Update MeloTTS/melo/models.py
Browse files- MeloTTS/melo/models.py +1030 -1030
MeloTTS/melo/models.py
CHANGED
@@ -1,1030 +1,1030 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from torch.nn import functional as F
|
5 |
-
|
6 |
-
from melo import commons
|
7 |
-
from melo import modules
|
8 |
-
from melo import attentions
|
9 |
-
|
10 |
-
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
11 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
-
|
13 |
-
from melo.commons import init_weights, get_padding
|
14 |
-
import melo.monotonic_align as monotonic_align
|
15 |
-
|
16 |
-
|
17 |
-
class DurationDiscriminator(nn.Module): # vits2
|
18 |
-
def __init__(
|
19 |
-
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
20 |
-
):
|
21 |
-
super().__init__()
|
22 |
-
self.in_channels = in_channels
|
23 |
-
self.filter_channels = filter_channels
|
24 |
-
self.kernel_size = kernel_size
|
25 |
-
self.p_dropout = p_dropout
|
26 |
-
self.gin_channels = gin_channels
|
27 |
-
|
28 |
-
self.drop = nn.Dropout(p_dropout)
|
29 |
-
self.conv_1 = nn.Conv1d(
|
30 |
-
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
31 |
-
)
|
32 |
-
self.norm_1 = modules.LayerNorm(filter_channels)
|
33 |
-
self.conv_2 = nn.Conv1d(
|
34 |
-
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
35 |
-
)
|
36 |
-
self.norm_2 = modules.LayerNorm(filter_channels)
|
37 |
-
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
38 |
-
|
39 |
-
self.pre_out_conv_1 = nn.Conv1d(
|
40 |
-
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
41 |
-
)
|
42 |
-
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
43 |
-
self.pre_out_conv_2 = nn.Conv1d(
|
44 |
-
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
45 |
-
)
|
46 |
-
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
47 |
-
|
48 |
-
if gin_channels != 0:
|
49 |
-
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
50 |
-
|
51 |
-
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
52 |
-
|
53 |
-
def forward_probability(self, x, x_mask, dur, g=None):
|
54 |
-
dur = self.dur_proj(dur)
|
55 |
-
x = torch.cat([x, dur], dim=1)
|
56 |
-
x = self.pre_out_conv_1(x * x_mask)
|
57 |
-
x = torch.relu(x)
|
58 |
-
x = self.pre_out_norm_1(x)
|
59 |
-
x = self.drop(x)
|
60 |
-
x = self.pre_out_conv_2(x * x_mask)
|
61 |
-
x = torch.relu(x)
|
62 |
-
x = self.pre_out_norm_2(x)
|
63 |
-
x = self.drop(x)
|
64 |
-
x = x * x_mask
|
65 |
-
x = x.transpose(1, 2)
|
66 |
-
output_prob = self.output_layer(x)
|
67 |
-
return output_prob
|
68 |
-
|
69 |
-
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
70 |
-
x = torch.detach(x)
|
71 |
-
if g is not None:
|
72 |
-
g = torch.detach(g)
|
73 |
-
x = x + self.cond(g)
|
74 |
-
x = self.conv_1(x * x_mask)
|
75 |
-
x = torch.relu(x)
|
76 |
-
x = self.norm_1(x)
|
77 |
-
x = self.drop(x)
|
78 |
-
x = self.conv_2(x * x_mask)
|
79 |
-
x = torch.relu(x)
|
80 |
-
x = self.norm_2(x)
|
81 |
-
x = self.drop(x)
|
82 |
-
|
83 |
-
output_probs = []
|
84 |
-
for dur in [dur_r, dur_hat]:
|
85 |
-
output_prob = self.forward_probability(x, x_mask, dur, g)
|
86 |
-
output_probs.append(output_prob)
|
87 |
-
|
88 |
-
return output_probs
|
89 |
-
|
90 |
-
|
91 |
-
class TransformerCouplingBlock(nn.Module):
|
92 |
-
def __init__(
|
93 |
-
self,
|
94 |
-
channels,
|
95 |
-
hidden_channels,
|
96 |
-
filter_channels,
|
97 |
-
n_heads,
|
98 |
-
n_layers,
|
99 |
-
kernel_size,
|
100 |
-
p_dropout,
|
101 |
-
n_flows=4,
|
102 |
-
gin_channels=0,
|
103 |
-
share_parameter=False,
|
104 |
-
):
|
105 |
-
super().__init__()
|
106 |
-
self.channels = channels
|
107 |
-
self.hidden_channels = hidden_channels
|
108 |
-
self.kernel_size = kernel_size
|
109 |
-
self.n_layers = n_layers
|
110 |
-
self.n_flows = n_flows
|
111 |
-
self.gin_channels = gin_channels
|
112 |
-
|
113 |
-
self.flows = nn.ModuleList()
|
114 |
-
|
115 |
-
self.wn = (
|
116 |
-
attentions.FFT(
|
117 |
-
hidden_channels,
|
118 |
-
filter_channels,
|
119 |
-
n_heads,
|
120 |
-
n_layers,
|
121 |
-
kernel_size,
|
122 |
-
p_dropout,
|
123 |
-
isflow=True,
|
124 |
-
gin_channels=self.gin_channels,
|
125 |
-
)
|
126 |
-
if share_parameter
|
127 |
-
else None
|
128 |
-
)
|
129 |
-
|
130 |
-
for i in range(n_flows):
|
131 |
-
self.flows.append(
|
132 |
-
modules.TransformerCouplingLayer(
|
133 |
-
channels,
|
134 |
-
hidden_channels,
|
135 |
-
kernel_size,
|
136 |
-
n_layers,
|
137 |
-
n_heads,
|
138 |
-
p_dropout,
|
139 |
-
filter_channels,
|
140 |
-
mean_only=True,
|
141 |
-
wn_sharing_parameter=self.wn,
|
142 |
-
gin_channels=self.gin_channels,
|
143 |
-
)
|
144 |
-
)
|
145 |
-
self.flows.append(modules.Flip())
|
146 |
-
|
147 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
148 |
-
if not reverse:
|
149 |
-
for flow in self.flows:
|
150 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
151 |
-
else:
|
152 |
-
for flow in reversed(self.flows):
|
153 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
154 |
-
return x
|
155 |
-
|
156 |
-
|
157 |
-
class StochasticDurationPredictor(nn.Module):
|
158 |
-
def __init__(
|
159 |
-
self,
|
160 |
-
in_channels,
|
161 |
-
filter_channels,
|
162 |
-
kernel_size,
|
163 |
-
p_dropout,
|
164 |
-
n_flows=4,
|
165 |
-
gin_channels=0,
|
166 |
-
):
|
167 |
-
super().__init__()
|
168 |
-
filter_channels = in_channels # it needs to be removed from future version.
|
169 |
-
self.in_channels = in_channels
|
170 |
-
self.filter_channels = filter_channels
|
171 |
-
self.kernel_size = kernel_size
|
172 |
-
self.p_dropout = p_dropout
|
173 |
-
self.n_flows = n_flows
|
174 |
-
self.gin_channels = gin_channels
|
175 |
-
|
176 |
-
self.log_flow = modules.Log()
|
177 |
-
self.flows = nn.ModuleList()
|
178 |
-
self.flows.append(modules.ElementwiseAffine(2))
|
179 |
-
for i in range(n_flows):
|
180 |
-
self.flows.append(
|
181 |
-
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
182 |
-
)
|
183 |
-
self.flows.append(modules.Flip())
|
184 |
-
|
185 |
-
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
186 |
-
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
187 |
-
self.post_convs = modules.DDSConv(
|
188 |
-
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
189 |
-
)
|
190 |
-
self.post_flows = nn.ModuleList()
|
191 |
-
self.post_flows.append(modules.ElementwiseAffine(2))
|
192 |
-
for i in range(4):
|
193 |
-
self.post_flows.append(
|
194 |
-
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
195 |
-
)
|
196 |
-
self.post_flows.append(modules.Flip())
|
197 |
-
|
198 |
-
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
199 |
-
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
200 |
-
self.convs = modules.DDSConv(
|
201 |
-
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
202 |
-
)
|
203 |
-
if gin_channels != 0:
|
204 |
-
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
205 |
-
|
206 |
-
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
207 |
-
x = torch.detach(x)
|
208 |
-
x = self.pre(x)
|
209 |
-
if g is not None:
|
210 |
-
g = torch.detach(g)
|
211 |
-
x = x + self.cond(g)
|
212 |
-
x = self.convs(x, x_mask)
|
213 |
-
x = self.proj(x) * x_mask
|
214 |
-
|
215 |
-
if not reverse:
|
216 |
-
flows = self.flows
|
217 |
-
assert w is not None
|
218 |
-
|
219 |
-
logdet_tot_q = 0
|
220 |
-
h_w = self.post_pre(w)
|
221 |
-
h_w = self.post_convs(h_w, x_mask)
|
222 |
-
h_w = self.post_proj(h_w) * x_mask
|
223 |
-
e_q = (
|
224 |
-
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
225 |
-
* x_mask
|
226 |
-
)
|
227 |
-
z_q = e_q
|
228 |
-
for flow in self.post_flows:
|
229 |
-
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
230 |
-
logdet_tot_q += logdet_q
|
231 |
-
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
232 |
-
u = torch.sigmoid(z_u) * x_mask
|
233 |
-
z0 = (w - u) * x_mask
|
234 |
-
logdet_tot_q += torch.sum(
|
235 |
-
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
236 |
-
)
|
237 |
-
logq = (
|
238 |
-
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
239 |
-
- logdet_tot_q
|
240 |
-
)
|
241 |
-
|
242 |
-
logdet_tot = 0
|
243 |
-
z0, logdet = self.log_flow(z0, x_mask)
|
244 |
-
logdet_tot += logdet
|
245 |
-
z = torch.cat([z0, z1], 1)
|
246 |
-
for flow in flows:
|
247 |
-
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
248 |
-
logdet_tot = logdet_tot + logdet
|
249 |
-
nll = (
|
250 |
-
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
251 |
-
- logdet_tot
|
252 |
-
)
|
253 |
-
return nll + logq # [b]
|
254 |
-
else:
|
255 |
-
flows = list(reversed(self.flows))
|
256 |
-
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
257 |
-
z = (
|
258 |
-
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
259 |
-
* noise_scale
|
260 |
-
)
|
261 |
-
for flow in flows:
|
262 |
-
z = flow(z, x_mask, g=x, reverse=reverse)
|
263 |
-
z0, z1 = torch.split(z, [1, 1], 1)
|
264 |
-
logw = z0
|
265 |
-
return logw
|
266 |
-
|
267 |
-
|
268 |
-
class DurationPredictor(nn.Module):
|
269 |
-
def __init__(
|
270 |
-
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
271 |
-
):
|
272 |
-
super().__init__()
|
273 |
-
|
274 |
-
self.in_channels = in_channels
|
275 |
-
self.filter_channels = filter_channels
|
276 |
-
self.kernel_size = kernel_size
|
277 |
-
self.p_dropout = p_dropout
|
278 |
-
self.gin_channels = gin_channels
|
279 |
-
|
280 |
-
self.drop = nn.Dropout(p_dropout)
|
281 |
-
self.conv_1 = nn.Conv1d(
|
282 |
-
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
283 |
-
)
|
284 |
-
self.norm_1 = modules.LayerNorm(filter_channels)
|
285 |
-
self.conv_2 = nn.Conv1d(
|
286 |
-
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
287 |
-
)
|
288 |
-
self.norm_2 = modules.LayerNorm(filter_channels)
|
289 |
-
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
290 |
-
|
291 |
-
if gin_channels != 0:
|
292 |
-
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
293 |
-
|
294 |
-
def forward(self, x, x_mask, g=None):
|
295 |
-
x = torch.detach(x)
|
296 |
-
if g is not None:
|
297 |
-
g = torch.detach(g)
|
298 |
-
x = x + self.cond(g)
|
299 |
-
x = self.conv_1(x * x_mask)
|
300 |
-
x = torch.relu(x)
|
301 |
-
x = self.norm_1(x)
|
302 |
-
x = self.drop(x)
|
303 |
-
x = self.conv_2(x * x_mask)
|
304 |
-
x = torch.relu(x)
|
305 |
-
x = self.norm_2(x)
|
306 |
-
x = self.drop(x)
|
307 |
-
x = self.proj(x * x_mask)
|
308 |
-
return x * x_mask
|
309 |
-
|
310 |
-
|
311 |
-
class TextEncoder(nn.Module):
|
312 |
-
def __init__(
|
313 |
-
self,
|
314 |
-
n_vocab,
|
315 |
-
out_channels,
|
316 |
-
hidden_channels,
|
317 |
-
filter_channels,
|
318 |
-
n_heads,
|
319 |
-
n_layers,
|
320 |
-
kernel_size,
|
321 |
-
p_dropout,
|
322 |
-
gin_channels=0,
|
323 |
-
num_languages=None,
|
324 |
-
num_tones=None,
|
325 |
-
):
|
326 |
-
super().__init__()
|
327 |
-
if num_languages is None:
|
328 |
-
from text import num_languages
|
329 |
-
if num_tones is None:
|
330 |
-
from text import num_tones
|
331 |
-
self.n_vocab = n_vocab
|
332 |
-
self.out_channels = out_channels
|
333 |
-
self.hidden_channels = hidden_channels
|
334 |
-
self.filter_channels = filter_channels
|
335 |
-
self.n_heads = n_heads
|
336 |
-
self.n_layers = n_layers
|
337 |
-
self.kernel_size = kernel_size
|
338 |
-
self.p_dropout = p_dropout
|
339 |
-
self.gin_channels = gin_channels
|
340 |
-
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
341 |
-
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
342 |
-
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
343 |
-
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
344 |
-
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
345 |
-
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
346 |
-
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
347 |
-
self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
|
348 |
-
|
349 |
-
self.encoder = attentions.Encoder(
|
350 |
-
hidden_channels,
|
351 |
-
filter_channels,
|
352 |
-
n_heads,
|
353 |
-
n_layers,
|
354 |
-
kernel_size,
|
355 |
-
p_dropout,
|
356 |
-
gin_channels=self.gin_channels,
|
357 |
-
)
|
358 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
359 |
-
|
360 |
-
def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
|
361 |
-
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
362 |
-
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
363 |
-
x = (
|
364 |
-
self.emb(x)
|
365 |
-
+ self.tone_emb(tone)
|
366 |
-
+ self.language_emb(language)
|
367 |
-
+ bert_emb
|
368 |
-
+ ja_bert_emb
|
369 |
-
) * math.sqrt(
|
370 |
-
self.hidden_channels
|
371 |
-
) # [b, t, h]
|
372 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
373 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
374 |
-
x.dtype
|
375 |
-
)
|
376 |
-
|
377 |
-
x = self.encoder(x * x_mask, x_mask, g=g)
|
378 |
-
stats = self.proj(x) * x_mask
|
379 |
-
|
380 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
381 |
-
return x, m, logs, x_mask
|
382 |
-
|
383 |
-
|
384 |
-
class ResidualCouplingBlock(nn.Module):
|
385 |
-
def __init__(
|
386 |
-
self,
|
387 |
-
channels,
|
388 |
-
hidden_channels,
|
389 |
-
kernel_size,
|
390 |
-
dilation_rate,
|
391 |
-
n_layers,
|
392 |
-
n_flows=4,
|
393 |
-
gin_channels=0,
|
394 |
-
):
|
395 |
-
super().__init__()
|
396 |
-
self.channels = channels
|
397 |
-
self.hidden_channels = hidden_channels
|
398 |
-
self.kernel_size = kernel_size
|
399 |
-
self.dilation_rate = dilation_rate
|
400 |
-
self.n_layers = n_layers
|
401 |
-
self.n_flows = n_flows
|
402 |
-
self.gin_channels = gin_channels
|
403 |
-
|
404 |
-
self.flows = nn.ModuleList()
|
405 |
-
for i in range(n_flows):
|
406 |
-
self.flows.append(
|
407 |
-
modules.ResidualCouplingLayer(
|
408 |
-
channels,
|
409 |
-
hidden_channels,
|
410 |
-
kernel_size,
|
411 |
-
dilation_rate,
|
412 |
-
n_layers,
|
413 |
-
gin_channels=gin_channels,
|
414 |
-
mean_only=True,
|
415 |
-
)
|
416 |
-
)
|
417 |
-
self.flows.append(modules.Flip())
|
418 |
-
|
419 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
420 |
-
if not reverse:
|
421 |
-
for flow in self.flows:
|
422 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
423 |
-
else:
|
424 |
-
for flow in reversed(self.flows):
|
425 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
426 |
-
return x
|
427 |
-
|
428 |
-
|
429 |
-
class PosteriorEncoder(nn.Module):
|
430 |
-
def __init__(
|
431 |
-
self,
|
432 |
-
in_channels,
|
433 |
-
out_channels,
|
434 |
-
hidden_channels,
|
435 |
-
kernel_size,
|
436 |
-
dilation_rate,
|
437 |
-
n_layers,
|
438 |
-
gin_channels=0,
|
439 |
-
):
|
440 |
-
super().__init__()
|
441 |
-
self.in_channels = in_channels
|
442 |
-
self.out_channels = out_channels
|
443 |
-
self.hidden_channels = hidden_channels
|
444 |
-
self.kernel_size = kernel_size
|
445 |
-
self.dilation_rate = dilation_rate
|
446 |
-
self.n_layers = n_layers
|
447 |
-
self.gin_channels = gin_channels
|
448 |
-
|
449 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
450 |
-
self.enc = modules.WN(
|
451 |
-
hidden_channels,
|
452 |
-
kernel_size,
|
453 |
-
dilation_rate,
|
454 |
-
n_layers,
|
455 |
-
gin_channels=gin_channels,
|
456 |
-
)
|
457 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
458 |
-
|
459 |
-
def forward(self, x, x_lengths, g=None, tau=1.0):
|
460 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
461 |
-
x.dtype
|
462 |
-
)
|
463 |
-
x = self.pre(x) * x_mask
|
464 |
-
x = self.enc(x, x_mask, g=g)
|
465 |
-
stats = self.proj(x) * x_mask
|
466 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
467 |
-
z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask
|
468 |
-
return z, m, logs, x_mask
|
469 |
-
|
470 |
-
|
471 |
-
class Generator(torch.nn.Module):
|
472 |
-
def __init__(
|
473 |
-
self,
|
474 |
-
initial_channel,
|
475 |
-
resblock,
|
476 |
-
resblock_kernel_sizes,
|
477 |
-
resblock_dilation_sizes,
|
478 |
-
upsample_rates,
|
479 |
-
upsample_initial_channel,
|
480 |
-
upsample_kernel_sizes,
|
481 |
-
gin_channels=0,
|
482 |
-
):
|
483 |
-
super(Generator, self).__init__()
|
484 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
485 |
-
self.num_upsamples = len(upsample_rates)
|
486 |
-
self.conv_pre = Conv1d(
|
487 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
488 |
-
)
|
489 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
490 |
-
|
491 |
-
self.ups = nn.ModuleList()
|
492 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
493 |
-
self.ups.append(
|
494 |
-
weight_norm(
|
495 |
-
ConvTranspose1d(
|
496 |
-
upsample_initial_channel // (2**i),
|
497 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
498 |
-
k,
|
499 |
-
u,
|
500 |
-
padding=(k - u) // 2,
|
501 |
-
)
|
502 |
-
)
|
503 |
-
)
|
504 |
-
|
505 |
-
self.resblocks = nn.ModuleList()
|
506 |
-
for i in range(len(self.ups)):
|
507 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
508 |
-
for j, (k, d) in enumerate(
|
509 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
510 |
-
):
|
511 |
-
self.resblocks.append(resblock(ch, k, d))
|
512 |
-
|
513 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
514 |
-
self.ups.apply(init_weights)
|
515 |
-
|
516 |
-
if gin_channels != 0:
|
517 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
518 |
-
|
519 |
-
def forward(self, x, g=None):
|
520 |
-
x = self.conv_pre(x)
|
521 |
-
if g is not None:
|
522 |
-
x = x + self.cond(g)
|
523 |
-
|
524 |
-
for i in range(self.num_upsamples):
|
525 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
526 |
-
x = self.ups[i](x)
|
527 |
-
xs = None
|
528 |
-
for j in range(self.num_kernels):
|
529 |
-
if xs is None:
|
530 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
531 |
-
else:
|
532 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
533 |
-
x = xs / self.num_kernels
|
534 |
-
x = F.leaky_relu(x)
|
535 |
-
x = self.conv_post(x)
|
536 |
-
x = torch.tanh(x)
|
537 |
-
|
538 |
-
return x
|
539 |
-
|
540 |
-
def remove_weight_norm(self):
|
541 |
-
print("Removing weight norm...")
|
542 |
-
for layer in self.ups:
|
543 |
-
remove_weight_norm(layer)
|
544 |
-
for layer in self.resblocks:
|
545 |
-
layer.remove_weight_norm()
|
546 |
-
|
547 |
-
|
548 |
-
class DiscriminatorP(torch.nn.Module):
|
549 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
550 |
-
super(DiscriminatorP, self).__init__()
|
551 |
-
self.period = period
|
552 |
-
self.use_spectral_norm = use_spectral_norm
|
553 |
-
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
554 |
-
self.convs = nn.ModuleList(
|
555 |
-
[
|
556 |
-
norm_f(
|
557 |
-
Conv2d(
|
558 |
-
1,
|
559 |
-
32,
|
560 |
-
(kernel_size, 1),
|
561 |
-
(stride, 1),
|
562 |
-
padding=(get_padding(kernel_size, 1), 0),
|
563 |
-
)
|
564 |
-
),
|
565 |
-
norm_f(
|
566 |
-
Conv2d(
|
567 |
-
32,
|
568 |
-
128,
|
569 |
-
(kernel_size, 1),
|
570 |
-
(stride, 1),
|
571 |
-
padding=(get_padding(kernel_size, 1), 0),
|
572 |
-
)
|
573 |
-
),
|
574 |
-
norm_f(
|
575 |
-
Conv2d(
|
576 |
-
128,
|
577 |
-
512,
|
578 |
-
(kernel_size, 1),
|
579 |
-
(stride, 1),
|
580 |
-
padding=(get_padding(kernel_size, 1), 0),
|
581 |
-
)
|
582 |
-
),
|
583 |
-
norm_f(
|
584 |
-
Conv2d(
|
585 |
-
512,
|
586 |
-
1024,
|
587 |
-
(kernel_size, 1),
|
588 |
-
(stride, 1),
|
589 |
-
padding=(get_padding(kernel_size, 1), 0),
|
590 |
-
)
|
591 |
-
),
|
592 |
-
norm_f(
|
593 |
-
Conv2d(
|
594 |
-
1024,
|
595 |
-
1024,
|
596 |
-
(kernel_size, 1),
|
597 |
-
1,
|
598 |
-
padding=(get_padding(kernel_size, 1), 0),
|
599 |
-
)
|
600 |
-
),
|
601 |
-
]
|
602 |
-
)
|
603 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
604 |
-
|
605 |
-
def forward(self, x):
|
606 |
-
fmap = []
|
607 |
-
|
608 |
-
# 1d to 2d
|
609 |
-
b, c, t = x.shape
|
610 |
-
if t % self.period != 0: # pad first
|
611 |
-
n_pad = self.period - (t % self.period)
|
612 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
613 |
-
t = t + n_pad
|
614 |
-
x = x.view(b, c, t // self.period, self.period)
|
615 |
-
|
616 |
-
for layer in self.convs:
|
617 |
-
x = layer(x)
|
618 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
619 |
-
fmap.append(x)
|
620 |
-
x = self.conv_post(x)
|
621 |
-
fmap.append(x)
|
622 |
-
x = torch.flatten(x, 1, -1)
|
623 |
-
|
624 |
-
return x, fmap
|
625 |
-
|
626 |
-
|
627 |
-
class DiscriminatorS(torch.nn.Module):
|
628 |
-
def __init__(self, use_spectral_norm=False):
|
629 |
-
super(DiscriminatorS, self).__init__()
|
630 |
-
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
631 |
-
self.convs = nn.ModuleList(
|
632 |
-
[
|
633 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
634 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
635 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
636 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
637 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
638 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
639 |
-
]
|
640 |
-
)
|
641 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
642 |
-
|
643 |
-
def forward(self, x):
|
644 |
-
fmap = []
|
645 |
-
|
646 |
-
for layer in self.convs:
|
647 |
-
x = layer(x)
|
648 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
649 |
-
fmap.append(x)
|
650 |
-
x = self.conv_post(x)
|
651 |
-
fmap.append(x)
|
652 |
-
x = torch.flatten(x, 1, -1)
|
653 |
-
|
654 |
-
return x, fmap
|
655 |
-
|
656 |
-
|
657 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
658 |
-
def __init__(self, use_spectral_norm=False):
|
659 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
660 |
-
periods = [2, 3, 5, 7, 11]
|
661 |
-
|
662 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
663 |
-
discs = discs + [
|
664 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
665 |
-
]
|
666 |
-
self.discriminators = nn.ModuleList(discs)
|
667 |
-
|
668 |
-
def forward(self, y, y_hat):
|
669 |
-
y_d_rs = []
|
670 |
-
y_d_gs = []
|
671 |
-
fmap_rs = []
|
672 |
-
fmap_gs = []
|
673 |
-
for i, d in enumerate(self.discriminators):
|
674 |
-
y_d_r, fmap_r = d(y)
|
675 |
-
y_d_g, fmap_g = d(y_hat)
|
676 |
-
y_d_rs.append(y_d_r)
|
677 |
-
y_d_gs.append(y_d_g)
|
678 |
-
fmap_rs.append(fmap_r)
|
679 |
-
fmap_gs.append(fmap_g)
|
680 |
-
|
681 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
682 |
-
|
683 |
-
|
684 |
-
class ReferenceEncoder(nn.Module):
|
685 |
-
"""
|
686 |
-
inputs --- [N, Ty/r, n_mels*r] mels
|
687 |
-
outputs --- [N, ref_enc_gru_size]
|
688 |
-
"""
|
689 |
-
|
690 |
-
def __init__(self, spec_channels, gin_channels=0, layernorm=False):
|
691 |
-
super().__init__()
|
692 |
-
self.spec_channels = spec_channels
|
693 |
-
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
694 |
-
K = len(ref_enc_filters)
|
695 |
-
filters = [1] + ref_enc_filters
|
696 |
-
convs = [
|
697 |
-
weight_norm(
|
698 |
-
nn.Conv2d(
|
699 |
-
in_channels=filters[i],
|
700 |
-
out_channels=filters[i + 1],
|
701 |
-
kernel_size=(3, 3),
|
702 |
-
stride=(2, 2),
|
703 |
-
padding=(1, 1),
|
704 |
-
)
|
705 |
-
)
|
706 |
-
for i in range(K)
|
707 |
-
]
|
708 |
-
self.convs = nn.ModuleList(convs)
|
709 |
-
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
710 |
-
|
711 |
-
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
712 |
-
self.gru = nn.GRU(
|
713 |
-
input_size=ref_enc_filters[-1] * out_channels,
|
714 |
-
hidden_size=256 // 2,
|
715 |
-
batch_first=True,
|
716 |
-
)
|
717 |
-
self.proj = nn.Linear(128, gin_channels)
|
718 |
-
if layernorm:
|
719 |
-
self.layernorm = nn.LayerNorm(self.spec_channels)
|
720 |
-
print('[Ref Enc]: using layer norm')
|
721 |
-
else:
|
722 |
-
self.layernorm = None
|
723 |
-
|
724 |
-
def forward(self, inputs, mask=None):
|
725 |
-
N = inputs.size(0)
|
726 |
-
|
727 |
-
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
728 |
-
if self.layernorm is not None:
|
729 |
-
out = self.layernorm(out)
|
730 |
-
|
731 |
-
for conv in self.convs:
|
732 |
-
out = conv(out)
|
733 |
-
# out = wn(out)
|
734 |
-
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
735 |
-
|
736 |
-
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
737 |
-
T = out.size(1)
|
738 |
-
N = out.size(0)
|
739 |
-
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
740 |
-
|
741 |
-
self.gru.flatten_parameters()
|
742 |
-
memory, out = self.gru(out) # out --- [1, N, 128]
|
743 |
-
|
744 |
-
return self.proj(out.squeeze(0))
|
745 |
-
|
746 |
-
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
747 |
-
for i in range(n_convs):
|
748 |
-
L = (L - kernel_size + 2 * pad) // stride + 1
|
749 |
-
return L
|
750 |
-
|
751 |
-
|
752 |
-
class SynthesizerTrn(nn.Module):
|
753 |
-
"""
|
754 |
-
Synthesizer for Training
|
755 |
-
"""
|
756 |
-
|
757 |
-
def __init__(
|
758 |
-
self,
|
759 |
-
n_vocab,
|
760 |
-
spec_channels,
|
761 |
-
segment_size,
|
762 |
-
inter_channels,
|
763 |
-
hidden_channels,
|
764 |
-
filter_channels,
|
765 |
-
n_heads,
|
766 |
-
n_layers,
|
767 |
-
kernel_size,
|
768 |
-
p_dropout,
|
769 |
-
resblock,
|
770 |
-
resblock_kernel_sizes,
|
771 |
-
resblock_dilation_sizes,
|
772 |
-
upsample_rates,
|
773 |
-
upsample_initial_channel,
|
774 |
-
upsample_kernel_sizes,
|
775 |
-
n_speakers=256,
|
776 |
-
gin_channels=256,
|
777 |
-
use_sdp=True,
|
778 |
-
n_flow_layer=4,
|
779 |
-
n_layers_trans_flow=6,
|
780 |
-
flow_share_parameter=False,
|
781 |
-
use_transformer_flow=True,
|
782 |
-
use_vc=False,
|
783 |
-
num_languages=None,
|
784 |
-
num_tones=None,
|
785 |
-
norm_refenc=False,
|
786 |
-
**kwargs
|
787 |
-
):
|
788 |
-
super().__init__()
|
789 |
-
self.n_vocab = n_vocab
|
790 |
-
self.spec_channels = spec_channels
|
791 |
-
self.inter_channels = inter_channels
|
792 |
-
self.hidden_channels = hidden_channels
|
793 |
-
self.filter_channels = filter_channels
|
794 |
-
self.n_heads = n_heads
|
795 |
-
self.n_layers = n_layers
|
796 |
-
self.kernel_size = kernel_size
|
797 |
-
self.p_dropout = p_dropout
|
798 |
-
self.resblock = resblock
|
799 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
800 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
801 |
-
self.upsample_rates = upsample_rates
|
802 |
-
self.upsample_initial_channel = upsample_initial_channel
|
803 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
804 |
-
self.segment_size = segment_size
|
805 |
-
self.n_speakers = n_speakers
|
806 |
-
self.gin_channels = gin_channels
|
807 |
-
self.n_layers_trans_flow = n_layers_trans_flow
|
808 |
-
self.use_spk_conditioned_encoder = kwargs.get(
|
809 |
-
"use_spk_conditioned_encoder", True
|
810 |
-
)
|
811 |
-
self.use_sdp = use_sdp
|
812 |
-
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
813 |
-
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
814 |
-
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
815 |
-
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
816 |
-
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
817 |
-
self.enc_gin_channels = gin_channels
|
818 |
-
else:
|
819 |
-
self.enc_gin_channels = 0
|
820 |
-
self.enc_p = TextEncoder(
|
821 |
-
n_vocab,
|
822 |
-
inter_channels,
|
823 |
-
hidden_channels,
|
824 |
-
filter_channels,
|
825 |
-
n_heads,
|
826 |
-
n_layers,
|
827 |
-
kernel_size,
|
828 |
-
p_dropout,
|
829 |
-
gin_channels=self.enc_gin_channels,
|
830 |
-
num_languages=num_languages,
|
831 |
-
num_tones=num_tones,
|
832 |
-
)
|
833 |
-
self.dec = Generator(
|
834 |
-
inter_channels,
|
835 |
-
resblock,
|
836 |
-
resblock_kernel_sizes,
|
837 |
-
resblock_dilation_sizes,
|
838 |
-
upsample_rates,
|
839 |
-
upsample_initial_channel,
|
840 |
-
upsample_kernel_sizes,
|
841 |
-
gin_channels=gin_channels,
|
842 |
-
)
|
843 |
-
self.enc_q = PosteriorEncoder(
|
844 |
-
spec_channels,
|
845 |
-
inter_channels,
|
846 |
-
hidden_channels,
|
847 |
-
5,
|
848 |
-
1,
|
849 |
-
16,
|
850 |
-
gin_channels=gin_channels,
|
851 |
-
)
|
852 |
-
if use_transformer_flow:
|
853 |
-
self.flow = TransformerCouplingBlock(
|
854 |
-
inter_channels,
|
855 |
-
hidden_channels,
|
856 |
-
filter_channels,
|
857 |
-
n_heads,
|
858 |
-
n_layers_trans_flow,
|
859 |
-
5,
|
860 |
-
p_dropout,
|
861 |
-
n_flow_layer,
|
862 |
-
gin_channels=gin_channels,
|
863 |
-
share_parameter=flow_share_parameter,
|
864 |
-
)
|
865 |
-
else:
|
866 |
-
self.flow = ResidualCouplingBlock(
|
867 |
-
inter_channels,
|
868 |
-
hidden_channels,
|
869 |
-
5,
|
870 |
-
1,
|
871 |
-
n_flow_layer,
|
872 |
-
gin_channels=gin_channels,
|
873 |
-
)
|
874 |
-
self.sdp = StochasticDurationPredictor(
|
875 |
-
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
876 |
-
)
|
877 |
-
self.dp = DurationPredictor(
|
878 |
-
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
879 |
-
)
|
880 |
-
|
881 |
-
if n_speakers > 0:
|
882 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
883 |
-
else:
|
884 |
-
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels, layernorm=norm_refenc)
|
885 |
-
self.use_vc = use_vc
|
886 |
-
|
887 |
-
|
888 |
-
def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
|
889 |
-
if self.n_speakers > 0:
|
890 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
891 |
-
else:
|
892 |
-
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
893 |
-
if self.use_vc:
|
894 |
-
g_p = None
|
895 |
-
else:
|
896 |
-
g_p = g
|
897 |
-
x, m_p, logs_p, x_mask = self.enc_p(
|
898 |
-
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
899 |
-
)
|
900 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
901 |
-
z_p = self.flow(z, y_mask, g=g)
|
902 |
-
|
903 |
-
with torch.no_grad():
|
904 |
-
# negative cross-entropy
|
905 |
-
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
906 |
-
neg_cent1 = torch.sum(
|
907 |
-
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
908 |
-
) # [b, 1, t_s]
|
909 |
-
neg_cent2 = torch.matmul(
|
910 |
-
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
911 |
-
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
912 |
-
neg_cent3 = torch.matmul(
|
913 |
-
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
914 |
-
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
915 |
-
neg_cent4 = torch.sum(
|
916 |
-
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
917 |
-
) # [b, 1, t_s]
|
918 |
-
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
919 |
-
if self.use_noise_scaled_mas:
|
920 |
-
epsilon = (
|
921 |
-
torch.std(neg_cent)
|
922 |
-
* torch.randn_like(neg_cent)
|
923 |
-
* self.current_mas_noise_scale
|
924 |
-
)
|
925 |
-
neg_cent = neg_cent + epsilon
|
926 |
-
|
927 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
928 |
-
attn = (
|
929 |
-
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
930 |
-
.unsqueeze(1)
|
931 |
-
.detach()
|
932 |
-
)
|
933 |
-
|
934 |
-
w = attn.sum(2)
|
935 |
-
|
936 |
-
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
937 |
-
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
938 |
-
|
939 |
-
logw_ = torch.log(w + 1e-6) * x_mask
|
940 |
-
logw = self.dp(x, x_mask, g=g)
|
941 |
-
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
942 |
-
x_mask
|
943 |
-
) # for averaging
|
944 |
-
|
945 |
-
l_length = l_length_dp + l_length_sdp
|
946 |
-
|
947 |
-
# expand prior
|
948 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
949 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
950 |
-
|
951 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
952 |
-
z, y_lengths, self.segment_size
|
953 |
-
)
|
954 |
-
o = self.dec(z_slice, g=g)
|
955 |
-
return (
|
956 |
-
o,
|
957 |
-
l_length,
|
958 |
-
attn,
|
959 |
-
ids_slice,
|
960 |
-
x_mask,
|
961 |
-
y_mask,
|
962 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
963 |
-
(x, logw, logw_),
|
964 |
-
)
|
965 |
-
|
966 |
-
def infer(
|
967 |
-
self,
|
968 |
-
x,
|
969 |
-
x_lengths,
|
970 |
-
sid,
|
971 |
-
tone,
|
972 |
-
language,
|
973 |
-
bert,
|
974 |
-
ja_bert,
|
975 |
-
noise_scale=0.667,
|
976 |
-
length_scale=1,
|
977 |
-
noise_scale_w=0.8,
|
978 |
-
max_len=None,
|
979 |
-
sdp_ratio=0,
|
980 |
-
y=None,
|
981 |
-
g=None,
|
982 |
-
):
|
983 |
-
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
984 |
-
# g = self.gst(y)
|
985 |
-
if g is None:
|
986 |
-
if self.n_speakers > 0:
|
987 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
988 |
-
else:
|
989 |
-
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
990 |
-
if self.use_vc:
|
991 |
-
g_p = None
|
992 |
-
else:
|
993 |
-
g_p = g
|
994 |
-
x, m_p, logs_p, x_mask = self.enc_p(
|
995 |
-
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
996 |
-
)
|
997 |
-
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
998 |
-
sdp_ratio
|
999 |
-
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
1000 |
-
w = torch.exp(logw) * x_mask * length_scale
|
1001 |
-
|
1002 |
-
w_ceil = torch.ceil(w)
|
1003 |
-
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
1004 |
-
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
1005 |
-
x_mask.dtype
|
1006 |
-
)
|
1007 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1008 |
-
attn = commons.generate_path(w_ceil, attn_mask)
|
1009 |
-
|
1010 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
1011 |
-
1, 2
|
1012 |
-
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1013 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
1014 |
-
1, 2
|
1015 |
-
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1016 |
-
|
1017 |
-
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
1018 |
-
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
1019 |
-
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
1020 |
-
# print('max/min of o:', o.max(), o.min())
|
1021 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
1022 |
-
|
1023 |
-
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0):
|
1024 |
-
g_src = sid_src
|
1025 |
-
g_tgt = sid_tgt
|
1026 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src, tau=tau)
|
1027 |
-
z_p = self.flow(z, y_mask, g=g_src)
|
1028 |
-
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
1029 |
-
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
1030 |
-
return o_hat, y_mask, (z, z_p, z_hat)
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from MeloTTS.melo import commons
|
7 |
+
from MeloTTS.melo import modules
|
8 |
+
from MeloTTS.melo import attentions
|
9 |
+
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
|
13 |
+
from MeloTTS.melo.commons import init_weights, get_padding
|
14 |
+
import MeloTTS.melo.monotonic_align as monotonic_align
|
15 |
+
|
16 |
+
|
17 |
+
class DurationDiscriminator(nn.Module): # vits2
|
18 |
+
def __init__(
|
19 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.in_channels = in_channels
|
23 |
+
self.filter_channels = filter_channels
|
24 |
+
self.kernel_size = kernel_size
|
25 |
+
self.p_dropout = p_dropout
|
26 |
+
self.gin_channels = gin_channels
|
27 |
+
|
28 |
+
self.drop = nn.Dropout(p_dropout)
|
29 |
+
self.conv_1 = nn.Conv1d(
|
30 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
31 |
+
)
|
32 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
33 |
+
self.conv_2 = nn.Conv1d(
|
34 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
35 |
+
)
|
36 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
37 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
38 |
+
|
39 |
+
self.pre_out_conv_1 = nn.Conv1d(
|
40 |
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
41 |
+
)
|
42 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
43 |
+
self.pre_out_conv_2 = nn.Conv1d(
|
44 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
45 |
+
)
|
46 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
47 |
+
|
48 |
+
if gin_channels != 0:
|
49 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
50 |
+
|
51 |
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
52 |
+
|
53 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
54 |
+
dur = self.dur_proj(dur)
|
55 |
+
x = torch.cat([x, dur], dim=1)
|
56 |
+
x = self.pre_out_conv_1(x * x_mask)
|
57 |
+
x = torch.relu(x)
|
58 |
+
x = self.pre_out_norm_1(x)
|
59 |
+
x = self.drop(x)
|
60 |
+
x = self.pre_out_conv_2(x * x_mask)
|
61 |
+
x = torch.relu(x)
|
62 |
+
x = self.pre_out_norm_2(x)
|
63 |
+
x = self.drop(x)
|
64 |
+
x = x * x_mask
|
65 |
+
x = x.transpose(1, 2)
|
66 |
+
output_prob = self.output_layer(x)
|
67 |
+
return output_prob
|
68 |
+
|
69 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
70 |
+
x = torch.detach(x)
|
71 |
+
if g is not None:
|
72 |
+
g = torch.detach(g)
|
73 |
+
x = x + self.cond(g)
|
74 |
+
x = self.conv_1(x * x_mask)
|
75 |
+
x = torch.relu(x)
|
76 |
+
x = self.norm_1(x)
|
77 |
+
x = self.drop(x)
|
78 |
+
x = self.conv_2(x * x_mask)
|
79 |
+
x = torch.relu(x)
|
80 |
+
x = self.norm_2(x)
|
81 |
+
x = self.drop(x)
|
82 |
+
|
83 |
+
output_probs = []
|
84 |
+
for dur in [dur_r, dur_hat]:
|
85 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
86 |
+
output_probs.append(output_prob)
|
87 |
+
|
88 |
+
return output_probs
|
89 |
+
|
90 |
+
|
91 |
+
class TransformerCouplingBlock(nn.Module):
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
channels,
|
95 |
+
hidden_channels,
|
96 |
+
filter_channels,
|
97 |
+
n_heads,
|
98 |
+
n_layers,
|
99 |
+
kernel_size,
|
100 |
+
p_dropout,
|
101 |
+
n_flows=4,
|
102 |
+
gin_channels=0,
|
103 |
+
share_parameter=False,
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
self.channels = channels
|
107 |
+
self.hidden_channels = hidden_channels
|
108 |
+
self.kernel_size = kernel_size
|
109 |
+
self.n_layers = n_layers
|
110 |
+
self.n_flows = n_flows
|
111 |
+
self.gin_channels = gin_channels
|
112 |
+
|
113 |
+
self.flows = nn.ModuleList()
|
114 |
+
|
115 |
+
self.wn = (
|
116 |
+
attentions.FFT(
|
117 |
+
hidden_channels,
|
118 |
+
filter_channels,
|
119 |
+
n_heads,
|
120 |
+
n_layers,
|
121 |
+
kernel_size,
|
122 |
+
p_dropout,
|
123 |
+
isflow=True,
|
124 |
+
gin_channels=self.gin_channels,
|
125 |
+
)
|
126 |
+
if share_parameter
|
127 |
+
else None
|
128 |
+
)
|
129 |
+
|
130 |
+
for i in range(n_flows):
|
131 |
+
self.flows.append(
|
132 |
+
modules.TransformerCouplingLayer(
|
133 |
+
channels,
|
134 |
+
hidden_channels,
|
135 |
+
kernel_size,
|
136 |
+
n_layers,
|
137 |
+
n_heads,
|
138 |
+
p_dropout,
|
139 |
+
filter_channels,
|
140 |
+
mean_only=True,
|
141 |
+
wn_sharing_parameter=self.wn,
|
142 |
+
gin_channels=self.gin_channels,
|
143 |
+
)
|
144 |
+
)
|
145 |
+
self.flows.append(modules.Flip())
|
146 |
+
|
147 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
148 |
+
if not reverse:
|
149 |
+
for flow in self.flows:
|
150 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
151 |
+
else:
|
152 |
+
for flow in reversed(self.flows):
|
153 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class StochasticDurationPredictor(nn.Module):
|
158 |
+
def __init__(
|
159 |
+
self,
|
160 |
+
in_channels,
|
161 |
+
filter_channels,
|
162 |
+
kernel_size,
|
163 |
+
p_dropout,
|
164 |
+
n_flows=4,
|
165 |
+
gin_channels=0,
|
166 |
+
):
|
167 |
+
super().__init__()
|
168 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
169 |
+
self.in_channels = in_channels
|
170 |
+
self.filter_channels = filter_channels
|
171 |
+
self.kernel_size = kernel_size
|
172 |
+
self.p_dropout = p_dropout
|
173 |
+
self.n_flows = n_flows
|
174 |
+
self.gin_channels = gin_channels
|
175 |
+
|
176 |
+
self.log_flow = modules.Log()
|
177 |
+
self.flows = nn.ModuleList()
|
178 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
179 |
+
for i in range(n_flows):
|
180 |
+
self.flows.append(
|
181 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
182 |
+
)
|
183 |
+
self.flows.append(modules.Flip())
|
184 |
+
|
185 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
186 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
187 |
+
self.post_convs = modules.DDSConv(
|
188 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
189 |
+
)
|
190 |
+
self.post_flows = nn.ModuleList()
|
191 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
192 |
+
for i in range(4):
|
193 |
+
self.post_flows.append(
|
194 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
195 |
+
)
|
196 |
+
self.post_flows.append(modules.Flip())
|
197 |
+
|
198 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
199 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
200 |
+
self.convs = modules.DDSConv(
|
201 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
202 |
+
)
|
203 |
+
if gin_channels != 0:
|
204 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
205 |
+
|
206 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
207 |
+
x = torch.detach(x)
|
208 |
+
x = self.pre(x)
|
209 |
+
if g is not None:
|
210 |
+
g = torch.detach(g)
|
211 |
+
x = x + self.cond(g)
|
212 |
+
x = self.convs(x, x_mask)
|
213 |
+
x = self.proj(x) * x_mask
|
214 |
+
|
215 |
+
if not reverse:
|
216 |
+
flows = self.flows
|
217 |
+
assert w is not None
|
218 |
+
|
219 |
+
logdet_tot_q = 0
|
220 |
+
h_w = self.post_pre(w)
|
221 |
+
h_w = self.post_convs(h_w, x_mask)
|
222 |
+
h_w = self.post_proj(h_w) * x_mask
|
223 |
+
e_q = (
|
224 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
225 |
+
* x_mask
|
226 |
+
)
|
227 |
+
z_q = e_q
|
228 |
+
for flow in self.post_flows:
|
229 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
230 |
+
logdet_tot_q += logdet_q
|
231 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
232 |
+
u = torch.sigmoid(z_u) * x_mask
|
233 |
+
z0 = (w - u) * x_mask
|
234 |
+
logdet_tot_q += torch.sum(
|
235 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
236 |
+
)
|
237 |
+
logq = (
|
238 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
239 |
+
- logdet_tot_q
|
240 |
+
)
|
241 |
+
|
242 |
+
logdet_tot = 0
|
243 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
244 |
+
logdet_tot += logdet
|
245 |
+
z = torch.cat([z0, z1], 1)
|
246 |
+
for flow in flows:
|
247 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
248 |
+
logdet_tot = logdet_tot + logdet
|
249 |
+
nll = (
|
250 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
251 |
+
- logdet_tot
|
252 |
+
)
|
253 |
+
return nll + logq # [b]
|
254 |
+
else:
|
255 |
+
flows = list(reversed(self.flows))
|
256 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
257 |
+
z = (
|
258 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
259 |
+
* noise_scale
|
260 |
+
)
|
261 |
+
for flow in flows:
|
262 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
263 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
264 |
+
logw = z0
|
265 |
+
return logw
|
266 |
+
|
267 |
+
|
268 |
+
class DurationPredictor(nn.Module):
|
269 |
+
def __init__(
|
270 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
271 |
+
):
|
272 |
+
super().__init__()
|
273 |
+
|
274 |
+
self.in_channels = in_channels
|
275 |
+
self.filter_channels = filter_channels
|
276 |
+
self.kernel_size = kernel_size
|
277 |
+
self.p_dropout = p_dropout
|
278 |
+
self.gin_channels = gin_channels
|
279 |
+
|
280 |
+
self.drop = nn.Dropout(p_dropout)
|
281 |
+
self.conv_1 = nn.Conv1d(
|
282 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
283 |
+
)
|
284 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
285 |
+
self.conv_2 = nn.Conv1d(
|
286 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
287 |
+
)
|
288 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
289 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
290 |
+
|
291 |
+
if gin_channels != 0:
|
292 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
293 |
+
|
294 |
+
def forward(self, x, x_mask, g=None):
|
295 |
+
x = torch.detach(x)
|
296 |
+
if g is not None:
|
297 |
+
g = torch.detach(g)
|
298 |
+
x = x + self.cond(g)
|
299 |
+
x = self.conv_1(x * x_mask)
|
300 |
+
x = torch.relu(x)
|
301 |
+
x = self.norm_1(x)
|
302 |
+
x = self.drop(x)
|
303 |
+
x = self.conv_2(x * x_mask)
|
304 |
+
x = torch.relu(x)
|
305 |
+
x = self.norm_2(x)
|
306 |
+
x = self.drop(x)
|
307 |
+
x = self.proj(x * x_mask)
|
308 |
+
return x * x_mask
|
309 |
+
|
310 |
+
|
311 |
+
class TextEncoder(nn.Module):
|
312 |
+
def __init__(
|
313 |
+
self,
|
314 |
+
n_vocab,
|
315 |
+
out_channels,
|
316 |
+
hidden_channels,
|
317 |
+
filter_channels,
|
318 |
+
n_heads,
|
319 |
+
n_layers,
|
320 |
+
kernel_size,
|
321 |
+
p_dropout,
|
322 |
+
gin_channels=0,
|
323 |
+
num_languages=None,
|
324 |
+
num_tones=None,
|
325 |
+
):
|
326 |
+
super().__init__()
|
327 |
+
if num_languages is None:
|
328 |
+
from text import num_languages
|
329 |
+
if num_tones is None:
|
330 |
+
from text import num_tones
|
331 |
+
self.n_vocab = n_vocab
|
332 |
+
self.out_channels = out_channels
|
333 |
+
self.hidden_channels = hidden_channels
|
334 |
+
self.filter_channels = filter_channels
|
335 |
+
self.n_heads = n_heads
|
336 |
+
self.n_layers = n_layers
|
337 |
+
self.kernel_size = kernel_size
|
338 |
+
self.p_dropout = p_dropout
|
339 |
+
self.gin_channels = gin_channels
|
340 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
341 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
342 |
+
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
343 |
+
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
344 |
+
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
345 |
+
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
346 |
+
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
347 |
+
self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
|
348 |
+
|
349 |
+
self.encoder = attentions.Encoder(
|
350 |
+
hidden_channels,
|
351 |
+
filter_channels,
|
352 |
+
n_heads,
|
353 |
+
n_layers,
|
354 |
+
kernel_size,
|
355 |
+
p_dropout,
|
356 |
+
gin_channels=self.gin_channels,
|
357 |
+
)
|
358 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
359 |
+
|
360 |
+
def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
|
361 |
+
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
362 |
+
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
363 |
+
x = (
|
364 |
+
self.emb(x)
|
365 |
+
+ self.tone_emb(tone)
|
366 |
+
+ self.language_emb(language)
|
367 |
+
+ bert_emb
|
368 |
+
+ ja_bert_emb
|
369 |
+
) * math.sqrt(
|
370 |
+
self.hidden_channels
|
371 |
+
) # [b, t, h]
|
372 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
373 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
374 |
+
x.dtype
|
375 |
+
)
|
376 |
+
|
377 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
378 |
+
stats = self.proj(x) * x_mask
|
379 |
+
|
380 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
381 |
+
return x, m, logs, x_mask
|
382 |
+
|
383 |
+
|
384 |
+
class ResidualCouplingBlock(nn.Module):
|
385 |
+
def __init__(
|
386 |
+
self,
|
387 |
+
channels,
|
388 |
+
hidden_channels,
|
389 |
+
kernel_size,
|
390 |
+
dilation_rate,
|
391 |
+
n_layers,
|
392 |
+
n_flows=4,
|
393 |
+
gin_channels=0,
|
394 |
+
):
|
395 |
+
super().__init__()
|
396 |
+
self.channels = channels
|
397 |
+
self.hidden_channels = hidden_channels
|
398 |
+
self.kernel_size = kernel_size
|
399 |
+
self.dilation_rate = dilation_rate
|
400 |
+
self.n_layers = n_layers
|
401 |
+
self.n_flows = n_flows
|
402 |
+
self.gin_channels = gin_channels
|
403 |
+
|
404 |
+
self.flows = nn.ModuleList()
|
405 |
+
for i in range(n_flows):
|
406 |
+
self.flows.append(
|
407 |
+
modules.ResidualCouplingLayer(
|
408 |
+
channels,
|
409 |
+
hidden_channels,
|
410 |
+
kernel_size,
|
411 |
+
dilation_rate,
|
412 |
+
n_layers,
|
413 |
+
gin_channels=gin_channels,
|
414 |
+
mean_only=True,
|
415 |
+
)
|
416 |
+
)
|
417 |
+
self.flows.append(modules.Flip())
|
418 |
+
|
419 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
420 |
+
if not reverse:
|
421 |
+
for flow in self.flows:
|
422 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
423 |
+
else:
|
424 |
+
for flow in reversed(self.flows):
|
425 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
426 |
+
return x
|
427 |
+
|
428 |
+
|
429 |
+
class PosteriorEncoder(nn.Module):
|
430 |
+
def __init__(
|
431 |
+
self,
|
432 |
+
in_channels,
|
433 |
+
out_channels,
|
434 |
+
hidden_channels,
|
435 |
+
kernel_size,
|
436 |
+
dilation_rate,
|
437 |
+
n_layers,
|
438 |
+
gin_channels=0,
|
439 |
+
):
|
440 |
+
super().__init__()
|
441 |
+
self.in_channels = in_channels
|
442 |
+
self.out_channels = out_channels
|
443 |
+
self.hidden_channels = hidden_channels
|
444 |
+
self.kernel_size = kernel_size
|
445 |
+
self.dilation_rate = dilation_rate
|
446 |
+
self.n_layers = n_layers
|
447 |
+
self.gin_channels = gin_channels
|
448 |
+
|
449 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
450 |
+
self.enc = modules.WN(
|
451 |
+
hidden_channels,
|
452 |
+
kernel_size,
|
453 |
+
dilation_rate,
|
454 |
+
n_layers,
|
455 |
+
gin_channels=gin_channels,
|
456 |
+
)
|
457 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
458 |
+
|
459 |
+
def forward(self, x, x_lengths, g=None, tau=1.0):
|
460 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
461 |
+
x.dtype
|
462 |
+
)
|
463 |
+
x = self.pre(x) * x_mask
|
464 |
+
x = self.enc(x, x_mask, g=g)
|
465 |
+
stats = self.proj(x) * x_mask
|
466 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
467 |
+
z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask
|
468 |
+
return z, m, logs, x_mask
|
469 |
+
|
470 |
+
|
471 |
+
class Generator(torch.nn.Module):
|
472 |
+
def __init__(
|
473 |
+
self,
|
474 |
+
initial_channel,
|
475 |
+
resblock,
|
476 |
+
resblock_kernel_sizes,
|
477 |
+
resblock_dilation_sizes,
|
478 |
+
upsample_rates,
|
479 |
+
upsample_initial_channel,
|
480 |
+
upsample_kernel_sizes,
|
481 |
+
gin_channels=0,
|
482 |
+
):
|
483 |
+
super(Generator, self).__init__()
|
484 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
485 |
+
self.num_upsamples = len(upsample_rates)
|
486 |
+
self.conv_pre = Conv1d(
|
487 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
488 |
+
)
|
489 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
490 |
+
|
491 |
+
self.ups = nn.ModuleList()
|
492 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
493 |
+
self.ups.append(
|
494 |
+
weight_norm(
|
495 |
+
ConvTranspose1d(
|
496 |
+
upsample_initial_channel // (2**i),
|
497 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
498 |
+
k,
|
499 |
+
u,
|
500 |
+
padding=(k - u) // 2,
|
501 |
+
)
|
502 |
+
)
|
503 |
+
)
|
504 |
+
|
505 |
+
self.resblocks = nn.ModuleList()
|
506 |
+
for i in range(len(self.ups)):
|
507 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
508 |
+
for j, (k, d) in enumerate(
|
509 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
510 |
+
):
|
511 |
+
self.resblocks.append(resblock(ch, k, d))
|
512 |
+
|
513 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
514 |
+
self.ups.apply(init_weights)
|
515 |
+
|
516 |
+
if gin_channels != 0:
|
517 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
518 |
+
|
519 |
+
def forward(self, x, g=None):
|
520 |
+
x = self.conv_pre(x)
|
521 |
+
if g is not None:
|
522 |
+
x = x + self.cond(g)
|
523 |
+
|
524 |
+
for i in range(self.num_upsamples):
|
525 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
526 |
+
x = self.ups[i](x)
|
527 |
+
xs = None
|
528 |
+
for j in range(self.num_kernels):
|
529 |
+
if xs is None:
|
530 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
531 |
+
else:
|
532 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
533 |
+
x = xs / self.num_kernels
|
534 |
+
x = F.leaky_relu(x)
|
535 |
+
x = self.conv_post(x)
|
536 |
+
x = torch.tanh(x)
|
537 |
+
|
538 |
+
return x
|
539 |
+
|
540 |
+
def remove_weight_norm(self):
|
541 |
+
print("Removing weight norm...")
|
542 |
+
for layer in self.ups:
|
543 |
+
remove_weight_norm(layer)
|
544 |
+
for layer in self.resblocks:
|
545 |
+
layer.remove_weight_norm()
|
546 |
+
|
547 |
+
|
548 |
+
class DiscriminatorP(torch.nn.Module):
|
549 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
550 |
+
super(DiscriminatorP, self).__init__()
|
551 |
+
self.period = period
|
552 |
+
self.use_spectral_norm = use_spectral_norm
|
553 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
554 |
+
self.convs = nn.ModuleList(
|
555 |
+
[
|
556 |
+
norm_f(
|
557 |
+
Conv2d(
|
558 |
+
1,
|
559 |
+
32,
|
560 |
+
(kernel_size, 1),
|
561 |
+
(stride, 1),
|
562 |
+
padding=(get_padding(kernel_size, 1), 0),
|
563 |
+
)
|
564 |
+
),
|
565 |
+
norm_f(
|
566 |
+
Conv2d(
|
567 |
+
32,
|
568 |
+
128,
|
569 |
+
(kernel_size, 1),
|
570 |
+
(stride, 1),
|
571 |
+
padding=(get_padding(kernel_size, 1), 0),
|
572 |
+
)
|
573 |
+
),
|
574 |
+
norm_f(
|
575 |
+
Conv2d(
|
576 |
+
128,
|
577 |
+
512,
|
578 |
+
(kernel_size, 1),
|
579 |
+
(stride, 1),
|
580 |
+
padding=(get_padding(kernel_size, 1), 0),
|
581 |
+
)
|
582 |
+
),
|
583 |
+
norm_f(
|
584 |
+
Conv2d(
|
585 |
+
512,
|
586 |
+
1024,
|
587 |
+
(kernel_size, 1),
|
588 |
+
(stride, 1),
|
589 |
+
padding=(get_padding(kernel_size, 1), 0),
|
590 |
+
)
|
591 |
+
),
|
592 |
+
norm_f(
|
593 |
+
Conv2d(
|
594 |
+
1024,
|
595 |
+
1024,
|
596 |
+
(kernel_size, 1),
|
597 |
+
1,
|
598 |
+
padding=(get_padding(kernel_size, 1), 0),
|
599 |
+
)
|
600 |
+
),
|
601 |
+
]
|
602 |
+
)
|
603 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
604 |
+
|
605 |
+
def forward(self, x):
|
606 |
+
fmap = []
|
607 |
+
|
608 |
+
# 1d to 2d
|
609 |
+
b, c, t = x.shape
|
610 |
+
if t % self.period != 0: # pad first
|
611 |
+
n_pad = self.period - (t % self.period)
|
612 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
613 |
+
t = t + n_pad
|
614 |
+
x = x.view(b, c, t // self.period, self.period)
|
615 |
+
|
616 |
+
for layer in self.convs:
|
617 |
+
x = layer(x)
|
618 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
619 |
+
fmap.append(x)
|
620 |
+
x = self.conv_post(x)
|
621 |
+
fmap.append(x)
|
622 |
+
x = torch.flatten(x, 1, -1)
|
623 |
+
|
624 |
+
return x, fmap
|
625 |
+
|
626 |
+
|
627 |
+
class DiscriminatorS(torch.nn.Module):
|
628 |
+
def __init__(self, use_spectral_norm=False):
|
629 |
+
super(DiscriminatorS, self).__init__()
|
630 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
631 |
+
self.convs = nn.ModuleList(
|
632 |
+
[
|
633 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
634 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
635 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
636 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
637 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
638 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
639 |
+
]
|
640 |
+
)
|
641 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
642 |
+
|
643 |
+
def forward(self, x):
|
644 |
+
fmap = []
|
645 |
+
|
646 |
+
for layer in self.convs:
|
647 |
+
x = layer(x)
|
648 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
649 |
+
fmap.append(x)
|
650 |
+
x = self.conv_post(x)
|
651 |
+
fmap.append(x)
|
652 |
+
x = torch.flatten(x, 1, -1)
|
653 |
+
|
654 |
+
return x, fmap
|
655 |
+
|
656 |
+
|
657 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
658 |
+
def __init__(self, use_spectral_norm=False):
|
659 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
660 |
+
periods = [2, 3, 5, 7, 11]
|
661 |
+
|
662 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
663 |
+
discs = discs + [
|
664 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
665 |
+
]
|
666 |
+
self.discriminators = nn.ModuleList(discs)
|
667 |
+
|
668 |
+
def forward(self, y, y_hat):
|
669 |
+
y_d_rs = []
|
670 |
+
y_d_gs = []
|
671 |
+
fmap_rs = []
|
672 |
+
fmap_gs = []
|
673 |
+
for i, d in enumerate(self.discriminators):
|
674 |
+
y_d_r, fmap_r = d(y)
|
675 |
+
y_d_g, fmap_g = d(y_hat)
|
676 |
+
y_d_rs.append(y_d_r)
|
677 |
+
y_d_gs.append(y_d_g)
|
678 |
+
fmap_rs.append(fmap_r)
|
679 |
+
fmap_gs.append(fmap_g)
|
680 |
+
|
681 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
682 |
+
|
683 |
+
|
684 |
+
class ReferenceEncoder(nn.Module):
|
685 |
+
"""
|
686 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
687 |
+
outputs --- [N, ref_enc_gru_size]
|
688 |
+
"""
|
689 |
+
|
690 |
+
def __init__(self, spec_channels, gin_channels=0, layernorm=False):
|
691 |
+
super().__init__()
|
692 |
+
self.spec_channels = spec_channels
|
693 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
694 |
+
K = len(ref_enc_filters)
|
695 |
+
filters = [1] + ref_enc_filters
|
696 |
+
convs = [
|
697 |
+
weight_norm(
|
698 |
+
nn.Conv2d(
|
699 |
+
in_channels=filters[i],
|
700 |
+
out_channels=filters[i + 1],
|
701 |
+
kernel_size=(3, 3),
|
702 |
+
stride=(2, 2),
|
703 |
+
padding=(1, 1),
|
704 |
+
)
|
705 |
+
)
|
706 |
+
for i in range(K)
|
707 |
+
]
|
708 |
+
self.convs = nn.ModuleList(convs)
|
709 |
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
710 |
+
|
711 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
712 |
+
self.gru = nn.GRU(
|
713 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
714 |
+
hidden_size=256 // 2,
|
715 |
+
batch_first=True,
|
716 |
+
)
|
717 |
+
self.proj = nn.Linear(128, gin_channels)
|
718 |
+
if layernorm:
|
719 |
+
self.layernorm = nn.LayerNorm(self.spec_channels)
|
720 |
+
print('[Ref Enc]: using layer norm')
|
721 |
+
else:
|
722 |
+
self.layernorm = None
|
723 |
+
|
724 |
+
def forward(self, inputs, mask=None):
|
725 |
+
N = inputs.size(0)
|
726 |
+
|
727 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
728 |
+
if self.layernorm is not None:
|
729 |
+
out = self.layernorm(out)
|
730 |
+
|
731 |
+
for conv in self.convs:
|
732 |
+
out = conv(out)
|
733 |
+
# out = wn(out)
|
734 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
735 |
+
|
736 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
737 |
+
T = out.size(1)
|
738 |
+
N = out.size(0)
|
739 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
740 |
+
|
741 |
+
self.gru.flatten_parameters()
|
742 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
743 |
+
|
744 |
+
return self.proj(out.squeeze(0))
|
745 |
+
|
746 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
747 |
+
for i in range(n_convs):
|
748 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
749 |
+
return L
|
750 |
+
|
751 |
+
|
752 |
+
class SynthesizerTrn(nn.Module):
|
753 |
+
"""
|
754 |
+
Synthesizer for Training
|
755 |
+
"""
|
756 |
+
|
757 |
+
def __init__(
|
758 |
+
self,
|
759 |
+
n_vocab,
|
760 |
+
spec_channels,
|
761 |
+
segment_size,
|
762 |
+
inter_channels,
|
763 |
+
hidden_channels,
|
764 |
+
filter_channels,
|
765 |
+
n_heads,
|
766 |
+
n_layers,
|
767 |
+
kernel_size,
|
768 |
+
p_dropout,
|
769 |
+
resblock,
|
770 |
+
resblock_kernel_sizes,
|
771 |
+
resblock_dilation_sizes,
|
772 |
+
upsample_rates,
|
773 |
+
upsample_initial_channel,
|
774 |
+
upsample_kernel_sizes,
|
775 |
+
n_speakers=256,
|
776 |
+
gin_channels=256,
|
777 |
+
use_sdp=True,
|
778 |
+
n_flow_layer=4,
|
779 |
+
n_layers_trans_flow=6,
|
780 |
+
flow_share_parameter=False,
|
781 |
+
use_transformer_flow=True,
|
782 |
+
use_vc=False,
|
783 |
+
num_languages=None,
|
784 |
+
num_tones=None,
|
785 |
+
norm_refenc=False,
|
786 |
+
**kwargs
|
787 |
+
):
|
788 |
+
super().__init__()
|
789 |
+
self.n_vocab = n_vocab
|
790 |
+
self.spec_channels = spec_channels
|
791 |
+
self.inter_channels = inter_channels
|
792 |
+
self.hidden_channels = hidden_channels
|
793 |
+
self.filter_channels = filter_channels
|
794 |
+
self.n_heads = n_heads
|
795 |
+
self.n_layers = n_layers
|
796 |
+
self.kernel_size = kernel_size
|
797 |
+
self.p_dropout = p_dropout
|
798 |
+
self.resblock = resblock
|
799 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
800 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
801 |
+
self.upsample_rates = upsample_rates
|
802 |
+
self.upsample_initial_channel = upsample_initial_channel
|
803 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
804 |
+
self.segment_size = segment_size
|
805 |
+
self.n_speakers = n_speakers
|
806 |
+
self.gin_channels = gin_channels
|
807 |
+
self.n_layers_trans_flow = n_layers_trans_flow
|
808 |
+
self.use_spk_conditioned_encoder = kwargs.get(
|
809 |
+
"use_spk_conditioned_encoder", True
|
810 |
+
)
|
811 |
+
self.use_sdp = use_sdp
|
812 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
813 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
814 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
815 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
816 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
817 |
+
self.enc_gin_channels = gin_channels
|
818 |
+
else:
|
819 |
+
self.enc_gin_channels = 0
|
820 |
+
self.enc_p = TextEncoder(
|
821 |
+
n_vocab,
|
822 |
+
inter_channels,
|
823 |
+
hidden_channels,
|
824 |
+
filter_channels,
|
825 |
+
n_heads,
|
826 |
+
n_layers,
|
827 |
+
kernel_size,
|
828 |
+
p_dropout,
|
829 |
+
gin_channels=self.enc_gin_channels,
|
830 |
+
num_languages=num_languages,
|
831 |
+
num_tones=num_tones,
|
832 |
+
)
|
833 |
+
self.dec = Generator(
|
834 |
+
inter_channels,
|
835 |
+
resblock,
|
836 |
+
resblock_kernel_sizes,
|
837 |
+
resblock_dilation_sizes,
|
838 |
+
upsample_rates,
|
839 |
+
upsample_initial_channel,
|
840 |
+
upsample_kernel_sizes,
|
841 |
+
gin_channels=gin_channels,
|
842 |
+
)
|
843 |
+
self.enc_q = PosteriorEncoder(
|
844 |
+
spec_channels,
|
845 |
+
inter_channels,
|
846 |
+
hidden_channels,
|
847 |
+
5,
|
848 |
+
1,
|
849 |
+
16,
|
850 |
+
gin_channels=gin_channels,
|
851 |
+
)
|
852 |
+
if use_transformer_flow:
|
853 |
+
self.flow = TransformerCouplingBlock(
|
854 |
+
inter_channels,
|
855 |
+
hidden_channels,
|
856 |
+
filter_channels,
|
857 |
+
n_heads,
|
858 |
+
n_layers_trans_flow,
|
859 |
+
5,
|
860 |
+
p_dropout,
|
861 |
+
n_flow_layer,
|
862 |
+
gin_channels=gin_channels,
|
863 |
+
share_parameter=flow_share_parameter,
|
864 |
+
)
|
865 |
+
else:
|
866 |
+
self.flow = ResidualCouplingBlock(
|
867 |
+
inter_channels,
|
868 |
+
hidden_channels,
|
869 |
+
5,
|
870 |
+
1,
|
871 |
+
n_flow_layer,
|
872 |
+
gin_channels=gin_channels,
|
873 |
+
)
|
874 |
+
self.sdp = StochasticDurationPredictor(
|
875 |
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
876 |
+
)
|
877 |
+
self.dp = DurationPredictor(
|
878 |
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
879 |
+
)
|
880 |
+
|
881 |
+
if n_speakers > 0:
|
882 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
883 |
+
else:
|
884 |
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels, layernorm=norm_refenc)
|
885 |
+
self.use_vc = use_vc
|
886 |
+
|
887 |
+
|
888 |
+
def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
|
889 |
+
if self.n_speakers > 0:
|
890 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
891 |
+
else:
|
892 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
893 |
+
if self.use_vc:
|
894 |
+
g_p = None
|
895 |
+
else:
|
896 |
+
g_p = g
|
897 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
898 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
899 |
+
)
|
900 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
901 |
+
z_p = self.flow(z, y_mask, g=g)
|
902 |
+
|
903 |
+
with torch.no_grad():
|
904 |
+
# negative cross-entropy
|
905 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
906 |
+
neg_cent1 = torch.sum(
|
907 |
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
908 |
+
) # [b, 1, t_s]
|
909 |
+
neg_cent2 = torch.matmul(
|
910 |
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
911 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
912 |
+
neg_cent3 = torch.matmul(
|
913 |
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
914 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
915 |
+
neg_cent4 = torch.sum(
|
916 |
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
917 |
+
) # [b, 1, t_s]
|
918 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
919 |
+
if self.use_noise_scaled_mas:
|
920 |
+
epsilon = (
|
921 |
+
torch.std(neg_cent)
|
922 |
+
* torch.randn_like(neg_cent)
|
923 |
+
* self.current_mas_noise_scale
|
924 |
+
)
|
925 |
+
neg_cent = neg_cent + epsilon
|
926 |
+
|
927 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
928 |
+
attn = (
|
929 |
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
930 |
+
.unsqueeze(1)
|
931 |
+
.detach()
|
932 |
+
)
|
933 |
+
|
934 |
+
w = attn.sum(2)
|
935 |
+
|
936 |
+
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
937 |
+
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
938 |
+
|
939 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
940 |
+
logw = self.dp(x, x_mask, g=g)
|
941 |
+
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
942 |
+
x_mask
|
943 |
+
) # for averaging
|
944 |
+
|
945 |
+
l_length = l_length_dp + l_length_sdp
|
946 |
+
|
947 |
+
# expand prior
|
948 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
949 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
950 |
+
|
951 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
952 |
+
z, y_lengths, self.segment_size
|
953 |
+
)
|
954 |
+
o = self.dec(z_slice, g=g)
|
955 |
+
return (
|
956 |
+
o,
|
957 |
+
l_length,
|
958 |
+
attn,
|
959 |
+
ids_slice,
|
960 |
+
x_mask,
|
961 |
+
y_mask,
|
962 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
963 |
+
(x, logw, logw_),
|
964 |
+
)
|
965 |
+
|
966 |
+
def infer(
|
967 |
+
self,
|
968 |
+
x,
|
969 |
+
x_lengths,
|
970 |
+
sid,
|
971 |
+
tone,
|
972 |
+
language,
|
973 |
+
bert,
|
974 |
+
ja_bert,
|
975 |
+
noise_scale=0.667,
|
976 |
+
length_scale=1,
|
977 |
+
noise_scale_w=0.8,
|
978 |
+
max_len=None,
|
979 |
+
sdp_ratio=0,
|
980 |
+
y=None,
|
981 |
+
g=None,
|
982 |
+
):
|
983 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
984 |
+
# g = self.gst(y)
|
985 |
+
if g is None:
|
986 |
+
if self.n_speakers > 0:
|
987 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
988 |
+
else:
|
989 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
990 |
+
if self.use_vc:
|
991 |
+
g_p = None
|
992 |
+
else:
|
993 |
+
g_p = g
|
994 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
995 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
996 |
+
)
|
997 |
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
998 |
+
sdp_ratio
|
999 |
+
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
1000 |
+
w = torch.exp(logw) * x_mask * length_scale
|
1001 |
+
|
1002 |
+
w_ceil = torch.ceil(w)
|
1003 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
1004 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
1005 |
+
x_mask.dtype
|
1006 |
+
)
|
1007 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
1008 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
1009 |
+
|
1010 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
1011 |
+
1, 2
|
1012 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1013 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
1014 |
+
1, 2
|
1015 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
1016 |
+
|
1017 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
1018 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
1019 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
1020 |
+
# print('max/min of o:', o.max(), o.min())
|
1021 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
1022 |
+
|
1023 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0):
|
1024 |
+
g_src = sid_src
|
1025 |
+
g_tgt = sid_tgt
|
1026 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src, tau=tau)
|
1027 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
1028 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
1029 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
1030 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|