|
import pickle
|
|
import os
|
|
import re
|
|
|
|
from . import symbols
|
|
from .es_phonemizer import cleaner as es_cleaner
|
|
from .es_phonemizer import es_to_ipa
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
def distribute_phone(n_phone, n_word):
|
|
phones_per_word = [0] * n_word
|
|
for task in range(n_phone):
|
|
min_tasks = min(phones_per_word)
|
|
min_index = phones_per_word.index(min_tasks)
|
|
phones_per_word[min_index] += 1
|
|
return phones_per_word
|
|
|
|
def text_normalize(text):
|
|
text = es_cleaner.spanish_cleaners(text)
|
|
return text
|
|
|
|
def post_replace_ph(ph):
|
|
rep_map = {
|
|
":": ",",
|
|
";": ",",
|
|
",": ",",
|
|
"。": ".",
|
|
"!": "!",
|
|
"?": "?",
|
|
"\n": ".",
|
|
"·": ",",
|
|
"、": ",",
|
|
"...": "…"
|
|
}
|
|
if ph in rep_map.keys():
|
|
ph = rep_map[ph]
|
|
if ph in symbols:
|
|
return ph
|
|
if ph not in symbols:
|
|
ph = "UNK"
|
|
return ph
|
|
|
|
def refine_ph(phn):
|
|
tone = 0
|
|
if re.search(r"\d$", phn):
|
|
tone = int(phn[-1]) + 1
|
|
phn = phn[:-1]
|
|
return phn.lower(), tone
|
|
|
|
|
|
def refine_syllables(syllables):
|
|
tones = []
|
|
phonemes = []
|
|
for phn_list in syllables:
|
|
for i in range(len(phn_list)):
|
|
phn = phn_list[i]
|
|
phn, tone = refine_ph(phn)
|
|
phonemes.append(phn)
|
|
tones.append(tone)
|
|
return phonemes, tones
|
|
|
|
|
|
|
|
model_id = 'dccuchile/bert-base-spanish-wwm-uncased'
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
def g2p(text, pad_start_end=True, tokenized=None):
|
|
if tokenized is None:
|
|
tokenized = tokenizer.tokenize(text)
|
|
|
|
phs = []
|
|
ph_groups = []
|
|
for t in tokenized:
|
|
if not t.startswith("#"):
|
|
ph_groups.append([t])
|
|
else:
|
|
ph_groups[-1].append(t.replace("#", ""))
|
|
|
|
phones = []
|
|
tones = []
|
|
word2ph = []
|
|
|
|
for group in ph_groups:
|
|
w = "".join(group)
|
|
phone_len = 0
|
|
word_len = len(group)
|
|
if w == '[UNK]':
|
|
phone_list = ['UNK']
|
|
else:
|
|
phone_list = list(filter(lambda p: p != " ", es_to_ipa.es2ipa(w)))
|
|
|
|
for ph in phone_list:
|
|
phones.append(ph)
|
|
tones.append(0)
|
|
phone_len += 1
|
|
aaa = distribute_phone(phone_len, word_len)
|
|
word2ph += aaa
|
|
|
|
|
|
|
|
if pad_start_end:
|
|
phones = ["_"] + phones + ["_"]
|
|
tones = [0] + tones + [0]
|
|
word2ph = [1] + word2ph + [1]
|
|
return phones, tones, word2ph
|
|
|
|
def get_bert_feature(text, word2ph, device=None):
|
|
from text import spanish_bert
|
|
return spanish_bert.get_bert_feature(text, word2ph, device=device)
|
|
|
|
if __name__ == "__main__":
|
|
text = "en nuestros tiempos estos dos pueblos ilustres empiezan a curarse, gracias sólo a la sana y vigorosa higiene de 1789."
|
|
|
|
text = text_normalize(text)
|
|
print(text)
|
|
phones, tones, word2ph = g2p(text)
|
|
bert = get_bert_feature(text, word2ph)
|
|
print(phones)
|
|
print(len(phones), tones, sum(word2ph), bert.shape)
|
|
|
|
|
|
|