 20-30%
- Stiff clay: Su 100-200 kPa, w% 15-25%
- Very stiff clay: Su 200-400 kPa, w% 10-20%
- Hard clay: Su > 400 kPa, w% < 15%
**CRITICAL UNIT CHECK SCENARIOS:**
- If Su > 1000 kPa with w% > 20%: CHECK if Su is in wrong units (psi, psf?)
- If Su < 5 kPa with w% < 15%: CHECK if Su is in wrong units (MPa, bar?)
- If correlation seems very off: VERIFY unit conversion was applied correctly
CRITICAL OUTPUT FORMAT (MANDATORY):
You MUST respond with ONLY a valid JSON object. Do not include:
- Explanatory text before or after the JSON
- Markdown formatting (```json ```)
- Comments or notes
- Multiple JSON objects
Start your response directly with { and end with }
LAYER GROUPING REQUIREMENTS:
1. MAXIMUM 7 LAYERS TOTAL - Group similar adjacent layers to achieve this limit
2. CLAY AND SAND MUST BE SEPARATE - Never combine clay layers with sand layers
3. Group adjacent layers with similar properties (same soil type and similar consistency)
4. Prioritize engineering significance over minor variations
Analyze the provided soil boring log and extract the following information in this exact JSON format:
{
"project_info": {
"project_name": "string",
"boring_id": "string",
"location": "string",
"date": "string",
"depth_total": 10.0
},
"soil_layers": [
{
"layer_id": 1,
"depth_from": 0.0,
"depth_to": 2.5,
"soil_type": "clay",
"description": "Brown silty clay, ST sample, Su = 25 kPa",
"sample_type": "ST",
"strength_parameter": "Su",
"strength_value": 25,
"sieve_200_passing": 65,
"water_content": 35.5,
"color": "brown",
"moisture": "moist",
"consistency": "soft",
"su_source": "Unconfined Compression Test"
}
],
"water_table": {
"depth": 3.0,
"date_encountered": "2024-01-01"
},
"notes": "Additional observations"
}
EXAMPLES OF CORRECT PROCESSING WITH UNIT CONVERSION AND SOIL CLASSIFICATION:
**SS SAMPLE EXAMPLES:**
1. "SS-18: Clay layer, N = 8, Su = 45 kPa from unconfined test"
β†’ Use: sample_type="SS", strength_parameter="SPT-N", strength_value=8
β†’ IGNORE the Su=45 kPa value for SS samples
2. "SS18: Soft clay, field N = 6, N-corrected = 10"
β†’ Use: sample_type="SS", strength_parameter="SPT-N", strength_value=6 (raw N)
β†’ IGNORE N-corrected value
**ST SAMPLE EXAMPLES WITH UNIT CONVERSION:**
1. "ST-5: Stiff clay, Su = 85 kPa from unconfined compression"
β†’ Use: sample_type="ST", strength_parameter="Su", strength_value=85
2. "ST-12: Medium clay, Su = 2.5 ksc from unconfined test"
β†’ Convert: 2.5 Γ— 98 = 245 kPa
β†’ Use: sample_type="ST", strength_parameter="Su", strength_value=245
3. "ST sample: Clay, unconfined strength = 3.0 t/mΒ²"
β†’ Convert: 3.0 Γ— 9.81 = 29.43 kPa
β†’ Use: sample_type="ST", strength_parameter="Su", strength_value=29.43
**SOIL CLASSIFICATION EXAMPLES:**
1. "Brown silty clay, no sieve analysis data"
β†’ soil_type="clay", sieve_200_passing=null
β†’ Note: "Assumed clay - no sieve analysis data available"
2. "Sandy clay, sieve #200: 75% passing"
β†’ soil_type="clay", sieve_200_passing=75
β†’ Classification: Clay (>50% passing)
3. "Medium sand, gradation test shows 25% passing #200"
β†’ soil_type="sand", sieve_200_passing=25
β†’ Classification: Sand (<50% passing)
4. "Dense sand layer" (NO sieve data mentioned)
β†’ soil_type="clay", sieve_200_passing=null
β†’ Note: "Assumed clay - no sieve analysis data available"
β†’ NEVER classify as sand without sieve data
CRITICAL LAYER GROUPING RULES:
1. MAXIMUM 7 LAYERS - If you identify more than 7 distinct zones, group adjacent similar layers
2. SEPARATE CLAY/SAND - Never group clay with sand, silt, or gravel layers
3. Group similar adjacent layers:
- Combine "soft clay" + "soft clay" into one "soft clay" layer
- Combine "medium sand" + "medium sand" into one "medium sand" layer
- Combine layers with similar strength values (within 30% difference)
4. Maintain engineering significance:
- Keep layers with significantly different strength parameters separate
- Preserve important transitions (e.g., clay to sand interface)
- Maintain water table interfaces as layer boundaries when significant
TECHNICAL RULES:
1. All numeric values must be numbers, not strings
2. For soil_type, use basic terms: "clay", "sand", "silt", "gravel" - do NOT include consistency
3. Include sample_type field: "SS" (Split Spoon) or "ST" (Shelby Tube)
4. Include sieve_200_passing field when available (percentage passing sieve #200)
5. Include water_content field when available (percentage water content for clay consistency checks)
6. Include su_source field: "Unconfined Compression Test" for direct measurements, or "Calculated from SPT-N" for conversions
7. Strength parameters:
- SS samples: ALWAYS use "SPT-N" with RAW N-value (will be converted based on soil type)
- ST samples with clay: Use "Su" with DIRECT value in kPa from unconfined compression test
- For sand/gravel: Always use "SPT-N" with N-value
- NEVER use Su for SS samples, NEVER calculate Su from SPT-N for ST samples that have direct Su
8. Put consistency separately in "consistency" field: "soft", "medium", "stiff", "loose", "dense", etc.
9. Ensure continuous depths (no gaps or overlaps)
10. All depths in meters, strength values as numbers
11. Return ONLY the JSON object, no additional text
GROUPING EXAMPLES:
- Original: [0-2m soft clay, 2-4m soft clay, 4-6m medium sand, 6-8m medium sand]
- Grouped: [0-4m soft clay, 4-8m medium sand] (4 layers reduced to 2)
STRENGTH PARAMETER EXAMPLES:
- SS sample: "Clay, N = 8 blows, Su = 40 kPa unconfined" β†’ Use SPT-N = 8 (IGNORE Su for SS)
- ST sample: "Clay, Su = 45 kPa from unconfined test" β†’ Use Su = 45 (DIRECT measurement)
- SS sample: "Clay, field N = 12, N-corrected = 18" β†’ Use SPT-N = 12 (raw N, IGNORE corrected)"""
messages = [{"role": "system", "content": system_prompt}]
# Check if model supports images
supports_images = self._supports_images()
if text_content:
messages.append({
"role": "user",
"content": f"Please analyze this soil boring log text:\n\n{text_content}"
})
if image_base64 and supports_images:
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Please analyze this soil boring log image:"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_base64}"
}
}
]
})
elif image_base64 and not supports_images:
# Model doesn't support images, notify user and continue with text-only
model_name = AVAILABLE_MODELS.get(self.model, {}).get('name', self.model)
st.warning(f"⚠️ {model_name} doesn't support image analysis. Using text content only.")
if not text_content:
st.error("❌ No text content available for analysis. Please ensure your document has extractable text or use a model that supports images.")
return {"error": "No text content available and model doesn't support images"}
try:
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
max_tokens=2000,
temperature=0.1
)
content = response.choices[0].message.content
# Try to extract JSON from response
try:
# Try different JSON extraction methods
json_str = content.strip()
# Remove markdown code blocks if present
if "```json" in json_str:
json_start = json_str.find("```json") + 7
json_end = json_str.find("```", json_start)
json_str = json_str[json_start:json_end].strip()
elif "```" in json_str:
# Remove any code blocks
json_start = json_str.find("```") + 3
json_end = json_str.rfind("```")
if json_end > json_start:
json_str = json_str[json_start:json_end].strip()
# Find JSON object boundaries
if not json_str.startswith("{"):
start_idx = json_str.find("{")
if start_idx != -1:
json_str = json_str[start_idx:]
if not json_str.endswith("}"):
end_idx = json_str.rfind("}")
if end_idx != -1:
json_str = json_str[:end_idx + 1]
# Parse JSON
result = json.loads(json_str)
# Validate required structure
if "soil_layers" not in result:
result["soil_layers"] = []
if "project_info" not in result:
result["project_info"] = {}
# Validate and enhance soil classification
result = self.calculator.validate_soil_classification(result)
# Enhance layers with calculated parameters
if result["soil_layers"]:
result["soil_layers"] = self.calculator.enhance_soil_layers(result["soil_layers"])
# Process with SS/ST classification
result = self.calculator.process_with_ss_st_classification(result)
# Enforce 7-layer limit and clay/sand separation
result["soil_layers"] = self._enforce_layer_grouping_rules(result["soil_layers"])
return result
except json.JSONDecodeError as e:
st.error(f"Failed to parse LLM response as JSON: {str(e)}")
# Try to create a basic structure from the response
return self._fallback_parse(content)
except Exception as e:
error_msg = str(e)
# Check for model availability error
if "not a valid model ID" in error_msg:
st.error(f"❌ Model '{self.model}' is not available on OpenRouter")
st.info("πŸ’‘ Try switching to a different model in the sidebar (Claude-3.5 Sonnet or GPT-4 Turbo are recommended)")
return {"error": f"Model not available: {self.model}"}
else:
st.error(f"Error calling LLM API: {error_msg}")
return {"error": error_msg}
def _fallback_parse(self, content):
"""Fallback parser when JSON parsing fails"""
try:
import re
# Try to extract basic information using regex
layers = []
# Look for depth patterns like "0-2m", "2-5m", etc.
depth_pattern = r'(\d+(?:\.\d+)?)\s*-\s*(\d+(?:\.\d+)?)m?\s*[:|]?\s*([^,\n]+)'
matches = re.findall(depth_pattern, content, re.IGNORECASE)
for i, match in enumerate(matches):
depth_from = float(match[0])
depth_to = float(match[1])
description = match[2].strip()
# Extract soil type from description
soil_type = "unknown"
if "clay" in description.lower():
if "soft" in description.lower():
soil_type = "soft clay"
elif "stiff" in description.lower():
soil_type = "stiff clay"
else:
soil_type = "medium clay"
elif "sand" in description.lower():
if "loose" in description.lower():
soil_type = "loose sand"
elif "dense" in description.lower():
soil_type = "dense sand"
else:
soil_type = "medium dense sand"
layers.append({
"layer_id": i + 1,
"depth_from": depth_from,
"depth_to": depth_to,
"soil_type": soil_type,
"description": description,
"strength_parameter": "Su" if "clay" in soil_type else "SPT-N",
"strength_value": 50, # Default value
"color": "unknown",
"moisture": "unknown",
"consistency": "unknown"
})
return {
"project_info": {
"project_name": "Unknown",
"boring_id": "Unknown",
"location": "Unknown",
"date": "Unknown",
"depth_total": max([layer["depth_to"] for layer in layers]) if layers else 0
},
"soil_layers": layers,
"water_table": {"depth": None, "date_encountered": None},
"notes": "Parsed using fallback method - original response: " + content[:200] + "..."
}
except Exception as e:
return {"error": f"Fallback parsing failed: {str(e)}", "raw_response": content}
def _enforce_layer_grouping_rules(self, layers):
"""Enforce 7-layer maximum and clay/sand separation rules"""
if not layers or len(layers) <= 7:
return layers
st.info(f"πŸ“Š Grouping layers: {len(layers)} layers found, grouping to meet 7-layer limit")
# Group similar adjacent layers to reduce count to 7 or fewer
grouped_layers = []
i = 0
while i < len(layers) and len(grouped_layers) < 7:
current_layer = layers[i].copy()
# Check if we can group with next layers
if i < len(layers) - 1 and len(grouped_layers) < 6: # Leave room for at least one more layer
next_layer = layers[i + 1]
# Group if same soil type and similar consistency (but never clay with sand)
can_group = (
current_layer.get('soil_type') == next_layer.get('soil_type') and
current_layer.get('consistency') == next_layer.get('consistency') and
not (current_layer.get('soil_type') == 'clay' and next_layer.get('soil_type') == 'sand') and
not (current_layer.get('soil_type') == 'sand' and next_layer.get('soil_type') == 'clay')
)
if can_group:
# Merge the layers
current_layer['depth_to'] = next_layer.get('depth_to', current_layer['depth_to'])
current_layer['description'] = f"Grouped: {current_layer.get('description', '')} + {next_layer.get('description', '')}"
# Average strength values
curr_strength = current_layer.get('strength_value', 0) or 0
next_strength = next_layer.get('strength_value', 0) or 0
if curr_strength and next_strength:
current_layer['strength_value'] = (curr_strength + next_strength) / 2
elif next_strength:
current_layer['strength_value'] = next_strength
# Skip next layer since it's been merged
i += 2
else:
i += 1
else:
i += 1
grouped_layers.append(current_layer)
# If still too many layers, group remaining similar layers into existing ones
if i < len(layers):
for remaining_layer in layers[i:]:
# Find a compatible layer to merge with
merged = False
for existing_layer in grouped_layers:
if (existing_layer.get('soil_type') == remaining_layer.get('soil_type') and
existing_layer.get('consistency') == remaining_layer.get('consistency')):
existing_layer['depth_to'] = max(existing_layer['depth_to'], remaining_layer.get('depth_to', 0))
existing_layer['description'] += f" + {remaining_layer.get('description', '')}"
merged = True
break
if not merged and len(grouped_layers) < 7:
grouped_layers.append(remaining_layer)
# Update layer IDs
for idx, layer in enumerate(grouped_layers):
layer['layer_id'] = idx + 1
# Add note about grouping
if len(grouped_layers) < len(layers):
st.success(f"βœ… Grouped {len(layers)} layers into {len(grouped_layers)} layers (7-layer limit)")
return grouped_layers[:7] # Ensure maximum 7 layers
def refine_soil_layers(self, soil_data, user_feedback):
"""Refine soil layer interpretation based on user feedback"""
system_prompt = """You are an expert geotechnical engineer. The user has provided feedback on the initial soil boring log analysis.
Please refine the soil layer interpretation based on their input and return the updated JSON in the same format."""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Original analysis: {json.dumps(soil_data, indent=2)}"},
{"role": "user", "content": f"User feedback: {user_feedback}"}
]
try:
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
max_tokens=2000,
temperature=0.1
)
content = response.choices[0].message.content
try:
if "```json" in content:
json_start = content.find("```json") + 7
json_end = content.find("```", json_start)
json_str = content[json_start:json_end].strip()
else:
json_str = content
return json.loads(json_str)
except json.JSONDecodeError:
return {"error": "Invalid JSON response", "raw_response": content}
except Exception as e:
return {"error": str(e)}