Update MeloTTS/melo/utils.py
Browse files- MeloTTS/melo/utils.py +424 -424
MeloTTS/melo/utils.py
CHANGED
@@ -1,424 +1,424 @@
|
|
1 |
-
import os
|
2 |
-
import glob
|
3 |
-
import argparse
|
4 |
-
import logging
|
5 |
-
import json
|
6 |
-
import subprocess
|
7 |
-
import numpy as np
|
8 |
-
from scipy.io.wavfile import read
|
9 |
-
import torch
|
10 |
-
import torchaudio
|
11 |
-
import librosa
|
12 |
-
from melo.text import cleaned_text_to_sequence, get_bert
|
13 |
-
from melo.text.cleaner import clean_text
|
14 |
-
from melo import commons
|
15 |
-
|
16 |
-
MATPLOTLIB_FLAG = False
|
17 |
-
|
18 |
-
logger = logging.getLogger(__name__)
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
23 |
-
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
24 |
-
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
25 |
-
|
26 |
-
if hps.data.add_blank:
|
27 |
-
phone = commons.intersperse(phone, 0)
|
28 |
-
tone = commons.intersperse(tone, 0)
|
29 |
-
language = commons.intersperse(language, 0)
|
30 |
-
for i in range(len(word2ph)):
|
31 |
-
word2ph[i] = word2ph[i] * 2
|
32 |
-
word2ph[0] += 1
|
33 |
-
|
34 |
-
if getattr(hps.data, "disable_bert", False):
|
35 |
-
bert = torch.zeros(1024, len(phone))
|
36 |
-
ja_bert = torch.zeros(768, len(phone))
|
37 |
-
else:
|
38 |
-
bert = get_bert(norm_text, word2ph, language_str, device)
|
39 |
-
del word2ph
|
40 |
-
assert bert.shape[-1] == len(phone), phone
|
41 |
-
|
42 |
-
if language_str == "ZH":
|
43 |
-
bert = bert
|
44 |
-
ja_bert = torch.zeros(768, len(phone))
|
45 |
-
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
46 |
-
ja_bert = bert
|
47 |
-
bert = torch.zeros(1024, len(phone))
|
48 |
-
else:
|
49 |
-
raise NotImplementedError()
|
50 |
-
|
51 |
-
assert bert.shape[-1] == len(
|
52 |
-
phone
|
53 |
-
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
54 |
-
|
55 |
-
phone = torch.LongTensor(phone)
|
56 |
-
tone = torch.LongTensor(tone)
|
57 |
-
language = torch.LongTensor(language)
|
58 |
-
return bert, ja_bert, phone, tone, language
|
59 |
-
|
60 |
-
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
61 |
-
assert os.path.isfile(checkpoint_path)
|
62 |
-
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
63 |
-
iteration = checkpoint_dict.get("iteration", 0)
|
64 |
-
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
65 |
-
if (
|
66 |
-
optimizer is not None
|
67 |
-
and not skip_optimizer
|
68 |
-
and checkpoint_dict["optimizer"] is not None
|
69 |
-
):
|
70 |
-
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
71 |
-
elif optimizer is None and not skip_optimizer:
|
72 |
-
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
73 |
-
new_opt_dict = optimizer.state_dict()
|
74 |
-
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
75 |
-
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
76 |
-
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
77 |
-
optimizer.load_state_dict(new_opt_dict)
|
78 |
-
|
79 |
-
saved_state_dict = checkpoint_dict["model"]
|
80 |
-
if hasattr(model, "module"):
|
81 |
-
state_dict = model.module.state_dict()
|
82 |
-
else:
|
83 |
-
state_dict = model.state_dict()
|
84 |
-
|
85 |
-
new_state_dict = {}
|
86 |
-
for k, v in state_dict.items():
|
87 |
-
try:
|
88 |
-
# assert "emb_g" not in k
|
89 |
-
new_state_dict[k] = saved_state_dict[k]
|
90 |
-
assert saved_state_dict[k].shape == v.shape, (
|
91 |
-
saved_state_dict[k].shape,
|
92 |
-
v.shape,
|
93 |
-
)
|
94 |
-
except Exception as e:
|
95 |
-
print(e)
|
96 |
-
# For upgrading from the old version
|
97 |
-
if "ja_bert_proj" in k:
|
98 |
-
v = torch.zeros_like(v)
|
99 |
-
logger.warn(
|
100 |
-
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
101 |
-
)
|
102 |
-
else:
|
103 |
-
logger.error(f"{k} is not in the checkpoint")
|
104 |
-
|
105 |
-
new_state_dict[k] = v
|
106 |
-
|
107 |
-
if hasattr(model, "module"):
|
108 |
-
model.module.load_state_dict(new_state_dict, strict=False)
|
109 |
-
else:
|
110 |
-
model.load_state_dict(new_state_dict, strict=False)
|
111 |
-
|
112 |
-
logger.info(
|
113 |
-
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
114 |
-
)
|
115 |
-
|
116 |
-
return model, optimizer, learning_rate, iteration
|
117 |
-
|
118 |
-
|
119 |
-
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
120 |
-
logger.info(
|
121 |
-
"Saving model and optimizer state at iteration {} to {}".format(
|
122 |
-
iteration, checkpoint_path
|
123 |
-
)
|
124 |
-
)
|
125 |
-
if hasattr(model, "module"):
|
126 |
-
state_dict = model.module.state_dict()
|
127 |
-
else:
|
128 |
-
state_dict = model.state_dict()
|
129 |
-
torch.save(
|
130 |
-
{
|
131 |
-
"model": state_dict,
|
132 |
-
"iteration": iteration,
|
133 |
-
"optimizer": optimizer.state_dict(),
|
134 |
-
"learning_rate": learning_rate,
|
135 |
-
},
|
136 |
-
checkpoint_path,
|
137 |
-
)
|
138 |
-
|
139 |
-
|
140 |
-
def summarize(
|
141 |
-
writer,
|
142 |
-
global_step,
|
143 |
-
scalars={},
|
144 |
-
histograms={},
|
145 |
-
images={},
|
146 |
-
audios={},
|
147 |
-
audio_sampling_rate=22050,
|
148 |
-
):
|
149 |
-
for k, v in scalars.items():
|
150 |
-
writer.add_scalar(k, v, global_step)
|
151 |
-
for k, v in histograms.items():
|
152 |
-
writer.add_histogram(k, v, global_step)
|
153 |
-
for k, v in images.items():
|
154 |
-
writer.add_image(k, v, global_step, dataformats="HWC")
|
155 |
-
for k, v in audios.items():
|
156 |
-
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
157 |
-
|
158 |
-
|
159 |
-
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
160 |
-
f_list = glob.glob(os.path.join(dir_path, regex))
|
161 |
-
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
162 |
-
x = f_list[-1]
|
163 |
-
return x
|
164 |
-
|
165 |
-
|
166 |
-
def plot_spectrogram_to_numpy(spectrogram):
|
167 |
-
global MATPLOTLIB_FLAG
|
168 |
-
if not MATPLOTLIB_FLAG:
|
169 |
-
import matplotlib
|
170 |
-
|
171 |
-
matplotlib.use("Agg")
|
172 |
-
MATPLOTLIB_FLAG = True
|
173 |
-
mpl_logger = logging.getLogger("matplotlib")
|
174 |
-
mpl_logger.setLevel(logging.WARNING)
|
175 |
-
import matplotlib.pylab as plt
|
176 |
-
import numpy as np
|
177 |
-
|
178 |
-
fig, ax = plt.subplots(figsize=(10, 2))
|
179 |
-
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
180 |
-
plt.colorbar(im, ax=ax)
|
181 |
-
plt.xlabel("Frames")
|
182 |
-
plt.ylabel("Channels")
|
183 |
-
plt.tight_layout()
|
184 |
-
|
185 |
-
fig.canvas.draw()
|
186 |
-
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
187 |
-
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
188 |
-
plt.close()
|
189 |
-
return data
|
190 |
-
|
191 |
-
|
192 |
-
def plot_alignment_to_numpy(alignment, info=None):
|
193 |
-
global MATPLOTLIB_FLAG
|
194 |
-
if not MATPLOTLIB_FLAG:
|
195 |
-
import matplotlib
|
196 |
-
|
197 |
-
matplotlib.use("Agg")
|
198 |
-
MATPLOTLIB_FLAG = True
|
199 |
-
mpl_logger = logging.getLogger("matplotlib")
|
200 |
-
mpl_logger.setLevel(logging.WARNING)
|
201 |
-
import matplotlib.pylab as plt
|
202 |
-
import numpy as np
|
203 |
-
|
204 |
-
fig, ax = plt.subplots(figsize=(6, 4))
|
205 |
-
im = ax.imshow(
|
206 |
-
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
207 |
-
)
|
208 |
-
fig.colorbar(im, ax=ax)
|
209 |
-
xlabel = "Decoder timestep"
|
210 |
-
if info is not None:
|
211 |
-
xlabel += "\n\n" + info
|
212 |
-
plt.xlabel(xlabel)
|
213 |
-
plt.ylabel("Encoder timestep")
|
214 |
-
plt.tight_layout()
|
215 |
-
|
216 |
-
fig.canvas.draw()
|
217 |
-
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
218 |
-
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
219 |
-
plt.close()
|
220 |
-
return data
|
221 |
-
|
222 |
-
|
223 |
-
def load_wav_to_torch(full_path):
|
224 |
-
sampling_rate, data = read(full_path)
|
225 |
-
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
226 |
-
|
227 |
-
|
228 |
-
def load_wav_to_torch_new(full_path):
|
229 |
-
audio_norm, sampling_rate = torchaudio.load(full_path, frame_offset=0, num_frames=-1, normalize=True, channels_first=True)
|
230 |
-
audio_norm = audio_norm.mean(dim=0)
|
231 |
-
return audio_norm, sampling_rate
|
232 |
-
|
233 |
-
def load_wav_to_torch_librosa(full_path, sr):
|
234 |
-
audio_norm, sampling_rate = librosa.load(full_path, sr=sr, mono=True)
|
235 |
-
return torch.FloatTensor(audio_norm.astype(np.float32)), sampling_rate
|
236 |
-
|
237 |
-
|
238 |
-
def load_filepaths_and_text(filename, split="|"):
|
239 |
-
with open(filename, encoding="utf-8") as f:
|
240 |
-
filepaths_and_text = [line.strip().split(split) for line in f]
|
241 |
-
return filepaths_and_text
|
242 |
-
|
243 |
-
|
244 |
-
def get_hparams(init=True):
|
245 |
-
parser = argparse.ArgumentParser()
|
246 |
-
parser.add_argument(
|
247 |
-
"-c",
|
248 |
-
"--config",
|
249 |
-
type=str,
|
250 |
-
default="./configs/base.json",
|
251 |
-
help="JSON file for configuration",
|
252 |
-
)
|
253 |
-
parser.add_argument('--local_rank', type=int, default=0)
|
254 |
-
parser.add_argument('--world-size', type=int, default=1)
|
255 |
-
parser.add_argument('--port', type=int, default=10000)
|
256 |
-
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
257 |
-
parser.add_argument('--pretrain_G', type=str, default=None,
|
258 |
-
help='pretrain model')
|
259 |
-
parser.add_argument('--pretrain_D', type=str, default=None,
|
260 |
-
help='pretrain model D')
|
261 |
-
parser.add_argument('--pretrain_dur', type=str, default=None,
|
262 |
-
help='pretrain model duration')
|
263 |
-
|
264 |
-
args = parser.parse_args()
|
265 |
-
model_dir = os.path.join("./logs", args.model)
|
266 |
-
|
267 |
-
os.makedirs(model_dir, exist_ok=True)
|
268 |
-
|
269 |
-
config_path = args.config
|
270 |
-
config_save_path = os.path.join(model_dir, "config.json")
|
271 |
-
if init:
|
272 |
-
with open(config_path, "r") as f:
|
273 |
-
data = f.read()
|
274 |
-
with open(config_save_path, "w") as f:
|
275 |
-
f.write(data)
|
276 |
-
else:
|
277 |
-
with open(config_save_path, "r") as f:
|
278 |
-
data = f.read()
|
279 |
-
config = json.loads(data)
|
280 |
-
|
281 |
-
hparams = HParams(**config)
|
282 |
-
hparams.model_dir = model_dir
|
283 |
-
hparams.pretrain_G = args.pretrain_G
|
284 |
-
hparams.pretrain_D = args.pretrain_D
|
285 |
-
hparams.pretrain_dur = args.pretrain_dur
|
286 |
-
hparams.port = args.port
|
287 |
-
return hparams
|
288 |
-
|
289 |
-
|
290 |
-
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
291 |
-
"""Freeing up space by deleting saved ckpts
|
292 |
-
|
293 |
-
Arguments:
|
294 |
-
path_to_models -- Path to the model directory
|
295 |
-
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
296 |
-
sort_by_time -- True -> chronologically delete ckpts
|
297 |
-
False -> lexicographically delete ckpts
|
298 |
-
"""
|
299 |
-
import re
|
300 |
-
|
301 |
-
ckpts_files = [
|
302 |
-
f
|
303 |
-
for f in os.listdir(path_to_models)
|
304 |
-
if os.path.isfile(os.path.join(path_to_models, f))
|
305 |
-
]
|
306 |
-
|
307 |
-
def name_key(_f):
|
308 |
-
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
309 |
-
|
310 |
-
def time_key(_f):
|
311 |
-
return os.path.getmtime(os.path.join(path_to_models, _f))
|
312 |
-
|
313 |
-
sort_key = time_key if sort_by_time else name_key
|
314 |
-
|
315 |
-
def x_sorted(_x):
|
316 |
-
return sorted(
|
317 |
-
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
318 |
-
key=sort_key,
|
319 |
-
)
|
320 |
-
|
321 |
-
to_del = [
|
322 |
-
os.path.join(path_to_models, fn)
|
323 |
-
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
324 |
-
]
|
325 |
-
|
326 |
-
def del_info(fn):
|
327 |
-
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
328 |
-
|
329 |
-
def del_routine(x):
|
330 |
-
return [os.remove(x), del_info(x)]
|
331 |
-
|
332 |
-
[del_routine(fn) for fn in to_del]
|
333 |
-
|
334 |
-
|
335 |
-
def get_hparams_from_dir(model_dir):
|
336 |
-
config_save_path = os.path.join(model_dir, "config.json")
|
337 |
-
with open(config_save_path, "r", encoding="utf-8") as f:
|
338 |
-
data = f.read()
|
339 |
-
config = json.loads(data)
|
340 |
-
|
341 |
-
hparams = HParams(**config)
|
342 |
-
hparams.model_dir = model_dir
|
343 |
-
return hparams
|
344 |
-
|
345 |
-
|
346 |
-
def get_hparams_from_file(config_path):
|
347 |
-
with open(config_path, "r", encoding="utf-8") as f:
|
348 |
-
data = f.read()
|
349 |
-
config = json.loads(data)
|
350 |
-
|
351 |
-
hparams = HParams(**config)
|
352 |
-
return hparams
|
353 |
-
|
354 |
-
|
355 |
-
def check_git_hash(model_dir):
|
356 |
-
source_dir = os.path.dirname(os.path.realpath(__file__))
|
357 |
-
if not os.path.exists(os.path.join(source_dir, ".git")):
|
358 |
-
logger.warn(
|
359 |
-
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
360 |
-
source_dir
|
361 |
-
)
|
362 |
-
)
|
363 |
-
return
|
364 |
-
|
365 |
-
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
366 |
-
|
367 |
-
path = os.path.join(model_dir, "githash")
|
368 |
-
if os.path.exists(path):
|
369 |
-
saved_hash = open(path).read()
|
370 |
-
if saved_hash != cur_hash:
|
371 |
-
logger.warn(
|
372 |
-
"git hash values are different. {}(saved) != {}(current)".format(
|
373 |
-
saved_hash[:8], cur_hash[:8]
|
374 |
-
)
|
375 |
-
)
|
376 |
-
else:
|
377 |
-
open(path, "w").write(cur_hash)
|
378 |
-
|
379 |
-
|
380 |
-
def get_logger(model_dir, filename="train.log"):
|
381 |
-
global logger
|
382 |
-
logger = logging.getLogger(os.path.basename(model_dir))
|
383 |
-
logger.setLevel(logging.DEBUG)
|
384 |
-
|
385 |
-
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
386 |
-
if not os.path.exists(model_dir):
|
387 |
-
os.makedirs(model_dir, exist_ok=True)
|
388 |
-
h = logging.FileHandler(os.path.join(model_dir, filename))
|
389 |
-
h.setLevel(logging.DEBUG)
|
390 |
-
h.setFormatter(formatter)
|
391 |
-
logger.addHandler(h)
|
392 |
-
return logger
|
393 |
-
|
394 |
-
|
395 |
-
class HParams:
|
396 |
-
def __init__(self, **kwargs):
|
397 |
-
for k, v in kwargs.items():
|
398 |
-
if type(v) == dict:
|
399 |
-
v = HParams(**v)
|
400 |
-
self[k] = v
|
401 |
-
|
402 |
-
def keys(self):
|
403 |
-
return self.__dict__.keys()
|
404 |
-
|
405 |
-
def items(self):
|
406 |
-
return self.__dict__.items()
|
407 |
-
|
408 |
-
def values(self):
|
409 |
-
return self.__dict__.values()
|
410 |
-
|
411 |
-
def __len__(self):
|
412 |
-
return len(self.__dict__)
|
413 |
-
|
414 |
-
def __getitem__(self, key):
|
415 |
-
return getattr(self, key)
|
416 |
-
|
417 |
-
def __setitem__(self, key, value):
|
418 |
-
return setattr(self, key, value)
|
419 |
-
|
420 |
-
def __contains__(self, key):
|
421 |
-
return key in self.__dict__
|
422 |
-
|
423 |
-
def __repr__(self):
|
424 |
-
return self.__dict__.__repr__()
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import argparse
|
4 |
+
import logging
|
5 |
+
import json
|
6 |
+
import subprocess
|
7 |
+
import numpy as np
|
8 |
+
from scipy.io.wavfile import read
|
9 |
+
import torch
|
10 |
+
import torchaudio
|
11 |
+
import librosa
|
12 |
+
from MeloTTS.melo.text import cleaned_text_to_sequence, get_bert
|
13 |
+
from MeloTTS.melo.text.cleaner import clean_text
|
14 |
+
from MeloTTS.melo import commons
|
15 |
+
|
16 |
+
MATPLOTLIB_FLAG = False
|
17 |
+
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
23 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
24 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
25 |
+
|
26 |
+
if hps.data.add_blank:
|
27 |
+
phone = commons.intersperse(phone, 0)
|
28 |
+
tone = commons.intersperse(tone, 0)
|
29 |
+
language = commons.intersperse(language, 0)
|
30 |
+
for i in range(len(word2ph)):
|
31 |
+
word2ph[i] = word2ph[i] * 2
|
32 |
+
word2ph[0] += 1
|
33 |
+
|
34 |
+
if getattr(hps.data, "disable_bert", False):
|
35 |
+
bert = torch.zeros(1024, len(phone))
|
36 |
+
ja_bert = torch.zeros(768, len(phone))
|
37 |
+
else:
|
38 |
+
bert = get_bert(norm_text, word2ph, language_str, device)
|
39 |
+
del word2ph
|
40 |
+
assert bert.shape[-1] == len(phone), phone
|
41 |
+
|
42 |
+
if language_str == "ZH":
|
43 |
+
bert = bert
|
44 |
+
ja_bert = torch.zeros(768, len(phone))
|
45 |
+
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
46 |
+
ja_bert = bert
|
47 |
+
bert = torch.zeros(1024, len(phone))
|
48 |
+
else:
|
49 |
+
raise NotImplementedError()
|
50 |
+
|
51 |
+
assert bert.shape[-1] == len(
|
52 |
+
phone
|
53 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
54 |
+
|
55 |
+
phone = torch.LongTensor(phone)
|
56 |
+
tone = torch.LongTensor(tone)
|
57 |
+
language = torch.LongTensor(language)
|
58 |
+
return bert, ja_bert, phone, tone, language
|
59 |
+
|
60 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
61 |
+
assert os.path.isfile(checkpoint_path)
|
62 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
63 |
+
iteration = checkpoint_dict.get("iteration", 0)
|
64 |
+
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
65 |
+
if (
|
66 |
+
optimizer is not None
|
67 |
+
and not skip_optimizer
|
68 |
+
and checkpoint_dict["optimizer"] is not None
|
69 |
+
):
|
70 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
71 |
+
elif optimizer is None and not skip_optimizer:
|
72 |
+
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
73 |
+
new_opt_dict = optimizer.state_dict()
|
74 |
+
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
75 |
+
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
76 |
+
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
77 |
+
optimizer.load_state_dict(new_opt_dict)
|
78 |
+
|
79 |
+
saved_state_dict = checkpoint_dict["model"]
|
80 |
+
if hasattr(model, "module"):
|
81 |
+
state_dict = model.module.state_dict()
|
82 |
+
else:
|
83 |
+
state_dict = model.state_dict()
|
84 |
+
|
85 |
+
new_state_dict = {}
|
86 |
+
for k, v in state_dict.items():
|
87 |
+
try:
|
88 |
+
# assert "emb_g" not in k
|
89 |
+
new_state_dict[k] = saved_state_dict[k]
|
90 |
+
assert saved_state_dict[k].shape == v.shape, (
|
91 |
+
saved_state_dict[k].shape,
|
92 |
+
v.shape,
|
93 |
+
)
|
94 |
+
except Exception as e:
|
95 |
+
print(e)
|
96 |
+
# For upgrading from the old version
|
97 |
+
if "ja_bert_proj" in k:
|
98 |
+
v = torch.zeros_like(v)
|
99 |
+
logger.warn(
|
100 |
+
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
logger.error(f"{k} is not in the checkpoint")
|
104 |
+
|
105 |
+
new_state_dict[k] = v
|
106 |
+
|
107 |
+
if hasattr(model, "module"):
|
108 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
109 |
+
else:
|
110 |
+
model.load_state_dict(new_state_dict, strict=False)
|
111 |
+
|
112 |
+
logger.info(
|
113 |
+
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
114 |
+
)
|
115 |
+
|
116 |
+
return model, optimizer, learning_rate, iteration
|
117 |
+
|
118 |
+
|
119 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
120 |
+
logger.info(
|
121 |
+
"Saving model and optimizer state at iteration {} to {}".format(
|
122 |
+
iteration, checkpoint_path
|
123 |
+
)
|
124 |
+
)
|
125 |
+
if hasattr(model, "module"):
|
126 |
+
state_dict = model.module.state_dict()
|
127 |
+
else:
|
128 |
+
state_dict = model.state_dict()
|
129 |
+
torch.save(
|
130 |
+
{
|
131 |
+
"model": state_dict,
|
132 |
+
"iteration": iteration,
|
133 |
+
"optimizer": optimizer.state_dict(),
|
134 |
+
"learning_rate": learning_rate,
|
135 |
+
},
|
136 |
+
checkpoint_path,
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def summarize(
|
141 |
+
writer,
|
142 |
+
global_step,
|
143 |
+
scalars={},
|
144 |
+
histograms={},
|
145 |
+
images={},
|
146 |
+
audios={},
|
147 |
+
audio_sampling_rate=22050,
|
148 |
+
):
|
149 |
+
for k, v in scalars.items():
|
150 |
+
writer.add_scalar(k, v, global_step)
|
151 |
+
for k, v in histograms.items():
|
152 |
+
writer.add_histogram(k, v, global_step)
|
153 |
+
for k, v in images.items():
|
154 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
155 |
+
for k, v in audios.items():
|
156 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
157 |
+
|
158 |
+
|
159 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
160 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
161 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
162 |
+
x = f_list[-1]
|
163 |
+
return x
|
164 |
+
|
165 |
+
|
166 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
167 |
+
global MATPLOTLIB_FLAG
|
168 |
+
if not MATPLOTLIB_FLAG:
|
169 |
+
import matplotlib
|
170 |
+
|
171 |
+
matplotlib.use("Agg")
|
172 |
+
MATPLOTLIB_FLAG = True
|
173 |
+
mpl_logger = logging.getLogger("matplotlib")
|
174 |
+
mpl_logger.setLevel(logging.WARNING)
|
175 |
+
import matplotlib.pylab as plt
|
176 |
+
import numpy as np
|
177 |
+
|
178 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
179 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
180 |
+
plt.colorbar(im, ax=ax)
|
181 |
+
plt.xlabel("Frames")
|
182 |
+
plt.ylabel("Channels")
|
183 |
+
plt.tight_layout()
|
184 |
+
|
185 |
+
fig.canvas.draw()
|
186 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
187 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
188 |
+
plt.close()
|
189 |
+
return data
|
190 |
+
|
191 |
+
|
192 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
193 |
+
global MATPLOTLIB_FLAG
|
194 |
+
if not MATPLOTLIB_FLAG:
|
195 |
+
import matplotlib
|
196 |
+
|
197 |
+
matplotlib.use("Agg")
|
198 |
+
MATPLOTLIB_FLAG = True
|
199 |
+
mpl_logger = logging.getLogger("matplotlib")
|
200 |
+
mpl_logger.setLevel(logging.WARNING)
|
201 |
+
import matplotlib.pylab as plt
|
202 |
+
import numpy as np
|
203 |
+
|
204 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
205 |
+
im = ax.imshow(
|
206 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
207 |
+
)
|
208 |
+
fig.colorbar(im, ax=ax)
|
209 |
+
xlabel = "Decoder timestep"
|
210 |
+
if info is not None:
|
211 |
+
xlabel += "\n\n" + info
|
212 |
+
plt.xlabel(xlabel)
|
213 |
+
plt.ylabel("Encoder timestep")
|
214 |
+
plt.tight_layout()
|
215 |
+
|
216 |
+
fig.canvas.draw()
|
217 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
218 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
219 |
+
plt.close()
|
220 |
+
return data
|
221 |
+
|
222 |
+
|
223 |
+
def load_wav_to_torch(full_path):
|
224 |
+
sampling_rate, data = read(full_path)
|
225 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
226 |
+
|
227 |
+
|
228 |
+
def load_wav_to_torch_new(full_path):
|
229 |
+
audio_norm, sampling_rate = torchaudio.load(full_path, frame_offset=0, num_frames=-1, normalize=True, channels_first=True)
|
230 |
+
audio_norm = audio_norm.mean(dim=0)
|
231 |
+
return audio_norm, sampling_rate
|
232 |
+
|
233 |
+
def load_wav_to_torch_librosa(full_path, sr):
|
234 |
+
audio_norm, sampling_rate = librosa.load(full_path, sr=sr, mono=True)
|
235 |
+
return torch.FloatTensor(audio_norm.astype(np.float32)), sampling_rate
|
236 |
+
|
237 |
+
|
238 |
+
def load_filepaths_and_text(filename, split="|"):
|
239 |
+
with open(filename, encoding="utf-8") as f:
|
240 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
241 |
+
return filepaths_and_text
|
242 |
+
|
243 |
+
|
244 |
+
def get_hparams(init=True):
|
245 |
+
parser = argparse.ArgumentParser()
|
246 |
+
parser.add_argument(
|
247 |
+
"-c",
|
248 |
+
"--config",
|
249 |
+
type=str,
|
250 |
+
default="./configs/base.json",
|
251 |
+
help="JSON file for configuration",
|
252 |
+
)
|
253 |
+
parser.add_argument('--local_rank', type=int, default=0)
|
254 |
+
parser.add_argument('--world-size', type=int, default=1)
|
255 |
+
parser.add_argument('--port', type=int, default=10000)
|
256 |
+
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
257 |
+
parser.add_argument('--pretrain_G', type=str, default=None,
|
258 |
+
help='pretrain model')
|
259 |
+
parser.add_argument('--pretrain_D', type=str, default=None,
|
260 |
+
help='pretrain model D')
|
261 |
+
parser.add_argument('--pretrain_dur', type=str, default=None,
|
262 |
+
help='pretrain model duration')
|
263 |
+
|
264 |
+
args = parser.parse_args()
|
265 |
+
model_dir = os.path.join("./logs", args.model)
|
266 |
+
|
267 |
+
os.makedirs(model_dir, exist_ok=True)
|
268 |
+
|
269 |
+
config_path = args.config
|
270 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
271 |
+
if init:
|
272 |
+
with open(config_path, "r") as f:
|
273 |
+
data = f.read()
|
274 |
+
with open(config_save_path, "w") as f:
|
275 |
+
f.write(data)
|
276 |
+
else:
|
277 |
+
with open(config_save_path, "r") as f:
|
278 |
+
data = f.read()
|
279 |
+
config = json.loads(data)
|
280 |
+
|
281 |
+
hparams = HParams(**config)
|
282 |
+
hparams.model_dir = model_dir
|
283 |
+
hparams.pretrain_G = args.pretrain_G
|
284 |
+
hparams.pretrain_D = args.pretrain_D
|
285 |
+
hparams.pretrain_dur = args.pretrain_dur
|
286 |
+
hparams.port = args.port
|
287 |
+
return hparams
|
288 |
+
|
289 |
+
|
290 |
+
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
291 |
+
"""Freeing up space by deleting saved ckpts
|
292 |
+
|
293 |
+
Arguments:
|
294 |
+
path_to_models -- Path to the model directory
|
295 |
+
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
296 |
+
sort_by_time -- True -> chronologically delete ckpts
|
297 |
+
False -> lexicographically delete ckpts
|
298 |
+
"""
|
299 |
+
import re
|
300 |
+
|
301 |
+
ckpts_files = [
|
302 |
+
f
|
303 |
+
for f in os.listdir(path_to_models)
|
304 |
+
if os.path.isfile(os.path.join(path_to_models, f))
|
305 |
+
]
|
306 |
+
|
307 |
+
def name_key(_f):
|
308 |
+
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
309 |
+
|
310 |
+
def time_key(_f):
|
311 |
+
return os.path.getmtime(os.path.join(path_to_models, _f))
|
312 |
+
|
313 |
+
sort_key = time_key if sort_by_time else name_key
|
314 |
+
|
315 |
+
def x_sorted(_x):
|
316 |
+
return sorted(
|
317 |
+
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
318 |
+
key=sort_key,
|
319 |
+
)
|
320 |
+
|
321 |
+
to_del = [
|
322 |
+
os.path.join(path_to_models, fn)
|
323 |
+
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
324 |
+
]
|
325 |
+
|
326 |
+
def del_info(fn):
|
327 |
+
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
328 |
+
|
329 |
+
def del_routine(x):
|
330 |
+
return [os.remove(x), del_info(x)]
|
331 |
+
|
332 |
+
[del_routine(fn) for fn in to_del]
|
333 |
+
|
334 |
+
|
335 |
+
def get_hparams_from_dir(model_dir):
|
336 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
337 |
+
with open(config_save_path, "r", encoding="utf-8") as f:
|
338 |
+
data = f.read()
|
339 |
+
config = json.loads(data)
|
340 |
+
|
341 |
+
hparams = HParams(**config)
|
342 |
+
hparams.model_dir = model_dir
|
343 |
+
return hparams
|
344 |
+
|
345 |
+
|
346 |
+
def get_hparams_from_file(config_path):
|
347 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
348 |
+
data = f.read()
|
349 |
+
config = json.loads(data)
|
350 |
+
|
351 |
+
hparams = HParams(**config)
|
352 |
+
return hparams
|
353 |
+
|
354 |
+
|
355 |
+
def check_git_hash(model_dir):
|
356 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
357 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
358 |
+
logger.warn(
|
359 |
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
360 |
+
source_dir
|
361 |
+
)
|
362 |
+
)
|
363 |
+
return
|
364 |
+
|
365 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
366 |
+
|
367 |
+
path = os.path.join(model_dir, "githash")
|
368 |
+
if os.path.exists(path):
|
369 |
+
saved_hash = open(path).read()
|
370 |
+
if saved_hash != cur_hash:
|
371 |
+
logger.warn(
|
372 |
+
"git hash values are different. {}(saved) != {}(current)".format(
|
373 |
+
saved_hash[:8], cur_hash[:8]
|
374 |
+
)
|
375 |
+
)
|
376 |
+
else:
|
377 |
+
open(path, "w").write(cur_hash)
|
378 |
+
|
379 |
+
|
380 |
+
def get_logger(model_dir, filename="train.log"):
|
381 |
+
global logger
|
382 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
383 |
+
logger.setLevel(logging.DEBUG)
|
384 |
+
|
385 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
386 |
+
if not os.path.exists(model_dir):
|
387 |
+
os.makedirs(model_dir, exist_ok=True)
|
388 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
389 |
+
h.setLevel(logging.DEBUG)
|
390 |
+
h.setFormatter(formatter)
|
391 |
+
logger.addHandler(h)
|
392 |
+
return logger
|
393 |
+
|
394 |
+
|
395 |
+
class HParams:
|
396 |
+
def __init__(self, **kwargs):
|
397 |
+
for k, v in kwargs.items():
|
398 |
+
if type(v) == dict:
|
399 |
+
v = HParams(**v)
|
400 |
+
self[k] = v
|
401 |
+
|
402 |
+
def keys(self):
|
403 |
+
return self.__dict__.keys()
|
404 |
+
|
405 |
+
def items(self):
|
406 |
+
return self.__dict__.items()
|
407 |
+
|
408 |
+
def values(self):
|
409 |
+
return self.__dict__.values()
|
410 |
+
|
411 |
+
def __len__(self):
|
412 |
+
return len(self.__dict__)
|
413 |
+
|
414 |
+
def __getitem__(self, key):
|
415 |
+
return getattr(self, key)
|
416 |
+
|
417 |
+
def __setitem__(self, key, value):
|
418 |
+
return setattr(self, key, value)
|
419 |
+
|
420 |
+
def __contains__(self, key):
|
421 |
+
return key in self.__dict__
|
422 |
+
|
423 |
+
def __repr__(self):
|
424 |
+
return self.__dict__.__repr__()
|