Spaces:
Running
Running
import gradio as gr | |
import spaces | |
import json | |
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor | |
import torch | |
from PIL import Image | |
import numpy as np | |
import os | |
import base64 | |
import io | |
import uuid | |
import tempfile | |
import time | |
import shutil | |
from pathlib import Path | |
import tiktoken | |
import verovio | |
model_name = "srimanth-d/GOT_CPU" #ucaslcl/GOT-OCR2_0 | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
#model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True).eval().cuda() | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map='cpu', use_safetensors=True).eval() | |
UPLOAD_FOLDER = "./uploads" | |
RESULTS_FOLDER = "./results" | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
q_model_name = "Qwen/Qwen2-VL-2B-Instruct" | |
#q_model = Qwen2VLForConditionalGeneration.from_pretrained(q_model_name, torch_dtype="auto").cuda().eval() | |
q_model = Qwen2VLForConditionalGeneration.from_pretrained(q_model_name, torch_dtype="auto").eval() | |
q_processor = AutoProcessor.from_pretrained(q_model_name, trust_remote_code=True) | |
def get_qwen_op(image_file, model, processor): | |
try: | |
image = Image.open(image_file).convert('RGB') | |
conversation = [ | |
{ | |
"role":"user", | |
"content":[ | |
{ | |
"type":"image", | |
}, | |
{ | |
"type":"text", | |
"text":"You are an accurate OCR engine. From the given image, extract the Hindi and other text." | |
} | |
] | |
} | |
] | |
text_prompt = q_processor.apply_chat_template(conversation, add_generation_prompt=True) | |
#inputs = q_processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt").to("cuda") | |
inputs = q_processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt") | |
inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()} | |
generation_config = { | |
"max_new_tokens": 10000, | |
"do_sample": False, | |
"top_k": 20, | |
"top_p": 0.90, | |
"temperature": 0.4, | |
"pad_token_id": q_processor.tokenizer.pad_token_id, | |
"eos_token_id": q_processor.tokenizer.eos_token_id, | |
} | |
output_ids = q_model.generate(**inputs, **generation_config) | |
if 'input_ids' in inputs: | |
generated_ids = output_ids[:, inputs['input_ids'].shape[1]:] | |
else: | |
generated_ids = output_ids | |
output_text = q_processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
return output_text[:] if output_text else "No text extracted from the image." | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""): | |
unique_id = str(uuid.uuid4()) | |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") | |
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") | |
shutil.copy(image, image_path) | |
try: | |
if got_mode == "plain texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color) | |
return res, None | |
elif got_mode == "format fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
elif got_mode == "English + Hindi(Qwen2-VL)": | |
res = get_qwen_op(image_path, q_model, q_processor) | |
return res, None | |
# res_markdown = f"$$ {res} $$" | |
res_markdown = res | |
if "format" in got_mode and os.path.exists(result_path): | |
with open(result_path, 'r') as f: | |
html_content = f.read() | |
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') | |
iframe_src = f"data:text/html;base64,{encoded_html}" | |
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>' | |
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>' | |
return res_markdown, f"{download_link}<br>{iframe}" | |
else: | |
return res_markdown, None | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
finally: | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
def task_update(task): | |
if "fine-grained" in task: | |
return [ | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
] | |
else: | |
return [ | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
] | |
def fine_grained_update(task): | |
if task == "box": | |
return [ | |
gr.update(visible=False, value = ""), | |
gr.update(visible=True), | |
] | |
elif task == 'color': | |
return [ | |
gr.update(visible=True), | |
gr.update(visible=False, value = ""), | |
] | |
def search_in_text(text, keywords): | |
"""Searches for keywords within the text and highlights matches.""" | |
if not keywords: | |
return text | |
highlighted_text = text | |
for keyword in keywords.split(): | |
highlighted_text = highlighted_text.replace(keyword, f"<mark>{keyword}</mark>") | |
return highlighted_text | |
def cleanup_old_files(): | |
current_time = time.time() | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
for file_path in Path(folder).glob('*'): | |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour | |
file_path.unlink() | |
title_html = """ OCR Multilingual(GOT OCR 2.O) """ | |
with gr.Blocks() as demo: | |
gr.HTML(title_html) | |
gr.Markdown(""" | |
by Souvik Biswas | |
### Guidelines | |
Upload your image below and select your preferred mode. Note that more characters may increase wait times. | |
- **Plain Texts OCR & Format Texts OCR:** Use these modes for basic image-level OCR. | |
- **Plain Multi-Crop OCR & Format Multi-Crop OCR:** Ideal for images with complex content, offering higher-quality results. | |
- **Plain Fine-Grained OCR & Format Fine-Grained OCR:** These modes allow you to specify fine-grained regions on the image for more flexible OCR. Regions can be defined by coordinates or colors (red, blue, green, black or white). | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", label="upload your image") | |
task_dropdown = gr.Dropdown( | |
choices=[ | |
"plain texts OCR", | |
"format texts OCR", | |
"plain multi-crop OCR", | |
"format multi-crop OCR", | |
"plain fine-grained OCR", | |
"format fine-grained OCR", | |
"English + Hindi(Qwen2-VL)" | |
], | |
label="Choose one mode", | |
value="plain texts OCR" | |
) | |
fine_grained_dropdown = gr.Dropdown( | |
choices=["box", "color"], | |
label="fine-grained type", | |
visible=False | |
) | |
color_dropdown = gr.Dropdown( | |
choices=["red", "green", "blue", "black", "white"], | |
label="color list", | |
visible=False | |
) | |
box_input = gr.Textbox( | |
label="input box: [x1,y1,x2,y2]", | |
placeholder="e.g., [0,0,100,100]", | |
visible=False | |
) | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
ocr_result = gr.Textbox(label="Extracted text") | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=search_in_text, | |
inputs=[ | |
ocr_result, | |
gr.Textbox(label="Keywords", | |
placeholder="search keyword e.g., The", | |
visible=True)], | |
outputs=gr.HTML(label="Search Results"), | |
allow_flagging="never" | |
) | |
with gr.Column(): | |
if ocr_result.value: | |
with open("ocr_result.json", "w") as json_file: | |
json.dump({"text": ocr_result.value}, json_file) # Access the value of the Textbox using .value | |
with gr.Column(): | |
gr.Markdown("**If you choose the mode with format, the mathpix result will be automatically rendered as follows:**") | |
html_result = gr.HTML(label="rendered html", show_label=True) | |
task_dropdown.change( | |
task_update, | |
inputs=[task_dropdown], | |
outputs=[fine_grained_dropdown, color_dropdown, box_input] | |
) | |
fine_grained_dropdown.change( | |
fine_grained_update, | |
inputs=[fine_grained_dropdown], | |
outputs=[color_dropdown, box_input] | |
) | |
submit_button.click( | |
run_GOT, | |
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], | |
outputs=[ocr_result, html_result] | |
) | |
if __name__ == "__main__": | |
cleanup_old_files() | |
demo.launch() |