Solar-Iz commited on
Commit
dbfc835
·
1 Parent(s): 333a9a7

Upload 10 files

Browse files
app/__init__.py ADDED
File without changes
app/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (151 Bytes). View file
 
app/__pycache__/main.cpython-310.pyc ADDED
Binary file (1.54 kB). View file
 
app/main.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import PIL
2
+ from fastapi import FastAPI, File, UploadFile
3
+ from pydantic import BaseModel
4
+ from fastapi.responses import JSONResponse
5
+ from utils.model_func import class_id_to_label, load_model, transform_image
6
+
7
+ model = None
8
+ app = FastAPI()
9
+
10
+
11
+ class ImageClass(BaseModel):
12
+ prediction: str
13
+
14
+ class TextClass(BaseModel):
15
+ text: str
16
+
17
+
18
+ @app.on_event("startup")
19
+ async def startup_event():
20
+ global model
21
+ # Здесь используйте функцию из utils.model_func для загрузки модели
22
+ model = load_model()
23
+
24
+
25
+ # @app.post('/classify')
26
+ # async def classify_image(file: UploadFile = File(...)):
27
+ # # Здесь используйте функцию из utils.model_func для классификации изображения
28
+ # image_bytes = await file.read()
29
+ # prediction = transform_image(image_bytes, model)
30
+ # return {"prediction": prediction}
31
+
32
+ @app.post('/classify')
33
+ async def classify_image(file: UploadFile = File(...)):
34
+ # Use the function from utils.model_func to classify the image
35
+ image = PIL.Image.open(file.file)
36
+ adapted_image = transform_image(image)
37
+ pred_index = model(adapted_image.unsqeeze(0).detach().cpu().numpy().argmax())
38
+ imagenet_class = class_id_to_label(pred_index)
39
+ response = ImageClass(prediction=imagenet_class)
40
+ return response
41
+
42
+
43
+
44
+
45
+ @app.post('/clf_text')
46
+ async def classify_text(text_data: TextClass):
47
+ # Здесь используйте функцию из utils.model_func для классификации текста
48
+ text = text_data.text
49
+ prediction = class_id_to_label(text, model)
50
+ return {"prediction": prediction}
front/app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import json
4
+
5
+ def main():
6
+
7
+ st.title("FastAPI - Streamlit Integration")
8
+
9
+ # Эндпоинт для классификации текста
10
+ text_input = st.text_input("Enter text for classification:")
11
+ if st.button("Classify Text"):
12
+ response = requests.post("http://127.0.0.1:8000/clf_text", json={"text": text_input})
13
+ result = response.json()
14
+ st.success(f"Classification result: {result['prediction']}")
15
+
16
+ # Эндпоинт для классификации изображений
17
+ image_path = st.file_uploader("Upload an image for classification:", type=["jpg", "png"])
18
+ if image_path is not None:
19
+ if st.button("Classify Image"):
20
+ files = {"file": image_path.read()}
21
+ response = requests.post("http://127.0.0.1:8000/classify", files=files)
22
+ result = response.json()
23
+ st.success(f"Classification result: {result['prediction']}")
24
+
25
+ if __name__ == '__main__':
26
+ main()
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ fastapi==0.105.0
2
+ uvicorn==0.24.0.post1
3
+ streamlit==1.29.0
4
+ torch== 2.1.2
5
+ torchvision==0.16.2
6
+ Pillow==10.1.0
7
+ python-multipart==0.0.6
utils/__init__.py ADDED
File without changes
utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (153 Bytes). View file
 
utils/__pycache__/model_func.cpython-310.pyc ADDED
Binary file (1.34 kB). View file
 
utils/model_func.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import models, transforms
3
+ from PIL import Image
4
+ import json
5
+
6
+ def load_classes():
7
+ with open('utils/imagenet-simple-labels.json') as f:
8
+ labels = json.load(f)
9
+ return labels
10
+
11
+ def class_id_to_label(i):
12
+ labels = load_classes()
13
+ return labels[i]
14
+
15
+ def load_model():
16
+ model = models.mobilenet_v2(pretrained=True)
17
+ model.eval()
18
+ return model
19
+
20
+ def transform_image(img):
21
+ transform = transforms.Compose([
22
+ transforms.Resize((224, 224)),
23
+ transforms.ToTensor(),
24
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
25
+ ])
26
+ return transform(img)
27
+