LEAP_GAIA / app.py
Solshine's picture
Added autogen agentics from gaiagraph
e9ea4f8 verified
raw
history blame
5.24 kB
import gradio as gr
# This may be in the wrong spot
def generate_outputs(user_prompt):
report, recommendations, visualization = produce_outputs(combined_data)
return report, recommendations, visualization
from langchain.community import OpenAI
from langchain.agents import TextProcessingAgent
from dspy.agents import Agent # Base class for custom agent
from dspy.utils import spawn_processes # Distributed computing utility
# API key **ADD A KEY OR LOCAL LLM PATHWAY**
openai = OpenAI(api_key="KEY")
# User prompt intake was here but was folded into Gradio interface lines
# Synthetic data generation (using Langchain's Text-Davinci-003 model for illustration)
def generate_synthetic_data(prompt):
response = openai.complete(prompt=prompt, engine="text-davinci-003", max_tokens=100)
return response.choices[0].text
# Custom data processing agent (inheriting from DSPy's Agent class) [TONIC PLEASE HELP LOL]
class DataProcessingAgent(Agent):
def __init__(self):
super().__init__()
def process(self, data):
# Implement our custom data processing logic here (e.g., feature engineering)
processed_data = data.lower().strip()
return processed_data
# Dynamic team composition (replace with logic for dynamic team creation)
team = [
OpenAI(api_key="YOUR_OPENAI_API_KEY", engine="text-davinci-003"), # LLM agent
DataProcessingAgent(), # Custom data processing agent
]
# Prompt and data flow refinement
message = f"{user_prompt}\n{generate_synthetic_data(f'Simulate scenarios for {user_prompt}')}"
# Agents Group Chat Finite State Machine
class GroupChatFSM:
def __init__(self, teams_config):
"""
Initialize with configurations for teams.
"""
self.teams = {team_name: self.Team(team_agents) for team_name, team_agents in teams_config.items()}
self.states = ["waiting", "interacting", "finalizing"]
self.current_state = "waiting"
def transition(self, to_state):
"""
Transition the state of the group chat based on FSM rules.
"""
if to_state in self.states:
self.current_state = to_state
else:
raise ValueError("Invalid state transition attempted.")
def broadcast(self, message):
"""
Broadcast a message to all teams based on the current FSM state.
"""
if self.current_state == "interacting":
responses = {team_name: team.broadcast(message) for team_name, team in self.teams.items()}
return responses
else:
return "The group chat is not in an interacting state."
class Team:
def __init__(self, agents_config):
self.agents = [self.Agent(agent_config) for agent_config in agents_config]
def broadcast(self, message):
responses = [agent.respond(message) for agent in self.agents]
return responses
class Agent:
def __init__(self, config):
self.agent_name = config['agent_name']
self.api_key = config['api_key']
self.model = config['model']
def respond(self, message):
return f"{self.agent_name} responding with {self.model}"
# Multimedia output production (using Langchain's Text-Davinci-003 as default) because I don't know how to implement DSPy properly yet [TONIC PLEASE HELP LOL]
def produce_outputs(processed_data):
# Use Langchain for LLM-based analysis, recommendations, etc. Should this be updated to DSPy too? again:[TONIC PLEASE HELP LOL]
analysis = openai.complete(prompt=f"Analyze {processed_data}", engine="text-davinci-003", max_tokens=200)
recommendations = openai.complete(prompt=f"Recommend strategies based on {processed_data}", engine="text-davinci-003", max_tokens=100)
# Replace with your visualization logic
visualization = None
return analysis.choices[0].text, recommendations.choices[0].text, visualization
# Synth data generation using DSPy's distributed computing capabilities (taken partially from DSPY documentation)
def generate_synthetic_data_distributed(prompt, num_nodes=3):
# Spawn synthetic data generation processes across multiple nodes
processes = [spawn_processes(generate_synthetic_data, [f"Simulate scenarios for {prompt}"]) for _ in range(num_nodes)]
# Collect the results from each node
synthetic_data_list = []
for process in processes:
synthetic_data_list.extend(process.get())
# Combine the results and return the synthetic data
return "\n".join(synthetic_data_list)
# Generate synthetic data using DSPy's distributed computing capabilities. Again:[TONIC PLEASE HELP LOL]
synthetic_data = generate_synthetic_data_distributed(user_prompt)
# Generate outputs
report, recommendations, visualization = produce_outputs(combined_data)
# Print the results for testing pyrposes
print("Report:")
print(report)
print("\nRecommendations:")
print(recommendations)
print("\nVisualization:")
print(visualization) # Currently "None" due to placeholder 'visualization'
# Moved from other gradio chunk near the top
gr.Interface(fn=generate_outputs, inputs=user_prompt, outputs=["text", "text", "image"]).launch()