Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,61 @@
|
|
1 |
-
import os
|
2 |
-
os.environ["NUMBA_DISABLE_CACHE"] = "1"
|
3 |
import gradio as gr
|
4 |
import os
|
|
|
|
|
|
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
converter.load_ckpt(f"{ckpt_converter}/converter.ckpt")
|
20 |
|
21 |
-
def convert_voice(audio_file, text_prompt):
|
22 |
-
output_path = "./results/output.wav"
|
23 |
-
# You must clone reference audio using clone.sh or similar step in Dockerfile
|
24 |
-
voice_conversion(converter, audio_file.name, text_prompt, output_path, device)
|
25 |
-
return output_path
|
26 |
|
27 |
-
|
28 |
-
fn=
|
29 |
inputs=[
|
30 |
-
gr.
|
31 |
-
gr.
|
32 |
],
|
33 |
-
outputs=gr.Audio(label="
|
|
|
|
|
34 |
)
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from openvoice.api import ToneColorConverter
|
4 |
+
from openvoice import se_extractor
|
5 |
+
from inference import infer_tool
|
6 |
import torch
|
7 |
+
import time
|
8 |
+
import uuid
|
9 |
|
10 |
+
# Set model paths
|
11 |
+
ckpt_converter = "checkpoints/converter"
|
12 |
+
output_dir = "outputs"
|
13 |
+
os.makedirs(output_dir, exist_ok=True)
|
14 |
|
15 |
+
# Initialize converter
|
16 |
+
tone_color_converter = ToneColorConverter(ckpt_converter)
|
17 |
+
|
18 |
+
# Load base speaker embedding for style transfer
|
19 |
+
ref_speaker_embed = None
|
20 |
+
|
21 |
+
def clone_and_speak(text, speaker_wav):
|
22 |
+
if not speaker_wav:
|
23 |
+
return "Please upload a reference .wav file."
|
24 |
+
|
25 |
+
# Generate a unique filename
|
26 |
+
timestamp = str(int(time.time()))
|
27 |
+
base_name = f"output_{timestamp}_{uuid.uuid4().hex[:6]}"
|
28 |
+
output_wav = os.path.join(output_dir, f"{base_name}.wav")
|
29 |
+
|
30 |
+
# Extract style from uploaded speaker voice
|
31 |
+
global ref_speaker_embed
|
32 |
+
ref_speaker_embed = se_extractor.get_se(speaker_wav, tone_color_converter)
|
33 |
|
34 |
+
# Generate speech using base model (internal prompt and sampling)
|
35 |
+
tone_color_converter.infer(
|
36 |
+
text=text,
|
37 |
+
speaker_id="openvoice",
|
38 |
+
language="en",
|
39 |
+
ref_speaker=speaker_wav,
|
40 |
+
ref_embed=ref_speaker_embed,
|
41 |
+
output_path=output_wav,
|
42 |
+
top_k=10,
|
43 |
+
temperature=0.3
|
44 |
+
)
|
45 |
|
46 |
+
return output_wav
|
|
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
demo = gr.Interface(
|
50 |
+
fn=clone_and_speak,
|
51 |
inputs=[
|
52 |
+
gr.Textbox(label="Enter Text"),
|
53 |
+
gr.Audio(type="filepath", label="Upload a Reference Voice (.wav)")
|
54 |
],
|
55 |
+
outputs=gr.Audio(label="Synthesized Output"),
|
56 |
+
title="Text to Voice using OpenVoice",
|
57 |
+
description="Clone any voice (English) and generate speech using OpenVoice on CPU.",
|
58 |
)
|
59 |
|
60 |
+
if __name__ == "__main__":
|
61 |
+
demo.launch()
|