Update app.py
Browse files
app.py
CHANGED
@@ -39,25 +39,41 @@ tone_color_converter = ToneColorConverter(ckpt_converter)
|
|
39 |
# Device setting
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
|
42 |
-
def clone_and_speak(text, speaker_wav):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
63 |
tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
@@ -66,15 +82,29 @@ def clone_and_speak(text, speaker_wav):
|
|
66 |
# Use English speaker model
|
67 |
model = TTS(language="EN", device=device)
|
68 |
speaker_ids = model.hps.data.spk2id
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Generate base TTS voice
|
72 |
speed = 1.0
|
73 |
-
model.tts_to_file(text,
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
# Run the tone conversion
|
80 |
tone_color_converter.convert(
|
@@ -87,6 +117,7 @@ def clone_and_speak(text, speaker_wav):
|
|
87 |
|
88 |
return final_output_path
|
89 |
|
|
|
90 |
# Gradio interface
|
91 |
gr.Interface(
|
92 |
fn=clone_and_speak,
|
|
|
39 |
# Device setting
|
40 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
|
42 |
+
# def clone_and_speak(text, speaker_wav):
|
43 |
+
# if not speaker_wav:
|
44 |
+
# return "Please upload a reference .wav file."
|
45 |
+
|
46 |
+
# base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
47 |
+
# tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
48 |
+
# final_output_path = f"{output_dir}/{base_name}_converted.wav"
|
49 |
+
|
50 |
+
# # Use English speaker model
|
51 |
+
# model = TTS(language="EN", device=device)
|
52 |
+
# speaker_ids = model.hps.data.spk2id
|
53 |
+
# default_speaker_id = next(iter(speaker_ids.values()))
|
54 |
+
|
55 |
+
# # Generate base TTS voice
|
56 |
+
# speed = 1.0
|
57 |
+
# model.tts_to_file(text, default_speaker_id, tmp_melo_path,speed=speed)
|
58 |
+
|
59 |
+
# # Use speaker_wav as reference to extract style embedding
|
60 |
+
# from openvoice import se_extractor
|
61 |
+
# ref_se, _ = se_extractor.get_se(speaker_wav, tone_color_converter, vad=True)
|
62 |
+
|
63 |
+
# # Run the tone conversion
|
64 |
+
# tone_color_converter.convert(
|
65 |
+
# audio_src_path=tmp_melo_path,
|
66 |
+
# src_se=ref_se,
|
67 |
+
# tgt_se=ref_se,
|
68 |
+
# output_path=final_output_path,
|
69 |
+
# message="@HuggingFace",
|
70 |
+
# )
|
71 |
+
|
72 |
+
# return final_output_path
|
73 |
+
|
74 |
+
def clone_and_speak(text, selected_speaker_key):
|
75 |
+
if not text or not selected_speaker_key:
|
76 |
+
return "Please enter text and select a speaker."
|
77 |
|
78 |
base_name = f"output_{int(time.time())}_{uuid.uuid4().hex[:6]}"
|
79 |
tmp_melo_path = f"{output_dir}/{base_name}_tmp.wav"
|
|
|
82 |
# Use English speaker model
|
83 |
model = TTS(language="EN", device=device)
|
84 |
speaker_ids = model.hps.data.spk2id
|
85 |
+
|
86 |
+
# Map speaker_key to speaker_id (model-specific)
|
87 |
+
if selected_speaker_key not in speaker_ids:
|
88 |
+
return f"Speaker '{selected_speaker_key}' not found in model."
|
89 |
+
|
90 |
+
speaker_id = speaker_ids[selected_speaker_key]
|
91 |
|
92 |
# Generate base TTS voice
|
93 |
speed = 1.0
|
94 |
+
model.tts_to_file(text, speaker_id, tmp_melo_path, speed=speed)
|
95 |
|
96 |
+
# Load pre-saved speaker embedding
|
97 |
+
normalized_key = selected_speaker_key.lower().replace("_", "-")
|
98 |
+
se_path = f'checkpoints_v2/base_speakers/ses/{normalized_key}.pth'
|
99 |
+
|
100 |
+
if not os.path.isfile(se_path):
|
101 |
+
return f"SE file not found for speaker '{normalized_key}'."
|
102 |
+
|
103 |
+
ref_se = torch.load(se_path, map_location=device)
|
104 |
+
|
105 |
+
# Disable MPS if present but device is CPU
|
106 |
+
if torch.backends.mps.is_available() and device == 'cpu':
|
107 |
+
torch.backends.mps.is_available = lambda: False
|
108 |
|
109 |
# Run the tone conversion
|
110 |
tone_color_converter.convert(
|
|
|
117 |
|
118 |
return final_output_path
|
119 |
|
120 |
+
|
121 |
# Gradio interface
|
122 |
gr.Interface(
|
123 |
fn=clone_and_speak,
|