|
import pickle
|
|
import os
|
|
import re
|
|
|
|
from . import symbols
|
|
from .fr_phonemizer import cleaner as fr_cleaner
|
|
from .fr_phonemizer import fr_to_ipa
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
def distribute_phone(n_phone, n_word):
|
|
phones_per_word = [0] * n_word
|
|
for task in range(n_phone):
|
|
min_tasks = min(phones_per_word)
|
|
min_index = phones_per_word.index(min_tasks)
|
|
phones_per_word[min_index] += 1
|
|
return phones_per_word
|
|
|
|
def text_normalize(text):
|
|
text = fr_cleaner.french_cleaners(text)
|
|
return text
|
|
|
|
model_id = 'dbmdz/bert-base-french-europeana-cased'
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
def g2p(text, pad_start_end=True, tokenized=None):
|
|
if tokenized is None:
|
|
tokenized = tokenizer.tokenize(text)
|
|
|
|
phs = []
|
|
ph_groups = []
|
|
for t in tokenized:
|
|
if not t.startswith("#"):
|
|
ph_groups.append([t])
|
|
else:
|
|
ph_groups[-1].append(t.replace("#", ""))
|
|
|
|
phones = []
|
|
tones = []
|
|
word2ph = []
|
|
|
|
for group in ph_groups:
|
|
w = "".join(group)
|
|
phone_len = 0
|
|
word_len = len(group)
|
|
if w == '[UNK]':
|
|
phone_list = ['UNK']
|
|
else:
|
|
phone_list = list(filter(lambda p: p != " ", fr_to_ipa.fr2ipa(w)))
|
|
|
|
for ph in phone_list:
|
|
phones.append(ph)
|
|
tones.append(0)
|
|
phone_len += 1
|
|
aaa = distribute_phone(phone_len, word_len)
|
|
word2ph += aaa
|
|
|
|
|
|
|
|
if pad_start_end:
|
|
phones = ["_"] + phones + ["_"]
|
|
tones = [0] + tones + [0]
|
|
word2ph = [1] + word2ph + [1]
|
|
return phones, tones, word2ph
|
|
|
|
def get_bert_feature(text, word2ph, device=None):
|
|
from text import french_bert
|
|
return french_bert.get_bert_feature(text, word2ph, device=device)
|
|
|
|
if __name__ == "__main__":
|
|
ori_text = 'Ce service gratuit est“”"" 【disponible》 en chinois 【simplifié] et autres 123'
|
|
|
|
|
|
text = text_normalize(ori_text)
|
|
print(text)
|
|
phoneme = fr_to_ipa.fr2ipa(text)
|
|
print(phoneme)
|
|
|
|
|
|
from TTS.tts.utils.text.phonemizers.multi_phonemizer import MultiPhonemizer
|
|
from text.cleaner_multiling import unicleaners
|
|
|
|
def text_normalize(text):
|
|
text = unicleaners(text, cased=True, lang='fr')
|
|
return text
|
|
|
|
|
|
text = text_normalize(ori_text)
|
|
print(text)
|
|
phonemizer = MultiPhonemizer({"fr-fr": "espeak"})
|
|
|
|
|
|
phoneme = phonemizer.phonemize(text, separator="", language='fr-fr')
|
|
print(phoneme) |