Spaces:
Running
Running
import gradio as gr | |
import torch | |
import os | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from datasets import load_dataset, Audio | |
import numpy as np | |
from speechbrain.inference import EncoderClassifier | |
# Load models and processor | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("Solo448/SpeechT5-fine-tune-en") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Load speaker encoder | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
speaker_model = EncoderClassifier.from_hparams( | |
source="speechbrain/spkrec-xvect-voxceleb", | |
run_opts={"device": device}, | |
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb") | |
) | |
# Load a sample from the dataset for speaker embedding | |
try: | |
dataset = load_dataset("Yassmen/TTS_English_Technical_data", split="train") | |
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) | |
sample = dataset[0] | |
speaker_embedding = create_speaker_embedding(sample['audio']['array']) | |
except Exception as e: | |
print(f"Error loading dataset: {e}") | |
# Use a random speaker embedding as fallback | |
speaker_embedding = torch.randn(1, 512) | |
def create_speaker_embedding(waveform): | |
with torch.no_grad(): | |
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) | |
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) | |
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() | |
return speaker_embeddings | |
def text_to_speech(text): | |
# Clean up text | |
replacements = [ | |
('0', 'zero'), ('1', 'one'), ('2', 'two'), ('3', 'three'), ('4', 'four'), | |
('5', 'five'), ('6', 'six'), ('7', 'seven'), ('8', 'eight'), ('9', 'nine') | |
] | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder) | |
return (16000, speech.numpy()) | |
iface = gr.Interface( | |
fn=text_to_speech, | |
inputs="text", | |
outputs="audio", | |
title="Technical Text-to-Speech", | |
description="Enter technical text to convert to speech. The model has been fine-tuned on technical data." | |
) | |
iface.launch() |